The Construction of Missile Guidance
Codes Resistant to Random Interference

By A. R. ECKLER

(Manuseript received February 8, 1960)

Many types of missiles are guided by a finite set of disltinct commands
radioed from the ground in the form of a time-sequence of R¥ pulses. The
command information is conlained in the n — 1 time spacings between
successive pulses in a group of size n, and is encoded and decoded by means
of multitapped delay lines combined with aND gates. This paper discusses
the problem of encoding command information (i.e., selecting the time spac-
ings between pulses) so that m false pulses (m = n — 2) cannol combine
with the n true pulses in any way to form a false command. Although it is
very easy to stale the restrictions that must be imposed on the time spacings
belween the pulses in the different commands, no general methods exist for
finding, among codes salisfying these restrictions, those codes in which the
longest command is as short as possible. This paper presents certain lower
bounds, together with a few empirically dertved codes approaching these
lower bounds. The relationship between these codes and the well-known
error-correcting binary codes of information theory is discussed in an ap-
pendix.

I. INTRODUCTION

Many types of missiles are guided by commands consisting of a time
sequence of RF pulses. The missile receiver is capable of receiving not
only the true command pulses, but also any interfering rF pulses emanat-
ing from other radars in the vicinity (friendly interference) or deliber-
ately generated by the enemy (enemy interference). The purpose of
this paper is to suggest command-encoding methods that minimize
the effects of this interference. Greatest emphasis is placed on random
interference models, because it is difficult to make realistic general as-
sumptions about the behavior of an enemy who knows something about
the code structure.

The following sections may convey the impression that the construc-

973

974 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1960

tion of a code invulnerable to random pulse interference is the only factor
entering into the choice of a code. This is not meant to be the case; ac-
curacy and reliability of decoding equipment, weight in the missile
receiver, power considerations at the transmitter and missile dynamics
and maneuverability also play very important roles. However, it will
be made clear to the reader that code invulnerability should not be
completely ignored, and that reasonable guideposts of design are avail-
able.

In order to fix ideas, the codes presented in this paper are discussed
in terms of missile guidance. However, the reader will note that other
applications are possible. In particular, the codes described here can be
used in radio eommunications to provide protection against the mutual
interference of many communications transmitters operating in the same
area on the same frequency.

1.1 The Engineering Background of the Problem

In many missile guidance systems, command information is sent to
the missile by means of RF pulses. Specifically, the information is con-
tained in the time spacings between suceessive pulses in a group of two
or more pulses. Successive groups of pulses are spaced much more widely
apart because of average power limitations on the magnetron.

There are many physical devices suitable for encoding and decoding
commands. This paper discusses a typical device for encoding discrete
commands, such as “yaw left one unit’ or “pitech down one unit.” These
commands are added up in the missile receiver until the desired correc-
tion has been achieved. Discrete commands can also be used for such
functions as turning rocket motors on or off or destroying the missile.

A discrete command is conveniently decoded in the missile receiver
by means of a lumped-parameter or distributed-parameter delay line
tapped at several points (see IFig. 1). The earlier pulses in an incoming
sequence are delayed the correct amounts by the delay line in order that
the inputs to the anp gate be simultaneously activated.

In practice, it is sufficient that the several aND gate inputs be activated
within a short time interval. Let 7 denote the maximum possible range
of input times (i.e., the difference in time between the earliest and latest
input) that still activates the axp gate. Because of 7 (which is called
the diserete command tolerance), one must be careful not to let two
distinet commands have similar encodings. It is shown in the Appendix
that an adequate separation of different commands is always achieved if
one assigns time spacings in integral multiples of the diserete command
tolerance 7.

MISSILE GUIDANCE CODES 975
DELAY LINE OF MISSILE RECEIVER
DELAY LINE OF MiS CEIVER

- |
INCOMING ‘
PULSES “*tl - 1

e

|
.]
YAW-LEFT DISCRETE
COMMAND ENCODED AS

_A S _I‘___l_i-t_'__.

PITCH-DOWN DISCRETE
COMMAND ENCODED AS

I TS S|

Fig. 1 — Method of decoding discrete command by means of distributed-
parameter delay line tapped at several points.

It is clear that only two pulses are needed to encode a command. How-
ever, in order to obtain a greater degree of security against false pulses,
it is necessary to use three or more pulses per command. The mathe-
matical problem discussed in this paper is the construction of such
security codes.

The same delay line and axp gate can be used in the communications
problem already mentioned. Here the group of pulses plays the role of
an address code rather than a command. Each communications trans-
mitter uses a specific address code as a generalized ‘“‘pulse” with which
to communicate information; thus, different transmitters can use the
same frequency without interfering with each other.

12 A Criterion for Judging Code Effectiveness

The invulnerability of codes to false pulses is measured by the follow-
ing simple criterion: the maxrimum number of false pulses that cannot
interfere with a code group (either by changing the position of a com-
mand or producing a different command), no matter how these false
pulses are placed in time with respect to the true code group.

This eriterion permits only a rough ordering of codes with respect to
invulnerability; redundaney of orders and closed-loop missile response
also play an obvious role. However, it does focus attention on a very
important factor. No matter what random interference model is postu-
lated — for example, a Poisson process of random pulses, a set of radars
with approximately the same pulse repetition frequency operating inde-

976 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1960

pendently of each other, or peaks of random gaussian noise having aver-
age power a certain number of decibels below the pulse recognition
threshold — false single pulses per unit time are much more frequent
than false pairs having a particular spacing, false pairs are much more
frequent than false triples, and so on. This situation is especially true
when the discrete command tolerance r is small with respect to the
average time between false pulses.

