Automata and Finite Automata
By C. Y. LEE
(Manuseript received Mareh 17, 1960)

Since it 18 not clear, in general, how an automaton should best be charac-
terized, one of the purposes of this paper is to find ways to go from one
characterization to another. In doing so, we have not been complelely impar-
tial—the programming approach has been emphasized more than the others.
There are perhaps two reasons for this emphasis: First and the more ob-
vious one 15 the closeness between theoretical programming discussed here
and programmang of digital compulers. Secondly, the programming approach
has provided a way of looking at automata that seems to make certain ideas
less obscure—the construction of a undversal program in Section IIT of this
paper s one such example. In the theory of finite avtomata, Theorem 3 is
an attempt to unify the ideas of complete and partial automata, which have
generally been trealed separately in the past.

I. INTRODUCTION

The invention of modern computers seems to have been anticipated
by many years by Turing.! Yet it is remarkable how little the progress of
computers has been influenced by Turing’s work. There is, perhaps, a
basic difference in viewpoint that may account for this lack of conver-
gence. Turing looked at machines from the point of view of their internal
behavior, Although Turing originated the coneept of universal machines,
his idea seems to correspond much closer to that of our special-purpose
machines. Every machine, by virtue of its state description, performs a
specific task; a machine is altered only if its internal structure is altered.
Computers, on the other hand, are generally specified in terms of their
external capabilities. Their internal structure remains more or less fixed
once they come into being. A computer is then a universal machine in
disguise, and every Turing machine corresponds to a particular com-
puter program. One may therefore study the behavior and structure of
programs rather than work with states.

The first step in this direction was perhaps taken by Wang,* who based
his ideas of machines on a computer (which he called a B-machine) that

1267

1268 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

had four kinds of instructions: move to the right or left; mark; transfer
conditionally. A B-machine is close to the ultimate in simplicity, but is
still capable of computing everything that a Turing machine is capable
of and, with a suitable program, is capable of being universal.

As a model, B-machines are attractive because of their intrinsic sim-
plicity. On the other hand, because a B-machine does not have the
ability to erase, it is very difficult to write even fairly simple programs
without having to work out intricate details. In this paper we have,
therefore, introduced a modified B-machine—one which is em-
powered with the ability to erase. We have called a machine of this
kind a W-machine.

The similarities and differences between W-machines and two-symbol
Turing machines are shown in Sections IT and IIL. In Section IV we
describe the construction of a universal W-machine to show the kinds of
techniques involved in W-machine programming. It may be interesting
to note here that, once a few useful subprograms are written, the main
linkage program takes but a few instructions. Because of its simplicity,
one may suspect that it is harder to construct sophisticated combina-
torial or symbol-operation kinds of programs on a W-machine than it is
on a more complex computer. But we would not be surprised if such a
suspicion turns out to be groundless; what makes a W-machine a poor
computer may well be only its disregard for time.

The subfamily of W-machines in which each machine has a bounded
memory constitutes the family of finite automata. Because finite auto-
mata are abstract models of sequential switching circuits, there has been
much current interest in their behavior. As a result, there have been a
number of approaches to problems in connection with finite automata.
In Section V it is shown that finite automata may be characterized by
the deletion of one of the five kinds of W-machine instructions. There is
thus a program analog of finite automata.

In Section VI the relation between finite automata and sets of input
sequences is discussed. Among other things we present within our frame-
work a result of Kleene® that makes it possible to represent finite auto-
mata by algebraic-like expressions. This characterization seems very
natural in many ways, except that the expressions can easily get very
lengthy. The problem of how best to handle these expressions appears
very intriguing and, as far as we know, is quite open.

II. TURING MACHINES

A machine will be called an A-machine if it consists, aside from its
control mechanism, of the following:

AUTOMATA AND FINITE AUTOMATA 1269

i. A one-way potentially infinite tape (say infinite to the right) di
vided into squares. Each square can either be marked (having in it the
symbol 1) or erased (having in it the symbol 0), and

ii. A reading and writing head that scans some square of the tape at
any discrete moment of time. Since the tape is finite to the left, the
machine is assumed to stop if the read-write head is ordered to go to
the left of the leftmost square of the tape.

