Models for Approximating Basilar
Membrane Displacement

By J. L. FLANAGAN
(Manuseript received April 1, 1960)

Three analytical models are developed for estimating the displacement
of the basilar membrane in the human ear when the sound pressure at the
eardrum s known. Frequency-domain data, derived experimentally by
Bekesy, are Fourier-transformed to examine the impulse response of the
membrane. Time-domain and frequency-domain responses of the maodels
are compared with the experimental data. Excitation of the models by peri-
odic impulses 1s considered. Calculations of membrane displacement are
made for excitation by positive pulses, and by alternately positive and nega-
tive pulses. Applicability of the resulls lo the perceplion of prlch is indicaled.

I. INTRODUCTION

In the course of developing an hypothesis to account for results ob-
tained in two experiments on pitch perception,'* it became desirable to
have a tractable model from which the displacement of the basilar mem-
brane at a given point could be estimated from a knowledge of the sound
pressure at the eardrum. This report describes the results of an effort to
deduce such a model.

11, MECHANICAL PROPERTIES OF THE MIDDLE EAR AND COCHLEA

To recall facts and establish a frame of reference, a simplified sketch
of the peripheral mechanism of hearing is shown in Fig. 1. The cochlea,
actually wound in a snail-shell-like spiral in man, is sketched here un-
rolled and stretched out. It contains the perilymph fluid and is parti-
tioned longitudinally by a duet formed by Reissner’s membrane and the
basilar membrane. The duct, roughly triangular in cross section, is filled
with another fluid, endolymph. Resting upon the basilar membrane
within the cochlea duct is the organ of Corti. This organ, immersed in
the endolymph, serves as the termination of the auditory nerve. Bekesy?
has established that the basilar membrane and Reissner’s membrane
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Fig. 1 — Schematie drawing of the human ear.

vibrate cophasically when the ear is stimulated by sound in the lower
range of audible frequencies. Because Reissner’s membrane does not
enter into the present development, only the basilar membrane is
sketched in the schematic diagram.

A sound wave impinging on the ear is led down the external canal
and sets the drum into vibration. The vibration is transmitted by the
ossicular chain to the cochlea, where the piston-action of the stapes
foot-plate produces a compressional wave in the fluid. Because of its
distributed mass and elastic and viscous constants, and because of the
pressure release at the round window, the basilar membrane vibrates
selectively according to the frequency content of the stimulus. Displace-
ment of the basilar membrane causes pressure to be exerted (by another
membrane in the cochlea duct, the tectorial) upon the hairs emanating
from hair cells in the organ of Corti. When the hairs are sufficiently de-
formed, electrical discharges are produced in the nerve fibers.

The mechanical properties of the cochlea have been studied in detail
by Bekesy.* He found that, when the stapes is driven sinusoidally with
constant amplitude of displacement, the amplitude of displacement of
points along the low-frequency (or apical) end of the basilar membrane
varies with frequency as shown in Fig. 2. The peak displacement of
each point is normalized to unity. His measurements® of the difference
in phase between the displacement of the stapes and the displacement of
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Fig. 2 — Relative amplitude of displacement as a function of frequency for
different points along the basilar membrane. The stapes is driven with constant
amplitude of displacement (after Bekesy!).

points along the membrane are sketched in Fig, 3. In addition to these
data, Bekesy found® that, when the sound pressure is constant at the
eardrum, the magnitude of volume displacement of the round window
is nearly constant up to around 2000 cps. To the extent that the peri-
lymph is incompressible and the walls of the cochlea rigid, the volume
displacement of the round window is equal that of the stapes footplate.

Data reported by Zwislocki® and by Bekesy® indicate that, for fre-
quencies below 1000 cps, the over-all impedance of the middle ear and
cochlea is predominantly elastic, owing principally to the compliance of
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Fig. 3 — Relative amplitude and phase of basilar membrane displacement as
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Fig. 4 — Ratio of volume displacement of stapes to peak displacement of basi-
lar membrane (after Bekesy?).

the middle ear air cavity, the round window membrane and the liga-
ments retaining the ossicles and drum. For these frequencies, therefore,
the displacement of the stapes is essentially proportional to, and in
phase with, the sound pressure at the eardrum. At frequencies above 1000
cps, the inertial and viscous elements of the middle ear and cochlea
become more important, and the velocity of the stapes apparently may
lag in phase the pressure at the drum by as much as /2 radians or more
(hence, the stapes displacement may lag the pressure by as much as =
radians or more). For frequencies above about 1000 or 2000 cps, the
indications are that amplitude of stapes displacement begins to decrease
appreciably for constant pressure at the eardrum.*

Because the physical dimensions and mechanical properties of the
basilar membrane change along its length (for example, the membrane
increases in width, thickness and compliance going toward the apical
end), the volume displacement of the membrane per unit length, per
unit pressure across it, changes with distance from the stapes. For a
constant amplitude of stapes displacement, therefore, the amplitude of
the maximally displaced point is not constant with frequency. Bekesy*
gives the ratio of amplitude of volume displacement of the stapes to
amplitude of the maximally displaced point, as shown in Fig. 4. These
data show that, for frequencies below 1000 cps, the amplitude of the

* Zwisloeki’s data suggest a decrease of the order of 12 to 18 db/octave; Be-

kesy’s average data seem to agree roughly with this. In one preparation, however,
Bekesy obtained a fall of about 30 db/octave.
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maximum increases approximately 4 or 5 db/octave. At around 1000 cps
the curve flattens off.