II. ONE-STAGE CODIES

This section discusses the problem of constructing one-stage codes
(that is, codes using a delay line and aND circuit) for a set of k distinet
commands. Each encoded command consists of a set of n pulses; the
command information is contained in the (n — 1) time spacings between
pairs of successive pulses. One can encode these & commands such that
1 false pulses cannot combine in any way with (n — ¢) pulses from any
command to form either the same command (shifted in time) or one of
the other (& — 1) commands. The maximum possible value of 7 is equal
to (n — 2), because (n — 1) false pulses can combine with one true
pulse to form false commands in many different ways.

We first disecuss methods of encoding commands invulnerable to
(n — 2) false pulses; later this restriction is relaxed to fewer pulses.

2.1 The Construction of One-Stage Codes with Maximum Protection

It may be helpful to think about a specific coding problem while
reading this section. Let us assume that we wish to encode two commands
(k = 2) consisting of three pulses each (n = 3); by suitable encoding
we can insure that a single false pulse (n — 2 = 1) cannot combine with
two pulses to form any false command. This example will be referred to
below by sentences enclosed in brackets.

As mentioned earlier, it is convenient to make all the time spacings
of a diserete code integral multiples of the discrete command tolerance
1, in order to avoid overlapping problems between different commands.
This being so, one can represent the various time spacings with the in-
tegers 1,2, 3, - - - ; the jth n-pulse command is represented by an (n — 1)-
dimensional vector of integers (#’, b b)), [Specifically, the first
command is given by the pair of integers (4, ') and the second com-
mand by (&, &°)].

The one-stage coding problem for discrete commands can now be
stated in mathematical terms. Assume that one has % distinet n-pulse
commands. All these commands are effective against (n — 2) false
pulses [in the sense discussed above] if and only if the following
kn(n — 1)/2 integers are all different:

MISSILE GUIDANCE CODES 977

lti" f()r'i=1,2,"'=n_la’ndj=1’2’. -’k;
t9 + tiy’ fori=1,2,---,n—2andj = 1,2, -k
et

Eti’ forj=1,2,"',’~'--

i=1

[In our specific problem, we require that the six integers TP S A S A
7, &, t' 4+t all be different.]

The theorem can be proved by indirect reasoning. Suppose that
(n — 2) false pulses have combined with two true pulses to form a false
command. Then the spacing f, between the two true pulses must be
equal to more than one of the kn(n — 1)/2 integers listed above (the
set of all possible spacings between pairs of pulses in the & commands).
Fcr, if to were equal to only one of these integers, the only command
that eould be formed with the aid of these two true pulses would be the
correct command. Conversely, if two of these integers are the same, it is
easy to construct a false command using (n — 2) properly spaced false
pulses. [For example, if the two commands are (3, 8) and (2, 6), then
the second command ecan be falsely formed from the first command by
placing an extra pulse two time units after the second pulse in the first
command. In this case, the six integers are 3, 8, 11, 2, 6, 8, and { is
equal to 8.]

If one allows the integers ¢’ to be arbitrarily large, there is no diffi-
culty in discovering suitable codes. [For example, (31, 73) and (9, 45).]
However, equipment and time restrictions usually make it desirable to
keep all the commands as short as possible (measured from first to last
pulse). Therefore, one may pose the following interesting mathematical
problems:

i. For a given k and n, what is the minimum possible length of the
longest command under the restrictions above?

ii. Are there any (simple and practical) methods for constructing
codes with minimum command length (or a little longer)?

Neither of the above two problems has been solved; lower bounds can
(in a limited way) be set for the first, and the second has largely been
investigated by trial and error. The problem is similar to the eight
queens problem* in chess, but with additional restrictions. More gener-

* The eight queens problem consists of placing eight queens on the chess board
so that no queen can capture any other along a row, column, or diagonal. A specific
code can be characterized by a pair of integers (a, b); this denotes a position on a
generalized chessboard (not restricted to the eight-by-eight size).

978 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1960

ally, it appears to be a problem in partitions in the theory of num-
bers.

A general lower bound L for the minimum possible length of the long-
est command is given by kn(n — 1)/2. However, this bound cannot
always be achieved even for three-pulse codes. For a three-pulse code,
it is true that

S =).

i=1 j=1 i=1
If the longest command length is equal to 3%, the set of integers
/(0 =1,2;5 = 1,2, -, k), &' + &' = 1,2, -+, k)

is a rearrangement of the set of integers (1, 2, - - -, 3k). Therefore, the
sum of the two sides of the above equation is 3k(3k + 1)/2, and the
sum of one side alone is 3k(3%k 4 1)/4. But this last quantity is an
integer if and only if & = 0 (mod 4) or & = 1 (mod 4). In other words,
3k is a lower bound L when & = 1,4,5,8,9,12, 13, ---, and 3k 4+ 1
is a lower bound L for all other k.

2.2 Some Typical One-Stage Encodings

We now list specific diserete encodings for several values of & and n.
For the three-pulse codes the lower bound L for the longest delay line
needed has actually been achieved for & = 1 (1) 10. The first number
gives the time spacing between the first and second pulses, and the
second number the time spacing between the second and third pulses:

k| L Typical minimum-length discrete-command three-pulse encodings

2 71 (1,5) (3,4)

3110 (4,6) (1,7) (2,3)

41 12] (1,9) (3,8) (5,7) (2,4)

5|15 (3,12) (5,9) (2,11) (4,6) (1,7)

6 | 19 (4,15) (2,16) (5,12) (3,8) (1,9) (6,7)

7122 (3,19) (5,16) (7,13) (6,12) (2,15) (4,10) (1,8)

8! 24 (1)23) (2.11) (3.18) (4.10) (5.15) (6.16) (7,12) (8,9)

91 27] (1,26) (3,22) (9,15) (2,21) (6,14) (7,12) (10,8) (4,13) (5,11)

10 | 31| (5,26) (14,16) (2,27) (8,20) (4,21) (9,15) (1,22) (7,12) (3,10) (6,11)

Undoubtedly this list could be indefinitely extended, since it is easy to
discover many different encodings for any & which have the same length
for a maximum-length command.

Unfortunately, an analogous method for improving the lower bound
L does not exist for n > 3. As n increases, it becomes more difficult to
keep the minimum delay line small, and kn(n — 1)/2 becomes a very
unrealistic lower bound.

MISSILE GUIDANCE CODES 979

The tables below list representative discrete-command four-, five- and
six-pulse encodings; the reader is invited to find an encoding with a
smaller L’ if he can (L’ denotes the minimum command length that has
been achieved, but it may not be the true minimum):

k L L’ ' Typical discrete-command four-pulse encodings

2 12 13 ’ (2,5,6) (3,1,8)

3 18 21 (1,5,12) (2,8,11) (3,4,9)

4 24 | 27 | (1,11,15) (2,6,17) (3,7,14) (4,5,13)

5 30 | 31 | (2,20,9) (3,14,13) (4,8,16) (5,10,11) (6,1,18)
k L | L' | Typical discrete-command five-pulse encodings

2 20 ' 25 l (1,8,3,13) (2,5,10,4)

3 30 38 (1,5,12,20) (2,8, ll 14) (3,4,9,15)

k L | L’ ’ Typical discrete-command six-pulse encodings

2 30 ‘ 45 (1,8,3,13,20) (2,5,10,4,18)

If encodings not given in these tables are desired, it should be possible
to use a high-speed digital computer to search through a large number
of encodings (either systematically or at random) and print out the
minimum-length encoding that it finds. Unless an algorithm for comput-
ing encodings is found, this is the only practical method available.

2.3 A General Class of Discrete Codes

As noted in Section 2.2, the length of the longest command in-
creases rapidly with n, the number of pulses in the command. This, of
course, is the price that one pays for protecting oneself against (n — 2)
false pulses arranged in any pattern whatever. One can always reduce
the code length by reducing the protection; that is, construct minimum-
length n-pulse codes that protect against (n — 1) or fewer pulses (7 =
3, 4,5, -+, n — 1). The following formulation of the problem is more
realistic. Suppose that one wishes protection against m false pulses com-
bining with (n — m) pulses in any command.

i. How does one construct n-pulse codes (n > m + 2), keeping the
length L of the longest command as short as possible?

ii. If power is no limitation (any n can be used within reason), for
what value of n is L minimized?

No general solution to either of these problems is known. This section
presents typical encodings for a few of the simplest codes, which were
found by trial-and-error methods.

The simplest problem in this class is the construetion of a four-pulse

980 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1960

code invulnerable to a single false pulse. It can be proved (by the method
used in Section 2.2) that, in order for a four-pulse, k-command code to
be invulnerable to one false pulse the following 4% integer-pairs must all
be different:

{tljy t2j):' (t2j} t:]j): (tlj + tQj: t3j): (tljj t2j + t3j)
forj =1,2 -+ Fk

As before, a lower bound L for the length of the longest command can
be obtained. There is one integer-pair (1,1) which sums to 2; there are
two more which sum to 3, and in general there are n(n — 1)/2 with sums
less than or equal to n. Therefore, a lower bound L is given by the smallest
value of n satisfying 4% < n(n — 1)/2. Most of the specific discrete
encodings listed below actually achieve this bound; the ones that exceed
it by one are marked with an asterisk:

k | L Typical four-pulse encodings invulnerable to one false pulse

1 4 (1,1,2)

2 5 (1,3,1) (2,1,2)

3 6 (4,1,1) (1,2,2) (2,1,3)

4 7 (1,4,2) (2,4,1) (1,1,2) (3,2,1)

5 7 (1,3,1) (3,2,3) (4,2,1) (1,2,4) (2,5,1)*

6 8 (1,5,2) (2,5,1) (1,2,4) (4,2,1) (3,2,3) (1,3,1)

7 8 (1,5,3) (2,2,5) 3,3,2) (42,1) (7,1,1) (1,3,4) (2,3,1)*

For moderate values of %, the minimum length has been reduced more
than 50 per eent by adding one more pulse to the code.

In order to construct a five-pulse k-command code that is invulnerable
to two false pulses, it can be shown (by the method used in Section 2.2)
that the following 10k integer-pairs must all be different:

(tlj: tij): (tﬂjs t-'ij)r (tﬂjn tij);

'+ 6, (& +66), @6 +6), @6+,

6"+ &+ '), W +u e+), O+ e+)
forj=1,2, -, k.