In measurements of the absolute value of membrane displacement,
Bekesy finds the maximal displacement at 200 cps to be 10~* em at the
threshold of feeling (about 140 db referred to 0.0002 dyne/cm?) and,
through extrapolation, 10~ em at the threshold of hearing.* For a given
frequency and a given point on the membrane, Bekesy’s data indicate
that the mechanical vibrations of the stapes and basilar membrane are
essentially linearly related until sound pressures above the threshold of
feeling are reached. There is evidence, however, that the ear is capable
of producing perceptible subjective components at sound levels less than
this value.

As stated at the outset, we desire an analytical relation for estimating
the basilar membrane displacement at a given point from a knowledge
of the sound pressure at the eardrum, valid at least in the frequency
range below 1000 eps. It is in this range that the stapes displacement is
in phase with, and proportional to, the pressure at the drum. The experi-
mental data that the model must describe are the frequency-domain
data just discussed. The approximation problem may, of course, be ap-
proached in either the time or frequency domains; usually it is helpful
to maintain some insight in both domains. Consequently, we would
first like to inquire as to the form of the displacement response of a point
toward the low-frequency end of the membrane to an impulse of pres-
sure applied at the eardrum.

I1I. INVERSE FOURIER TRANSFORMATION OF BEKESY'S DATA

The phase data of Fig. 3 are at best meager, but they are most defini-
tive for the 200-cps point. Let us, therefore, take the 200-cps point for
a sample calculation. Deducing the phase response from I'ig. 3,1 and
taking the amplitude response from Fig. 2, we may plot the data as
shown in Fig. 5.1 Let us make two assumptions about the system with
which we are dealing: first, the impulse response, h(t), of the point
under consideration is Fourier transformable (i.e., [Z. h*(t) dt < »);

b

and second, the system is a stable one having no complex poles with real

* The diameter of a hydrogen atom is about 108 cm.

t Because peak displacement increases at around 5 db/octave, the possibility
exists that the displacement of the point that responds maximally to a given fre-
quency might not be the greatest displacement of the membrane for that fre-
quency. However, the frequency response of a given point generally rises at a rate
greater than 5 db/octave in the vicinity of its resonance; consequently, the great-
est displacement occurs essentially at the maximally responding point.

I As closely as I can determine from the Akustische Zeitschrift data, the maxi-
mum displacement of the “200-cps point” falls at about 210-220 eps.



1168 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

1.0 S a o p

PHASE [*~_ A z

N w

< 2

~ w

\\/ \ (V]
0.8 -7 5%
w /\ \ [
o \ )4
= om
t :
E-' / \\ \ sz i
S o6 LY e g3
< / \ £
w Vi \ b<

2 ¢ s

£ ameLiTuoE /] b\ Yo
So.a Wi -am gL
iy /| gr
4 \ w v

w
7 \\ [

\ a

0.2 -a7 51’

\ <

I

\ [N

o
20 30 40 60 80 100 200 400

FREQUENCY IN CYCLES PER SECOND

Fig. 5 — Displacement amplitude and phase for a point near the apical end of
the basilar membrane. Maximum response occurs for a frequency of about 200
cps. These curves are obtained from data in Figs. 2 and 3.

parts equal to, or greater than, zero (i.e., the system exhibits no output
until an input is applied, and the final value of the impulse response is
ZEero).

Taking the data of Fig. 5 as the magnitude, | H(w) |, and phase, ®(w),
respectively, of the Fourier transform, H(w), of the impulse response,
h(t), we wish to calculate the inverse transform:

h(t) = % [: H(w)e™ do. (1)

In Cartesian form, H(w) is
H(w) = Re H(w) + j Im H(w),
where
Re H(w) = | H(w) | cos ®(w),
Im H(w) | H(w) | sin ®(w).

Because Re H(w) is an even function of » and Im H(w) an odd func-
tion, (1) reduces to:

Il

(2)

h(t) = kf Re H(w) cos wt dw — Ef Im H(w) sin wt dw
T Jo T Jo (3)

ha() + ha(2),

Il
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Fig. 6 — Real part of the Fourier transform, H(w), whose amplitude and phase
spectra are given in Fig. 5.

where R(t) is an even function of time and hs(f) an odd funection. Be-
cause of the assumptions regarding stability [i.e., h(¢) = 0, for t < 0]:

hi(t) = —ha(t) for t <0,
and
Ra(t) = ha(t) for > 0. (4)

Hence (3) can be written:
0 ]
ht) = ;:r f Re H(w) cos wt dw for t> 0. (5)
0

To calculate h(t), then, only Re H(w) is needed. For the data of Fig. 5,
Re H(w) is plotted in Iig. 6.*

In the absence of an analytical specification of Re H(w), we have
graphically evaluated the integral (5) by using the approximation:

40
h(t;) = %E Re H(w,) cos wuliAw, (6)
n=0

where:
Wy, = Nwp,
wo = (2m)(10) radians per second
Aw = (27)(10) radians per second,
ti= (04 X107, =012 ---,27.
* R:?i(w) was obtained from a large linear plot of | H(w) | and ®(w), not from

a semilog plot such as Fig. 5. Estimates, where needed (such as end points of
curves), were made on the linear plot.
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The impulse response computed by the approximation (6) is shown in
Fig. 7.

One notices that the graphical transform yields a nonzero value at
{ = 0, and suggests a nonzero response for ¢ < 0. The reason for this
might be one of several: (a) the phase and amplitude data of I'ig. 5 may
not be compatible to satisfy the assumptions made about the system;
(b) the data of Fig. 5 suggest that the amplitude response may be band-
limited, and it was so treated in the computation; (¢) the quantization
used in (6) may introduce an error in the calculation of h(1).

Of these three possibilities, the first two seem the more likely sources
of diserepancy. The phase data in Fig. 3 suggest that at very low fre-
quencies the phase difference between the displacements of the membrane
and stapes is essentially zero. We know, however, that the scalas vestibuli
and tympani communicate at the helicotrema. Consequently, a constant
displacement of the stapes cannot sustain a constant displacement of
the membrane. This argues, therefore, that the amplitude of membrane
displacement must go to zero as zero frequency is approached, and the
frequency-domain transform of displacement must have at least one
zero at the origin of the complex frequency plane. If this is the case, and
if the transform is minimum phase, the phase response near zero fre-
quency must be at least x/2. Intuitively, too, it appears that constant
displacement near the helicotrema requires constant velocity of the
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Fig. 7 — Impulse resymnse of the point on the basilar membrane characterized
by the amplitude and phase data of Fig. 5. The inverse TFourier transform is ob-
tained by graphical integration of the experimental frequency-domain data.
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stapes, arguing again for a derivative relationship between displacements
at low frequencies. It seems likely then, that, as low frequencies are ap-
proached, the phase of the membrane displacement begins to lead that
of the stapes and at zero frequency goes to m/2. Measurement of the
phase relations at low frequencies undoubtedly is difficult, owing to
minuscule displacement of the membrane.

In connection with possibility (b), the amplitude data in Fig. 2 sug-
gest that the membrane displacement is essentially band-limited and di-
minishes to zero for frequencies below about 0.05 and above about 2.0
times the resonant frequency. This should be interpreted, however, with
an appreciation of the magnitudes of displacement being observed (on
the order of 107" em) and the precision attaining thereto. In the graphical
transformation, an effort was made to follow the experimental indications
as exactly as possible. The amplitude function was treated as mathemati-
cally band-limited and was considered to have zero value for frequencies
above 400 cps and below 5 eps. This probably is not realistic for the
physical system.

Nevertheless, the inverse transform of the experimental data will pro-
vide a helpful guide for appraising the responses of the models to be de-
veloped in the next section.

IV. MODELS FOR BASILAR MEMBRANE DISPLACEMENT

A model for caleulating the displacement of the basilar membrane at
a given point must fit the frequeney-domain data shown in Figs. 2 and 3.
The response curves for various points along the membrane are not un-
like those of bandpass filters having relatively sizable in-band delays.
The peak values of the curves of Fig. 2 have been normalized to unity,
but, as we recall from the previous discussion and from Fig. 4, the peak
response rises at about 5 db/octave in the frequency range up to 1000
eps. Above about 2000 cps, the peak response probably falls at something
around 12 db/octave, and the stapes displacement is no longer in-phase
with the pressure at the drum.

If the data of Figs. 2 and 3 are normalized with respect to the fre-
quency of the maximum response, the curves of I'igs. 8 and 9 are ob-
tained, respectively.* Except for the 150-cps case, the phase curves are
estimated by reading points vertically from Iig. 3. The 150-¢ps eurve
is a single complete phase response published by Bekesy.’

* I have replotted these data as carefully as possible from the published curves
of Bekesy. In reviewing the literature a small diserepaney appears between the
amplitude eurves published in Akustische Zeitschrift and those which appear later
in the Handbook of Experimental Psychology. 1 judged this to be due to rounding

and smoothing in redrafting the latter, and hence gave more weight to the earlier
data.



1172 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

1.0

5
el

RELATIVE AMPLITUDE OF DISPLACEMENT

>
/

a

a1 0.2 0.3 04 0506 08 10 2 3
NORMALIZED FREQUENCY,

Fig. 8 — The experimental displacement data of Fig. 2 plotted with frequency
normalized in respect to the frequency of maximum displacement.

N o
1
i
4/
11
77
/’

_150 CPS

NN

\\loo cPs
\\

2 300 CPS\\\\
N\ A\

Tz \\\‘\

PHASE OF MEMBRANE DISPLACEMENT WITH
RESPECT TO STAPES DISPLACEMENT IN RADIANS
I

0.1 0.2 0.3 0.4 0506 0.8 1.0 2 3
NORMALIZED FREQUENCY, §

Fig. 9 — Phase responses deduced from data in Fig. 3. Frequency is normalized
as in Fig. 8.



BASILAR MEMBRANE DISPLACEMENT MODELS 1173

Omne notices that, except for the 100-cps case, the amplitude curves fall
close together and represent resonances whose bandwidths are essentially
constant percentages of the resonant frequencies (i.e., constant “Q’).
The 100-cps curve is slightly broader than the others. The lower skirt
of the amplitude curves rises at about 6 db/octave, while the upper skirt
falls at approximately 20 to 30 db/octave. The total phase change in
passing through a resonance is of the order of 3x. The phase curves for
the lower frequency points have the greater slopes (i.e., d®/dw) inside
the passbands, and the delay for the lower frequency points is therefore
greater. (This is, of course, as it should be, since the time required to
propagate energy from the eardrum to points near the apical end of the
membrane is greater than it is for points lying at the basal end.)

As a minor digression, it is interesting to notice that the slopes of the
phase curves in the vicinity of resonance indicate delay values about
twice as large as the transit times measured by Bekesy.' Measuring the
slopes of the phase curves in this region (again, from the linear plot)
yields:

Resonant Frequency, f Phase Delay, d¢/dw 2xf(d¢/dw)
100 eps 11.8 msee 7.4 radians
150 7.2 6.
200 6.4 8.
300 4.5 8.5

These times represent the delays of the frequency components containing
the greatest portion of the stimulus energy, and do not represent the
times at which a response first appears (i.e., transit times). Looking
back at the graphically determined impulse response for the 200-cps
point (Fig. 7), one sees that the greatest displacement occurs at approxi-
mately 6.3 milliseconds. The time at which the response essentially be-
gins is of the order of 2.5 milliseconds, which is in close agreement with
Bekesy’s measurements. It is also interesting to note in passing that
the produet of resonant frequency and delay near resonance (i.e., the
third column) is roughly constant. This fact will be utilized in adjusting
the phase response of the models.