The lower bound L is given by the smallest value of n satisfying 10k =
n(n — 1)/2. Three typical encodings are given below; it it believed that
they are the shortest ones possible:

k ! L J Typical five-pulse encodings invulnerable to two false pulses

(1,2,2,1
(2,3,1,2
(3,3,1,4

SO ba =
=R R4
—
—_—

1)
16) (1,7,1,2)

MISSILE GUIDANCE CODES 981

In order to construct a five-pulse k-command code that is invulnerable
to one false pulse, it can be shown that the following 5k integer-triples
must all be different:

(tlj: ti’j) t3j)s (t'-?j: t3j: 541)?
0 + &, 6, 0, (06 + 660, (0, 6+)
forj=1,2 ---, k.

The lower bound L is given by the smallest value of n satisfying 5k =
n(n — 1)(n — 2)/6. A few typical encodings (believed to be minimum
length) are given below:

k L Typical five-pulse encodings invulnerable to one false pulse
1 5 (1,1,2,1)

2 5 (1,1,3,1) (2,1,1,2)

3 6 (1,1,3,1) (2,1,1,2) (1,3,2,1)

4 6 (1,1,3,1) (2,1,1,2) (1,3,2,1) 2,2,1,2)

As mentioned before, these tables can be extended with the aid of a
high-speed digital computer.

The following table summarizes the known behavior of one-stage dis-
crete-command codes. Tt records the shortest known length of the long-
est command ; most of these lengths are believed to be the smallest ones
achievable. It is evident that one can often reduce this length quite
markedly by adding pulses to the code, and that the savings are likely
to be greater as the number of commands increases:

Codes Invulnerable to Codes Invulnerable to
One False Pulse Two False Pulses
Number of pulses I Number of pulses
k 3 4 5 k 4 5 6
1 3 4 5 1 7 6 -
2 7 5 6 2 13 9 —
3 10 6 7 3 21 11 —
4 12 7 7 4 27 —_ —
5 15 8 — |
6 19 8 — |

III. TWO-STAGE CODES

The single-stage codes discussed in Section IT should prove quite use-
ful to the designer of missile guidance equipment. However, they suffer
from the drawback of trying to do too many things at once. Sometimes
it is more reasonable to break the decoding job up into several smaller
jobs that are performed in sequence. Thus, the output pulse resulting

982 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1960

from oné decoding operation becomes an input pulse to the next decoding
operation.

An important advantage of such a break-up is that at least part of
the security function of the code can be separated from the command
function. This means that one ecan build in between-missile security
without being forced to change the command codes from one missile to
the next. Furthermore, the between-missile security codes can be used
to increase the search time of a knowledgeable enemy for the correct
code. :

A second .advantage is greater simplicity of both codes and compo-
nents. If one needs to protect against (say) as many as four false pulses,
it is not easy to find optimum single-stage codes, and the required de-
lay lines may not be available. Multistage codes provide additional
designs that may be easier to instrument. Balanced against this, of
course, may be an increase in the number of components needed.

Multistage discrete-command codes are those that use a delay line
and multiple aAND circuit decoding mechanism (see Section 1) at each
stage. For simplicity, let us restrict ourselves to two-stage codes, which
possess most of the potential advantages of multistage codes. Let the
symbol 7 | 7 denote a two-stage code containing 7j pulses: the first stage
decodes j clusters of 7 pulses each and the second stage decodes the cluster
of j output pulses emitted by the first-stage AND circuit.

Usually the command part of the code occurs at the second stage.
However, it makes no difference whatever which stage it is assigned to:
an 7 | j security-command code has precisely the same invulnerability
to false pulses as does a j | 7 command-security code. Let us assume for
convenience that the commands are always contained in the second
stage.

3.1 An Upper Bound for the Proteclion

How much protection can an 7 | j code give against false pulses? As-
sume that the two stages are each designed according to single-stage
rules, so that they are invulnerable to (7 — 2) and (7 — 2) false pulses,
respectively. Then an upper bound to the number of false pulses that
can be arranged in any pattern whatever with the #j true pulses with-
out forming a false (or repeated) command is

M=min[i(j — 1) — 1,7 — 1) = 1].

The first term arises because false pulses ean be arranged in (j — 1)
groups of 7 false pulses each, and these groups ean be combined with one
true 7-pulse group to form a false command. The second term arises

MISSILE GUIDANCE CODES 983

I I I I I I TYPICAL ENCODING

I I H E ! 1 FIRST-TERM ERROR
HEH i i (j-1)-1=23
I : | H LI SECOND-TERM ERROR
[] L] L] v
H H H ji=)—1=2

Fig. 2 — First- and second-term error for 2 | 3 code.

hecause false pulses can be arranged in j groups of (z — 1) false pulses
each, angmented by j true pulses, one from each of the j groups in the
correct code. This is illustrated in Fig. 2 for the 2 | 3 code.

Although M is the same for both an 7 | j and a j | 7 code, the two er-
rors are not symmetric. Note that the first type of error can result in a
false command, but the second type of error can only repeat the same
command slightly earlier or later in time. The second error is likely to
be less serious, and in fact can be eliminated by introducing a device
that prevents repetition of the same command within a specified period
of time. Accordingly, in the rest of this section we emphasize codes that
are protected against i(j — 1) — 1 false pulses combining with true
pulses to form a different false command.