To return to the question of fitting a function to the frequency-domain
data, at least for the frequency range below 1000 cps, let us consider a
model whose Laplace transform is the ratio of rational polynomials.
There will be, of course, an infinite number of possibilities for fitting the
data, depending upon the criterion and precision of fit. We would, how-
ever, like to have an approximation that is both computationally simple
and hopefully adequate to explain certain subjective results in pitch-
matching. Any criterion of fit must ultimately have its roots in psycho-
acoustic phenomena. Since such cannot be specified at this time, it would
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seem that conventional curve-fitting techniques and least-squares cri-
teria might be discarded in favor of a basically intuitive approach.

The skirt slopes of the amplitude curves suggest a frequency funetion
that has a simple zero in the vicinity of the origin of the complex fre-
quency plane, and a denominator whose degree is about four or five
greater than that of the numerator. The relationship between the real
and imaginary parts of its complex conjugate poles ought to be such as
to maintain the constant-percentage bandwidth character of the re-
sponses. The amplitude at resonance ought to vary in the manner pre-
seribed earlier, and the phase and delay characteristics presumably
should be representative of the experimental data. (The question of
phase at low frequencies will necessarily receive some further considera-
tion.)

As one of the simpler possibilities for approximating the amplitude
and phase data, consider a function having two pairs of synchronously
tuned complex-conjugate poles, one negative-real axis pole, and one
negative-real axis zero near the origin. Adorned with necessary con-
stants, such a function has a Laplace transform:

; _ atr [ S + e 1 : —sT
Fi(s) = ciB (s)—-l- Y) [ﬁ—#—(s Far T @ 52] e, (7)
where:

¢, is a positive real scale factor which yields the appropriate absolute
value of displacement;

8*'" is a factor that produces the proper variation in amplitude of reso-
nance with resonant frequency (if, as previously suggested, a figure of
5 db/octave rise in the resonant peak is accepted, then r = 0.83);

¢ *Tis a delay factor (T seconds) to bring the phase response into
line with the experimental phase data.

The function has second-order poles at s = —a = jB, a simple pole
at s = —v and a simple zero at s = —e. By virtue of the constant-per-
centage bandwidth properties of the membrane resonances, we let 8 and
« be related by a constant: 8 = ka. The value of the function for real

frequencies (i.e., s = jw) is:

7l _ 4+ [ € +Jw T —jwT
fije) = e (7+.’iw) (32+£—w2)+jEw o ®

kE
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As with the experimental data, it is convenient to work with frequency
normalized. Let { = (w/g8).* Then (8) becomes:

€ .
B%—Jg‘ 1 N ier

1 - 5 | e (9)
Y (Hp—r)ﬂk;

One notices that fitting the phase and amplitude data of Bekesy near
to zero frequency presents somewhat of a dilemma (as it does with all
other minimum-phase functions that we have considered). To diminish
the amplitude response at low frequencies, one needs the zero of the
function close to the origin. Although the phase at zero frequency ob-
viously remains zero so long as the funetion zero is in the left-half plane,
the phase “bulges’ appreciably positive at low frequencies if the zero is
placed too close to the origin. By empirical adjustment of the parame-
ters, a compromise position was obtained for the zero, and corresponding
values for &, T and v were deduced. The values arrived at are:

F(jg) = e

€
5= 0L k= 2.0,

‘ (10)
g = 1.0, T= }; seconds,

In order to match phase responses, one notices that the delay, 7, is
taken to vary inversely with the resonant frequency, 8. For the constant
chosen, the added delay at 100 eps, for example, is approximately 4 milli-
seconds. This delay, in conjunction with the w-dependent delay, is in
reasonable agreement with Bekesy’s measurements of transit time down
the membrane.

A plot of

| 7,(j¢) |
! Fl(j.rmﬂx) I,

where {wax is the frequency of peak displacement, is given in Fig. 10.1
The hatched region represents, for comparison, the variability among the

* This normalizes real frequency with respect to the imaginary part of the pole
frequency. The latter is not necessarily the same as the frequency of maximum
response.

?Note that for the present parameters the resonant peak does not fall exactly
at ¢ = 1.0, but more nearly at ¢ = 0.95.
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Fig. 10 — Frequency responses of the models compared with experimental data.

200, 400 and 800 cps curves of Fig. 8. A plot of £F1(jt) = &) is
given in Fig. 11.

If the experimental phase data at low frequencies are not taken too
seriously, and the phase of (9) allowed to approach =/2, then the zero
might be placed at the origin (i.e., e = 0). The amplitude response for
this situation is shown by the dashed portion of the | F1(j¢) | curve in
IFig. 10.

At high frequencies, function (9) attenuates as ¢, or at about 24
db/octave. Some of Bekesy’s data indicate attenuations slightly greater
than this. As another possibility, therefore, a function having a simple
zero at the origin and third-order, complex-conjugate poles was con-
sidered. Its Laplace transform is:

§ —aT
—————¢ (11
(CETE A :
where the constants are defined in a manner similar to (7). The real fre-
quency response in terms of normalized frequency is:

Fa(s) = e

. - JE _ —jtfT
Fa(jt) = a8 1 ; o ¢ e, (12)

—

A reasonable fit to the resonant bandwidth is obtained for & = 2.0 with




BASILAR MEMBRANE DISPLACEMENT MODELS 1177

7
2
) ==
————
z ¢1(J§)~4>~§§:‘\
™
. N
n A .
g ”2;_7 \k¢3’(dé,
[a]
: N\
z —27 \
£ 2 200 CPS- 7
[ EXPERIMENTAL ‘\
-3 k

L ¢2(Jf) \

2 N \
car \
_em N\

2 04 0.2 03 04 06 08 10 2 3

NORMALIZED FREQUENCY, ¢

Fig. 11 — Phase responses of the models.