For 4, j greater than or equal to two, the maximum possible protec-
tion is always less than that achievable with a single-stage code using
ij pulses. Thus, these codes are somewhat comparable to the reduced-
protection single-stage codes discussed in Section II.

3.2 Methods for Combining Securily and Command Codes

In order to actually achieve the upper bound of the protection, one
must be a little careful when combining the two stages of the code.
There are many ways of doing this, and the choice of a particular method
depends upon the ease of instrumentation. For example, consider the
following alternatives for the 2 | 3 code (see Fig. 3).

3.21 Short Command Codes, Long Security Codes

Let the three-pulse commands be encoded according to the methods
in Section II. The longest command will be approximately 3% if there are
I different commands. The two pulses forming the security code should
be more than 6k apart in order to avoid the possibility of three false
pulses forming a false command. This design is probably the easiest to
instrument.

984 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1960

(a) -

—

SECURITY ENCODING

COMMAND ENCODING
T

©_ | L1 1 1 |
L

i 1 i

SECURITY ENCODING
COMMAND ENCODING

r T 1
o_11 11 |
[—

I—

SECURITY ENCODING

Fig. 3 — Methods for combining security and command codes: (a) short com-
mand codes, long security codes: (b) interleaved security and command codes;
(¢) long command codes, short security codes.

3.2.2 Interleaved Security and Command Codes

Let the spacing between the two-pulse security codes consist of odd
integers, and encode the three-pulse commands in even integers using
the methods discussed in Section II. To illustrate: if four commands are
to be sent, let them be (2, 18), (6, 16), (10, 14) and (4, 8). More se-
curity and command codes can be easily added.

3.2.3 Long Command Codes, Short Security Codes

Let the spacing between the two-pulse security codes be given by the
integers 1, 2, - - - , m. Encode the three-pulse commands in multiples of
2m (or greater) according to the methods of Section II. This is likely
to be the most difficult design to instrument.

These alternatives all provide the maximum possible protection; four
false pulses are needed to form a false command, and three false pulses
are needed to shift the true command in time.

The first and third alternatives are very easy to encode for any values
of 7 and j (if the necessary single-stage codes are available), and are not
discussed further. False pulses that combine with true pulses to form false

MISSILE GUIDANCE CODES 985

security codes cannot possibly form false commands as well, because
these false pulses are either too far from or too close to the other true
pulses to do the job. Frequently the longest delay line is somewhat longer
for these alternatives than it would be if an interleaved code were used.
Accordingly, we devote the rest of this part of the paper to the construc-
tion of interleaved codes.

33 The Problem of Interleaving Security and Command Codes

This section discusses the problem of interleaving i-pulse security
codes with j-pulse command codes in such a way that one is protected
against 7(j — 1) — 1 false pulses forming a false command. Probably
the simplest way to interleave the codes is to reserve the integers f (1),
2f(7), 3f(i), -+ for the command codes. Then one can construct mini-
mum-length command codes invulnerable to (j — 2) false input pulses
according to the methods discussed in Section IT. [It will be shown later
that the minimum possible value for f(7) is 7.]

The interleaving problem is now reduced to the problem of selecting
the security code spacings so that one is protected against 2(j — 1) — 1
false pulses. The following sections present two restrictions on the secu-
rity codes and show that these restrictions are sufficient to guarantee this
protection. No claim is made that this is the only way to interleave
codes; however, the resulting codes do have optimum properties, which
are described later.

331 Two Restrictions on the Security Code

The security code spacings (t1, f2, - - - . ti1) should be chosen in such
a way that

(a) no set of (¢ — 2) false pulses can combine with two true pulses
to form a false security code, and

(b) none of the 7(z — 1) integers

[t k=1,2-,i—1
:L_-(tk+tk+1): E=1,2:,%1—2;

I e i ti1)

should be a multiple of f() [that is, equal to 0 mod f(7)].

The first restriction states that security codes should be single-stage
codes consisting of only one command (see Section II). The second re-
striction accomplishes two goals. First, since none of the integers &,

986 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1960

e N

I T IE e

NI i1l f]
0 (o]

Fig. 4 — Six false security codes for a three-pulse code.

bh+t, -, i+ b+ -+ + ti—gis a multiple of f(7), any 7 | j code will
consist of the full set of 77 pulses. (Any pulse serving two functions at
the same time is a natural ecandidate for a false pulse.) Second, the above
set of integers lists the starting times of all the false security codes con-
sisting of (¢ — 1) false pulses and one true pulse (relative to the starting
time of the true security code). For example, for a three-pulse security
code, the six false security codes are shown in Fig. 4.

Now, consider what happens if one of the above spacings is a multiple
of f(2). One of the command code spacings is formed by the false security
code corresponding to this spacing and one of the true security eodes;
the other (j — 2) command spacings are formed by #(j — 2) false pulses.
But (z — 1) +4(j — 2) = 4(j — 1) — 1, which is the number of false
pulses we wish to protect against. The 3 | 4 code illustrates this point
(see Fig. 5).

It is shown in Section 3.3.2 that codes satisfying these restrictions are
protected against (7 — 1) —1 false pulses, and that the minimum possi-
ble value of f(7) is 4.