BT = 3w/4, as before. For these values, a plot of | Fao(ji) |/] Faljtmax) |
is given in Fig. 10 and £ F,(j¢) is given in Fig. 11.

With a thought toward inverse transformations for the approximating
functions, one function that provides a respectable fit and has a particu-
larly simple inverse transform is the following:

. , B
8 + 2as + (a - -;3—) o (13)
Gra:+pF °

Or, in terms of the normalized real frequency,
1 1 2 .2
FE-5-9)0

1 . 2 T
[SEEDE

This function has simple zeros at s = a(—1 + k/ 4/3) and third-
order poles at s = a(—1 = jk). The function obviously becomes non-
minimum phase for k& > 4/3. Because the separation between zeros is
2k/4/3, the zeroat s = a(—1 + k/+/3) has the greatest influence on
amplitude response for the minimum phase conditions (i.e., k < V3).
Tor values of & = 1.7 and 3T = 3x/4, the amplitude and phase responses
of (14) are shown in Figs. 10 and 11, respectively.

Fy(s) = 03,34+r

(14)

Fa(.?f') = g8



1178 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

V. INVERSE TRANSFORMS OF THE MODELS

It is pertinent to examine the inverse transforms of the models (7),
(11) and (13) (i.e., their responses to unit impulses applied at ¢ = 0)
and to compare these responses with the impulse response obtained for
the experimental data (Fig. 7).

Inverse transforming (7) is a particularly cumbersome procedure. In
the interest of conciseness, the details of the inverse transformations for
all the functions are relegated to the Appendix. Only the results will be
used here. For function Fi(s), the impulse response turns out to be:

fi(1) = e T1[0.033 4 0.3608(t — T)]e ™" sin 8t — T)
+ [0.575 — 0.3208(t — T)]e *"" " cos B(t — T)

— 0575 ¢ for tz=T (15)
fi(t) =0 for t<T,
where 7' is the previously specified delay.
In a similar manner, the inverse transform of Fa(s) is:
fa(t) =
Gzﬁ;” [{[B(i ; ) A —T) — %} PR Gy )
+ (=Bt — T)F + 48(t = T ™" cos Bt - T)] (16)
for t=T,
f(t) =0 for t<T.

As indicated earlier, the inverse transform of F3(s) is particularly
simple, this being the principal reason for presenting its fit. Its inverse is:

1+r
fa(t) = ¢l Bt — TP """ sing(t — T) for 2T
6 (17)

fa(t) = 0 for ¢t < T.

TFor comparison purposes, the impulse responses fi(¢), f2(¢) and fs(t)
are plotted in Fig. 12, together with the graphically determined re-
sponse of Fig. 7. In this plot relative delays have been equalized to com-
pare waveforms. Because the scale constants ¢, ¢; and ¢s have not been
taken into account, the amplitude scales for the different curves are rela-
tive. The curves have been plotted, however, for approximately equal
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Fig. 12 — Impulse responses of the models. These displacement functions are
the inverse transforms of the frequency-domain data in Figs. 10 and 11. Time delay
has lbeen equalized to compare waveforms. Locations of absolute origins are given
in the text.

peak-to-peak values. The fits to the experimental data do not seem un-
realistic, in view of the questions raised earlier. One notices that, in most
instances, the positive impulses produce the greatest deflection in the
negative direction. Equalization of the delays to bring the curves into
coincidence were such as to make the absolute origins (gt = 0) for each
response the following number of radians to the left:

Function Radians to Absolute Origins
200 eps, experimental 2.3
filt) 1.9
fa(t) 2.4
fa(t) 1.5

Of the functions displayed, fo(f) and f3(¢) appear to fit the graphically
derived impulse response better than f,(¢) does. In the frequeney domain,
however, F;(s) appears to afford the slightly better fit.

VI. RESPONSE OF MODELS TO PERIODIC IMPULSE EXCITATION

If an excitation of periodic unit impulses is delivered to a linear sys-
tem, the periodic response is a doubly infinite, linear superposition of
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responses to single impulses, or:

g() = 20 J(t — nr), (18)
where f({) is the response to a single impulse, applied at ¢ = 0, 7 is the
period of excitation and g(¢) is the periodic response. 1f F(w) is the
Fourier transform of f({), it can be shown that:

o

o) = 2 L P(nag)e™ (19)

n=—00

where wy = 2w/7 is the fundamental frequency of excitation. Because
g(t) is a real function of time for a physically realizable system, the am-

plitude spectrum is even; i.e., | Fw) | = [ F(—w) | ; and the phase spec-
trum is odd; ie., ®(w) = —®(—w). Relation (19) can therefore be
written:

g(t) = ;: {| F0)| + 2 7;21 | F{nw) | cos [nwd + Cb(nwo)]}. (20)

By way of example, let us look at the response of function Fi(w) [see
(8)] to an excitation of periodic impulses, Suppose we first take the case
where F,(w) specifies a point on the membrane tuned to the fundamental
frequency of excitation. Let the resonant frequency of the point be
8, = wy. Then ¢ = w/wy = nw/wo = n and Fi(nw) = Fi({ = n), and
the periodic response is:

g.(t) = (21)

%{Fl(; —0) +2 5 P = ) oos b + (s = ]}

n=1

As determined in previous caleulations, values of Fy({) are:

! £ ?fs(f_l)' ¢(f), degrees
i 0 0.06 0
; 1 0.67 _oa8
3 2 0.08 _534
3 3 0.01 —706

Obviously, in this case the displacement response of the membrane is
principally fundamental, the second harmonie being slightly more than
one-tenth the amplitude of the fundamental. A plot, on a relative ampli-
tude scale, of these first four terms is shown in Fig. 13(a).



BASILAR MEMBRANE DISPLACEMENT MODELS 1181

20 T T T
t t

L5 B =wy .

1.0 4

0.5 -
0 .

~0.5 |-

“tor (8) -

t
=-1.5 | 1 I
2.5 T T T
20 P =2wg

1.5}~ T

1.0 —

"L VAR
; . .

7 T T T N
=05 -1
=-1.0 -
-t ®
=-2.0 1 1 1

RELATIVE AMPLITUDE

2.0 _—
= FUNDAMENTAL
L5 2= 2w REJECTED ]
1.0 {
0.5 [ i
N { t
N \
-1.0| (c) —
-1.5 1 1 1
0 7/, T 37y, 27

wot IN RADIANS

Fig. 13 — Displacement responses of model F,(s) to excitation by periodic im-
pulses. The three conditions represent: (a) the displacement of a point on the
membrane resonant to the fundamental frequency, wq ; (b) the displacement of a
point resonant to the second harmonie; (c¢) the same as (b) except with the funda-
mental frequency component eliminated from the stimulus.

Consider next a point on the membrane tuned to the second harmonie
of the stimulus (i.e., 8, = 2wy = 28,). Then { = w/2wy = nwe/2wy = n/2
and Fy(nw) = Fi(¢ = n/2). In this case:

9,(t) =
= (22)
%{Fl(f =0)+ 2 nz=1 Fl(; = g) cosl:n'(;—"t + rbl(g- = g)]}
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alternate positive and negative impulses. The five conditions represent the dis-
placements of membrane points respectively resonant to: (a) fundamental fre-
queney; {b) second harmonie; (¢) third harmonic; (d) fourth harmonie and (e)
fifth harmonic. The dashed eurves are the displacements when the fundamental
component is eliminated from the stimulus.
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Funectional values for this case from previous computations are:

" & %’i &(), degrees
0 0 0.06 0
1 0.5 0.37 —69
2 1.0 0.67 —248
3 1.5 0.27 —422
4 2.0 0.08 — 534
5 2.5 0.03 —626

Because of the form of (9), note that the amplitude scale factors for
¢y(t) and g.(¢) are in the ratio (8,/8:)" = 2".* The response g,(¢) of the
point resonant at the second harmonic of the excitation is plotted in
Fig. 13(b).

If the stimulus is ideally high-pass filtered to remove the de and funda-
mental terms, then the periodic response at point 8, is that shown in Iig.
13(¢e).

The shape of a single period at 3, , with the fundamental present, is
already similar to the impulse response. If one examines points tuned
higher in frequency, the time resolution increases because the bandwidth
inereases, and the response becomes more and more identifiable as re-
peated impulse responses (i.e., nonoverlapping impulse responses).

An even more instructive insight is obtained if one considers periodic
excitation by alternately positive and negative impulses. Such a train is
odd-harmonic in equal amplitudet and, like the repeated positive pulses,
has a phase spectrum that is zero. To vary the example, let us consider
the response of Fa(s) [see (11)] to this excitation. Following an approach
identical to that just described, but dealing only with odd spectral com-
ponents, the responses of I"ig. 14 are obtained. Once again we recall that
the amplitude scales, shown here as relative, are in the ratio g".

The response of a point tuned to the fundamental is essentially a
sinusoid at the fundamental frequency and is shown in Fig. 14(a). The
displacement of the membrane point tuned to the second harmonic
(where there is no stimulus energy) is shown in Fig. 14(b). It exhibits a
displacement in which the fundamental periodicity can be discerned
when the fundamental component is present. Without the fundamental
the response is relatively low-amplitude third harmonic. The point tuned
to the third harmonic, Fig. 14(c), displaces essentially at the third har-

* The implication here, of course, is that we are still dealing with frequency
ranges below 1000 ¢ps, where the membrane resonances are assumed to vary in
peak displacement, as previously discussed.

t The equal-amplitude speetral lines have twice the amplitude of those for
repeated positive impulses.
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monic frequency whether the fundamental is present or absent. The
point tuned to the fourth harmonic, Tlig. 14(d), begins to exhibit funda-
mental periodicity again, regardless of whether fundamental is present
or not. The point tuned to the fifth harmonie, Fig. 14(e), yields a re-
sponse which is very nearly nonoverlapping, superposed impulse re-
sponses.

Quantification of the membrane displacement in this manner offers a
basis for a number of useful speculations on the perception of periodic
pulses.

VII. CONCERNING RELATIVE AMPLITUDES OF DISPLACEMENT

Since relative amplitude of displacement may be of importance in the
conversion of membrane displacement into nervous activity, it is worth-
while to examine amplitude relations further. We have seen that, if the
membrane is excited with periodic impulses at a fundamental frequency
to which a point near the apical (low-frequency) end is resonant, this
point executes a displacement which is nearly the fundamental sinusoid.
A point toward the basal (high-frequency) end, whose resonance curve
embraces a substantial number of harmonics, yields a periodic response,
which is essentially a succession of negligibly-overlapping impulse re-
sponses. Because such points respond simultaneously (except for transit
delay), and because their peak amplitudes have implications in hy-
potheses about pitch perception, let us compare the peak amplitudes of
a “fundamental-responding” point with that of an “impulse-responding”
point. Tor the sake of varying the examples further, let us work with
model Fy(s), in (13), and its impulse response fs(f), in (17). We are in-
terested in the absolute extremum of (17). The times of the extrema can
be found by differentiating (17), setting to zero and solving, which gives:

1, o st =T) ]
tmux_Btran [ﬁ(t— T) _3-4 » t>T. (23)
The envelope maximum occurs at:

tmnx envel = 3_|éé + T) . (24)