3.3.2 Proof That These Restrictions Insure Protection

Given these two restrictions, how ean false commands be formed?
Fach security code in the false command can include at most one true

TRUE
CODE

"R] " an n | I]
FALSE i - HH
CODE HIH HE-- if:
tl‘”t* . ALL COMMAND CODE SPACINGS
_ PLE OF F(i IN BOTH C)
(ti+tz) =a muLTieL (0 ARE MULTIPLES oOF T(L)

Fig. 5 — A 3 | 4 code with spacing a multiple of f(7).

MISSILE GUIDANCE CODES 987

pulse, because of restrictions (a) and (b). [There is one exception: a
false command ean be constructed out of one true security code and
(j — 1) false security codes of ¢ pulses each.] Furthermore, 7j pulses are
needed for the false command, according to restriction (b). Therefore,
if we can show that the false command contains at most ¢ true pulses
(one in each of 7 different false security codes), then we are done, for the
(ij — 1) or more false pulses needed to make up the balance of the false
command will exceed 7(j — 1) — 1, the number of false pulses we wish
to protect against. Since all the true command spacings are multiples
of f(4), it is sufficient to show that one can select at most 1 false security
codes consisting of one true pulse and (i — 1) false pulses each, which
are all spaced f(¢) apart from each other.

In the preceding section, we listed all the #(— 1) possible false se-
curity code starting times (relative to the true security code). If we can
show that exactly 7 of these times are equal to a (mod ¢), where a = 1,
2, ..., i — 1, then we will have proved that at most ¢ different false
security codes can have the proper command spacing. Furthermore, we
will have proved that f(i) = 7; and it is clear that this is the smallest
integer it can be.

Consider the following arrangement of the i(¢ — 1) false security
code starting times in a matrix with ¢ rows and (7 — 1) columns:

T A A A R N
fz,l‘:‘l‘fa."‘ "',l2+"'+ti—l,_tl
bty +ty, - oyl s b, —(ti + t2)
by , —t,-_a, —(t,-_3 + !;_g), cee —(h _|_ B ti_z)
—t'!'#l , r_(t,._ﬂ + t‘a’—l), R JEIE f(tz + s + ti—i),
\ — (b + - i)
If the integers in each row are reduced modulo 7, they will be a per-
mutation of the integers 1,2, - -+ , 7 — 1. We prove this by showing that

the opposite conelusion leads to a contradiction. If two integers in a row
are both equal to the same integer mod ¢, then their difference is equal
to 0 mod 7. But their difference is contained elsewhere in the matrix,
which contradiets the assumption that no starting times are 0 mod ¢
[restriction (b) above]. Since we have proved that each row is a per-
mutation of the first (i — 1) integers, it is clear that the matrix con-
sists of 7 starting times equal to a(mod 7),a = 1,2, -+ -, (z — 1).

988 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1960

It is not too difficult to actually find security codes satisfying restric-
tion (b). For example, consider the security code (4, = 1,6 = 2,t; = 3).
We have

+4H= +1 = 1 mod 4, 3 mod 4;
+f = +£2 = 2mod 4, 2 mod 4;
+i; = £3 = 3 mod 4, 1 mod 4;

4+ (h +) = +£3 = 3 mod 4, 1 mod 4;
+(t + &) = £5 = 1 mod 4, 3 mod 4;
+(ti + o+ ;) = £6 = 2 mod 4, 2 mod 4.

Il

There are exactly four starting times for each of the three values of a.
Note that this security code does not satisfy restriction (a), but that
(h=1,ls=24+4 = 6,{; = 3) does.

If 7 < jin an 7 |j two-stage code, the above two restrictions on the
construction of security codes should be applied. However, if 7 > j,
then we automatically have more than the minimum protection
i(j — 1) — 1 against false pulses— the false command can contain at
most 47 — 7 false pulses (ignoring the one exception mentioned above),
One can trade off this unnecessary additional protection for a larger set
of security codes. To be specific, one can replace the first restriction
with one of the following less stringent restrictions:

(a’) noset of (¢ — k) false pulses, fork = 3,4, -+ ,7 — 1, can com-
bine with & true pulses to form a false security code.

These single-stage codes have already been discussed in Section II.
For example, if one wishes to construct a 4 | 2 code, then one can use
security codes that protect against only one false pulse (instead of two,
the greatest possible protection).

3.4 Some Typical Interleaved Security and Command Codes

The preceding section presented two restrictions on the security code,
which guarantee that the resulting 7 | 7 interleaved two-stage code will
be protected against 7(j — 1) — 1 false pulses forming a false command.
Nothing, however, was said about the actual construction of such codes.
This section presents sample codes for low values of 7 and j.

The command codes of an 7 |j code are restricted to the spacings 7,
2¢, 3¢, -++ and are constructed according to the methods discussed in
Section II. The security codes are constructed by trial-and-error methods
to satisfy the two restrictions. For ¢ = 2, the odd integers all form se-

MISSILE GUIDANCE CODES 989

curity encodings. For ¢ = 3, the pairs (1, 4), (2, 5), (4, 7), (5, 8), - -
and their reverses are legitimate security encodings. In general, such
encodings must be of the form (f, &), where &, # #, and (&, t2) equals
(1 mod 3, 1 mod 3) or (2 mod 3, 2 mod 3). For 7 = 4, the triples (1,
5,9), (2,1, 6), (1, 6,3), (2,3, 6) and (6, 5, 2) are examples of short
security encodings. In general, these security encodings must be of the
form (1 , &2, &) where none of the integers &y, to, ts, h + t2, & + &3 are
equal, and (&, tz, ;) is in one of the following forms: (1 mod 4, 1 mod
4,1 mod 4); (2 mod 4, 1 mod 4, 2 mod 4); (1 mod 4, 2 mod 4, 3 mod
4); (2 mod 4, 3 mod 4, 2 mod 4); (3 mod 4, 3 mod 4, 3 mod 4) or (3
mod 4, 2 mod 4, 1 mod 4).