It is not necessary to solve the trancendental relation (23), since we al-
ready have (17) plotted to a reasonable precision in Fig. 12. Using the
latter data, we get for the absolute maximum of f3(t),

1+r
| £2(2) lmax = Ciﬁg_ (1.4) = (0.23)es8, ™", (25)
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where the subscript p denotes a point toward the high-frequency end of
the membrane. In a parallel manner, the amplitude of a point, g, tuned
to the fundamental frequency can be obtained from relation (20). In
this case, 8, = wo and

L g5(t) |funa 2 ;ﬂ 2| Fy(f = 1)
o

2 0.5,(0.83) (26)
™
= ¢;8,"7(0.26).
The ratio of these two peak displacements is, therefore
|f3(i) |max (lsp)H-r -
Ry = ——+—""=1(088) =) . 27
’ | 93(15) Ifund ( ) BG ( )

If the same computations are made for the other two models, Fi(s)
and F.(s), the ratios are:

B 14r
R, = (0.80) (B—p) ,

B" I+r (28)
Ry = (0.82) (ﬁ—") .

Since 8, > B, and since the experimentally determined exponent
r &~ 0.8, the peak amplitudes of the impulse-responding points exceed
those of the fundamental-responding points, at least in the frequency
range below 1000 eps (i.e., roughly over the apical half of the mem-
brane).

VIII. EVALUATION OF SCALE CONSTANTS €1, €2 AND €3

Bekesy’s data show that the maximum deflection of the basilar mem-
brane at a frequency of 1000 cps and a sound pressure level of 134 db
referred to 0.0002 dyne/em? (i.e., 10" dynes/cm®) is approximately 10~
cm. His measurements also indicate that the mechanieal funetioning of
the middle and inner ear is essentially linear to the threshold of feeling.
In the models, therefore, the constants ¢, , ¢; and e; should be chosen to
provide peak displacements at resonance equal to

-7 3 B i
(10 cm /dyne) [m] .
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The amplitude responses of the models at resonance are:
| Fi(y = 1.0) | = e87(0.66),
| Fo(¢ = 1.0) | = e:87(0.92), (29)
| Fa(t = 1.0) | = ¢;87(0.83).

The values of the constants, therefore, should be:

7 {066)12w (1000)T
107 |
7 10.92)2w(1000) " (30)
a0
“ 7 (0.83)[2r(1000)]"

IX. APPLICATION TO PITCH PERCEPTION

As suggested at the outset, the present computations were precipi-
tated by a particular need. In drafting a paper to report two earlier ex-
periments on pitch perception,!? it became painfully obvious, as soon
as the discussion section was reached, that little quantitative basis
existed for interpreting the subjective data. The models described here
were developed in an attempt to alleviate this situation.

In the pitch experiments it became necessary to explain how three
different modes of pitch perception arise when periodic pulse trains
stimulate the ear. One mode ascribes a pitch to the stimulus equal to
the pulse rate, regardless of the polarity pattern of the train; in other
words, positive pulses (condensations) are not diseriminated from nega-
tive pulses (rarefactions). A second mode ascribes a pitch equal to the
mathematical fundamental whether energy is present at this frequency;
this mode includes the situation which has been labeled ‘“‘residue’ phe-
nomenon. The third mode assigns a pitch equal to the frequency of the
lowest spectral component present in the stimulus.

The first mode characteristically operates at low values of pulse rate
(usually below 100 pps in unmasked situations). The second usually
obtains for fundamental frequencies in the approximate range 200 to
500 cps. The third seems to hold for fundamental frequencies around 1000
cps and higher when the lowest-frequency component is rejected by
HP filtering.

Without launching into the details of the psychophysical experiments,
the applicability of the models to the perception of pulses can at least
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be indicated. It is of consequence, for example, to ascertain to what
extent the subjective pitch modes are manifested in the mechanical
operation of the cochlea. Looking again at Fig. 14, one can observe dis-
placement patterns that might be considered favorable for giving rise
to the pitch modes just outlined. This presumes, of course, certain hy-
potheses about the mechanism of converting displacement information
into eleetrical discharges in the nerve fiber. A discussion of these im-
portant details, however, is more appropriate in another place. Even so,
Fig. 14 suggests several things.

When the membrane is excited over most of its length by a periodic
pulse stimulus, the higher-frequency portion probably is effective in
supplying only pulse-rate information, no matter what the polarity
pattern of the train. In this region of the membrane the pulses are well
resolved in time (i.e., the displacement is essentially nonoverlapping
impulse responses), and the “overshoot’ of the response to each pulse
is substantial. Under certain assumptions about the transduction of dis-
placement into nervous activity, the latter fact can be construed as
favorable for eliciting nerve volleys in synchrony with each pulse.*

Information on fundamental frequency might be manifested in two
ways: (a) If the fundamental component is present in the stimulus, then
the point on the membrane tuned to the fundamental responds strongly
with near sinusoidal displacement. (b) If, on the other hand, the funda-
mental is absent, the lowest-frequency part of the membrane receiving
excitation will embrace a small number of spectral lines within its fre-
quency response. Its displacement generally will exhibit the fundamental
periodicity in a form favorable for triggering one nerve volley per funda-
mental period.