These interleaved two-stage codes can be regarded as minimum-length
codes in the following sense: given that the command codes are restricted
to the integers f(2), 2f(7), 3f(z), - - - , then

(a) f(7) is equal to its minimum value 7;

(b) the longest command code is as short as possible; and

(¢) the security codes are as short as possible.

Assuming that one wishes to protect against a given number of false
pulses, which 7 | j code should one select? The answer depends upon the
relative importance of minimizing the number of pulses #j in the code,
and keeping the longest command delay line as short as possible. There
are two possible ways to balance these factors against each other:

(a) apply the methods used in one-stage codes (Section II) to the
command code;

(b) change the values of both ¢ and j; codes with large ¢ and small j
have shorter delay lines and more pulses, while codes with small 7 and
large 7 have the opposite characteristics.

Let us illustrate these ideas with a few simple examples. Assume that
we wish to transmit six commands. The 2 | 3 and 4 | 2 codes both provide
protection against at most three false pulses. The number of pulses per
command is six and eight, while the maximum delay-line length is
19(2) = 38 and 6(4) = 24, respectively. Suppose that one uses a 2 [4
code but designs the command code so that it is invulnerable to one
false input pulse (no matter how placed) but not two. Then, referring to
Section II, we see that the number of pulses per command is eight and
the maximum delay line is 8(2) = 16.

How do two-stage codes compare with one-stage codes? The only direct
comparison available is the 2 | 2 code with the four-pulse one-stage code
protected against one false pulse: both codes have the same number of
pulses and the same protection against false pulses. The length of the
longest delay line needed is tabled below for various commands:

990 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1960

Number of commands 2 3 4 5 6 7
Two-stage code 4 6 8 10 12 14
One-stage code 5 6 7 8 8 9

IV. ACKNOWLEDGMENT

The author is indebted to W. J. Albersheim for the suggestion that a
general study of missile codes be made. He is also indebted to W. L.
Roach for a very careful reading of an earlier draft; his suggestions led
to many improvements in this paper.

APPENDIX

Relationship to Error-Correcting Binary Codes

There is a certain relationship between the missile guidance one-stage
code problem presented in Section IT of this paper and the error-correct-
ing binary codes that have been extensively studied in information
theory. Suppose that one wishes to transmit any one of a large set of
messages over a binary channel, and suppose that there is a probability
p that a one will be changed to a zero or a zero to a one in the course of
transmission. One can encode the messages in such a way that every
message differs from every other message in at least four places: for
example, 100000, 011100, 111011 and 000111. (If four messages are to be
sent, these are the shortest messages possible.) Note that single errors
can be corrected immediately (111111 must be 111011), and double
errors can be detected but not corrected (110100 can be either 100000
or 011100).

In general, one attempts to encode N messages in lengths as short as
possible so that » simultaneous errors in the encoding can be corrected
{(that is, the original message can be identified). Viewed geometrically,
each encoded message has a cluster of closely related correctable mes-
sages associated with it (for example, all messages differing from the
correct one in only one unit). These clusters are packed as tightly as
possible into a binary k-dimensional space (k is the encoded message
length) having a total of 2° points. When the encoded messages are
transmitted, synchronization of some sort must be provided between
the transmitter and the receiver in order that the receiver may know
when each binary message starts. The message length is kept as short as
possible in order to maximize the information rate in the channel.*

The missile guidance one-stage codes of this paper can very easily

* For a detailed discussion of these error-correcting binary codes, see Slepian.!

MISSILE GUIDANCE CODES 991

be represented as binary messages: each binary digit corresponds to =
time units, and the pulses of the message are represented by ones. Ior
example, the two three-pulse commands (1, 6) and (2, 3) become
(11000001) and (101001). To make the representation more precise,
the shorter messages can be extended with zeros so that all messages are
of equal length.

There are two differences between the missile guidance single-stage
codes and the error-correcting binary codes; both are discussed in the
paragraphs below. The first difference is concerned with synchronization,
and the second with the shapes of the clusters of correctable messages.

A1 Synchronization

The error-correcting binary decoder accepts messages in non-over-
lapping sets of k digits each (where & is the message length). This implies
that some sort of synchronization between the sender and receiver has
been established; otherwise the receiver does not know when to start
decoding. This synchronization is not easy to provide in missile com-
munieations, because of the rapidly changing position of the missile
relative to the ground transmitter. Therefore, the missile receiver is
arranged to start decoding any time a pulse (that is, a ‘“one”) is re-
ceived.