So far these comments have not considered the importance of relative
amplitudes of displacement. This question appears to be of particular
consequence in evoking the second, or fundamental, pitch mode. Although
the indications are that most significant neural information originates
from the point of greatest displacement, there is evidence that subjects
may give preference to the fundamental mode over the pulse-rate mode
even though the former may be correlated with smaller membrane dis-
placements than is the latter. Relative amplitudes of displacement very
likely undergo nonsimple transformations in the neural conversion proc-
¢SS,

Still open, too, is the question of the third piteh mode. Although our
models are limited to the frequency range helow 1000 eps (because they

* There alsois evidence that the transduction may be sensitive to spatial deriv-
atives of displacement as well as to displacement. This, too, could facilitate per-
ception of the pulse-rate mode.
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do not adequately account for middle-ear transmission above this fre-
quency), an explanation, fabricated of flimsy substance, can be suggested
for the third mode. Bekesy’s data suggest that the amplitude of maximal
displacement of the membrane falls appreciably (about 12 db/octave
or more) for frequencies above 1000 cps. In this region, then, that part
of the membrane responding to the lowest-frequency component would
exceed in amplitude those parts responding to higher-frequency com-
ponents. If amplitude of displacement is at all important in the conver-
sion process (and it most probably is), then the third meode is favored
provided the lowest-frequency component is not too high in harmonic
number. As indicated earlier, the third mode has been observed when
either the fundamental, or the fundamental and second harmonie, is
rejected from the stimulus. This mode has obtained in our pitch-match-
ing experiments for fundamentals in the frequency range around 1000
eps and slightly higher.

One final comment is of interest along these same lines. It has been
reported in the literature that if a periodic train of positive pulses is
high-pass filtered at around 3000 and 4000 cps, one hears a ‘“‘residue”
pitch equal to the fundamental frequency. Our models suggest, how-
ever, a response more nearly correlated with pulse rate. If one uses a
stimulus in which pulse rate and fundamental frequency are confounded
(as with positive pulses), then the former result might obtain. If, on
the other hand, a stimulus such as alternate positive and negative pulses
were used, the subjective impression may well be that of pulse rate. Ii
the latter is in fact the case, then a fundamental “residue” pitch does
not exist for this condition.*
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APPENDIX
Tnverse Transforms for Fi(s), Fo(s) and Fs(s)

When the function Fy(s) of (7) is disencumbered of its constants, the
problem of inverse transformation amounts to calculating the inverse

* Since drafting this paper, I have set up the latter experiment and listened to
alternate positive and negative pulses HP-filtered at 3000 and 4000 cps. I made
piteh matches fairly consistently at the pulse rate. A second listener, on the other
hand, made matches that were genemllly higher than the pulse rate, suggesting
that my preconceived notions may have influenced my data. It is unequivocal,
however, that one would not match to the fundamental frequency.
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transform of:

_ (s + e 1 2
Kils) = (s F "/) [(s Fa)? + 62]

B 1 P fe— 1« 1 *(31)
- [(s+a)2+62] +(s+7)[(s+a)2+ﬂ2:|

= K.(s) + Ky(s).

The inverses of K,(s) and K(s) can be obtained in the usual manner
by making partial fraction expansions in terms of the singularities, ac-
count being taken of the order of the poles, and evaluating the residues
in each pole. Or, having got the inverse for K,(s), the inverse for K,(s)
can be computed from:

Ky(t) = [(e — v)e "] % [£7'K.(s)], (32)

where ¥ indicates convolution.

For the present case these standard procedures prove rather cumber-
some and messy. Because of the favorable initial values of the function
and its first two derivatives [namely, £, (0,) = lf;(0+) = k1 (04) = 0],
derivative relationships can be used to obviate evaluating residues and
performing the convolution.* The derivative relations of use here are
the following: If the funetion f(¢) has the Laplace transform F(s), then

nd"F(s) n .
(1" o= = 1), (33)
and

LI _ () = 71000 = 8770,) = - = 1(0,). (31)

We start with two well-known transform pairs:

(—ST—al)——l—_ﬂ —’é ¢ sin Bt = hy(t), (35)
and

[(.s—(k—sa—i;'-’a-l)——ﬁzj — ¢ “ cos Bt = ha(t). (36)
Applying (33) through (36) gives

s+ )" = 81 ot s gt = (). (37)

(5 + @)t + B
* T am indebted to B. F. Logan of the Acousties Research Department of Bell

Telephone Laboratories, who pointed out to me the utility of the derivative rela-
tionships in obtaining transforms for these funetions.
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One notices that K,.(s) can be expressed as a simple combination of (35)
and (37), namely,

1 — 1 { 1 _ (S+a)2_182} (38)
(s +aX+aP? 28\(s+a)p+p [(s+a)+pP

and

1 1
(s + o) F 4T 26°
Application of (34) through (39) gives

(hy — thy). (39)

s i o ol ‘
et e (10)
and
82 a‘l + '32 B ,62 _ (22
1 =) B =) BT

The inverse of K,(s) is, therefore, (39). The inverse of Ky(s) can be
obtained from a partial fraction expansion followed by application of
(39), (40) and (41). Expand Ky(s) as:

D ToTE-oT 6ta)
(5+ e A (e

where A is a constant and

G(s) = (ay + s + aes® + as’).

If A and G(s) are evaluated, one gets

(e — ) (e — )

T s+ T+ BP ey [ = 2ey + o+ AT

A

ag = 1 e — v — A(d® + 87,
¥ (43)

a, = Aly(da — v) — 2(3a" + )],
as = —A(4C! - 'Y))
a; = —A.

The inverse transform of K,(s), therefore, is a summation of terms (39)
through (41), with the appropriate multiplicative constants.
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Two differentiations (with respect to s) of (35) give the transform
pair:
[(s + @) — 87/3] 1
[(s + ) + 8P 6
which is the function used as the model Fi(s) of (13).
In an essentially parallel manner, one obtains the pair:

'h , (44)

o5~ g (@ + 81— 30) + hu(3at — £ (45)

This is the funetion used as the model Fa(s) of (11).
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Erratum

On page 747 of “The Theory and Design of Chirp Radars” in the
July 1960 Bell System Technical Journal, the analytical work attribu-
ted to A. W. Schelling should correctly be credited to J. C. Schelleng.