Some work has been done on self-synchronized codes. For example,
Golomb, Gordon and Weleh® have derived upper bounds for the number
of k-digit messages that can be construeted using an n-digit alphabet.
They require that the set of messages have the property that the final
(k — 7) digits of any message in the set followed by the first digits of
any message in the set does not form a message in the set. A set of mes-
sages with this property automatically provides synchronization; even
when the decoder looks at all the intermediate “‘messages”, it recognizes
none of them. However, the work described above has not yet been ap-
plied to error-correcting codes. It is possible, in fact, that self-synchro-
nized error-correcting binary codes may be of limited interest to informa-
tion theorists because of the reduction in the number of messages per
second that can be sent over a channel. However, channel capacity and
rate of information flow are not objectives of the missile guidance codes.

A.2 Clusters of Correctable Errors

The second difference between the missile codes and the binary codes
is the shape of the cluster of correctable errors associated with a given
message. The binary code cluster usually consists of those k-digit mes-

992 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1960

sages that differ in only a few digits (say, one or two) from the true
message. The missile code cluster, on the other hand, is neither “close”
to the true message nor easy to describe geometrically. It consists of all
k-digit messages that contain ones in n specified places: for example, if
100101 is the message, then 111101, 101101 and 111111 will be decoded
as the message. Obviously, the correctable clusters of different messages
overlap each other. To separate the clusters as much as possible, the
messages are selected so that no member of one cluster with (2n — 2)
or fewer ones is a member of any other cluster. [This is simply a restate-
ment of the requirement that (n — 2) false pulses added to any command
cannot possibly form a false command.]

In order to visualize these correctable clusters, it is convenient to
transform from the k-dimensional discrete binary space of messages to
the (n — 1)-dimensional continuous space of times between any set of
n pulses (true or otherwise). Let us examine the shape of this cluster a
little more precisely for # equal to low values. For n = 2, the cluster is a
line segment 27 units long* centered on the correct spacing ¢, . Forn = 3,
the set of three-pulse messages that will be decoded as a command
(#1, &) is contained in the polygon of Fig. 6. This figure corresponds to a
delay line that delays the first pulse for a time ¢, 4+ ¢, the second pulse
for a time ¢, , and the third pulse not at all. A set of pulses with original
spacing (I, ,) will be brought into exact coincidence by this delay line.
The upper right corner of the square has been sawed off because, for
original spacings (t , t2) in this region, o>t 4+ 7, and there-
fore the first and third pulses will be separated by more than = after
passing through the delay line.

For n = 4, all decodable messages are contained in the three-dimen-

e 7o

ta ot ts

——

[C]
(th tz)
t,

Fig. 6 — Polygon containing set of three-pulse messages that will be decoded
as a command (¢ , £3).

* The quantity 7 is the diserete command tolerance defined in Section I. In
order for a command to be recognized, the time between the earliest and latest of
the n pulses arriving at the AND gate must be less than r.

MISSILE GUIDANCE CODES 993

|
1 ts
[
i T
{ o
el
e ty,ta,t
s i t
I .”, = /
| / ,t', t.z
! /f /.f
T/ Y A
P/ "//
Y "
G———T——ﬂ

Fig. 7 — Polytope containing all decodable messages for n = 4.

sional polytope of Fig. 7. This figure corresponds to a delay line that de-
lays the first pulse ¢, + t + {3, the second pulse &, + ¢; , the third pulse
ty , and the fourth pulse not at all.

For n £ 4, it can be shown that these polytopes can be packed in
such a way as to fill the space completely; it is probably not difficult to
show that this is true for arbitrary n. The ratio of the volume of the
(n — 1)-dimensional polytope to the (n — 1)-dimensional hypercube
of side 27 (which encloses it) is

]
f nln — 1)2"3(1 —2) dx = nt 1.
0 2n

This integral is equal to the probability that n points drawn at random
from a uniform distribution on (0, 1) will all be located within one-half
of each other.

To what use can these polytopes be put? In the binary code problem,
one places a message at the center of each polytope and packs them into
the space as tightly as possible. However, in the missile guidance prob-
lem the messages cannot be packed so closely. Consider an n-pulse com-
mand plus (n — 2) false pulses. There are (2n — 2)!/n!(n — 2)! possi-
ble ways of choosing an n-pulse group, and none of these groups (except
for the one consisting of n true pulses) is allowed to lie within any poly-
tope centered on a true command. The polytopes must be very sparsely
seattered through (n — 1)-space.

Let us assume that the true commands are transmitted with timing
errors that are very small with respect to the discrete command toler-
ance 7. (This is ordinarily true in practice; if it were not, some of the
commands might not be received by the missile.) Then, if the true com-

994 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1960

mands are encoded according to the rules stated in Section II, any false
command consisting of (n — 2) or fewer false pulses will have at least
one spacing that is at least 7 different from any true command spacing.
But the polytope centered on any true command is bounded by the
hypercube of side 27; therefore the false command eannot be decoded as
any true command. In general, if the maximum timing error is e, the
commands should be encoded in integral multiples of a basic time-
quantum 7 4+ e.

It is not possible to relax the encoding rules of Section II to allow for
the fact that we are dealing with polytopes rather than hypercubes. The
reason for this is simple: the polytope intersects each of the 2° " faces
of the hypercube.

REFERENCES

1. Slepian, D., A Class of Binary Signaling Alphabets, B.S.T.J., 35, 1956, p. 203.
2. Golomb, S. W., Gordon, B. and Welch, L. P., Comma-Free Codes, Can. J.
Math., 10, 1958, p. 202.