The content ¢o of the tape of the A-machine previous to the initial
moment of time, consisting of a finite sequence of zeros and ones, is
called the (tape) input to the A-machine. As time advances, the tape
content would change unless some stable condition is reached, so that
we would get a sequence ¢ of tape contents (co, €1, ---), where ¢; is a
later tape content than ¢, if 7 < j, and where ¢; # ¢;y1. The sequence ¢
is called the external behavior of the A-machine relative to the tape
input ¢o. Two A-machines are said to be completely equivalent if they
have identical external behaviors relative to all tape inputs. That is,
two A-machines are completely equivalent if they cannot be distin-
guished by anyone observing just the sequence of tape contents.

The idea of complete equivalence is too stringent at times. If an A-
machine is used to compute values of a function, what the machine does
while it is processing its data is, in a sense, irrelevant as long as the final
answer turns out to be the desired answer. We will, later on, also con-
sider a less stringent type of equivalence.

The fact that an A-machine has a potentially infinite tape implies
that it has an indefinitely large memory. It might be helpful to keep the
notion that the tape is finite at any moment, but that at any moment a
finite amount of blank tape may be added to the right whenever such a
demand arises. In the same way, it is helpful to note that every input
is a finite sequence of zeros and ones. We will, however, speak of the
null input, meaning a string of zeros indefinitely long. The null input
corresponds to an indefinitely long blank tape.

We will consider the following model of a Turing machine, hereafter
called a T-machine, as one of the A-machines. In addition to being an
A-machine, it has k active internal states g;, g2, + -+, gr and an inactive
state go in which the machine is assumed to stop. The machine can have
one of the following combination of actions: erase or mark the square
under scan; move the read-write head one square to the left or one
square to the right; go into some state g; . A T-machine is completely
specified if its combination of actions is specified for every state of the
machine and each of the two symbols under scan, and if the initial
state and the initial square under scan are given.

1270 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

TFor instance, the following one-state (i.e. one active state) T-machine,
if started initially scanning a square in the interior of its tape, will have
its read-write head swinging back and forth, changing ones to zeros while
going in one direction and changing zeros to ones while going in the
other direction. The read-write head will either proceed indefinitely to
the right or will eventually stop at the leftmost square. In this and later
deseription of A-machines, we will use the letter m to denote the action
of marking the square under scan; e for the action of erasing the square
under scan; + for the action of moving the read-write head one square
to the right of the square under scan; and — for the action of moving
the read-write head one square to the left:

State —
0 ‘ t

q | m, +, q] e, =, q

*

Here ¢ designates the single active state of the T-machine, and * denotes
the fact that ¢ is also the initial state of this machine. If the square
under sean is not marked, a mark is put in it, the read-write head moves
one square to the right, and the machine returns to state ¢. If the square
under scan is marked, it is then erased, the read-write head moves one
square to the left, and the machine again returns to state g.

From now on, we will at times use the notation ¢; ; m or ¢, + or —,
q; ; more, + or —, qc for each combination of actions of any T-machine.
Thus, the combination of actions of the one-state T-machine in question
can be written: ¢; m, +, q; €, —, ¢.

111. W-MACHINES

A W-machine is an A-machine together with a program made up of
an ordered list of the following five types of base instructions: (a) e:
erase the square under scan; (b) m: mark the square under scan; (e) +:
move the read-write head one square to the right; (d) —: move the read-
write head one square to the left; and (e) #(A): transfer to program
address A if the square under scan is marked, otherwise transfer to the
next program address on the ordered list. These base instructions are
executed in order by a control mechanism. The initial program address
and the initial square under scan are given.

A program of a W-machine consisting of all base instructions with
each instruetion having a separate address is called a base program. Let
us consider a W-machine completely equivalent to the one-state T-

AUTOMATA AND FINITE AUTOMATA 1271

machine illustrated earlier. The base program for this machine is

1. {7 7. ¢
2.m 8. -
3. + 9. 17
4.7 10. m
5o om 11. 2.
6. 12

We note that the instructions in the program refer to only two ad-
dresses, address 2 and address 7. The program may therefore be equally
well written

1. t3
2. m, +, 13, m, 12
3. e, —, 13, m, {2,

where the instructions contained in one line are understood to be exe-
cuted consecutively. This notation simplifies the writing of W-machine
programs and will be used in this paper wherever it is convenient to do
£0.

A base program of a W-machine is said to be minimal if there is no
W-machine completely equivalent to it with fewer base instructions in
its program. In order not to have to consider special cases later, let us
agree at this stage to rule out certain trivial redundancies in W-machine
programs. Consider two W-machines, W, and W, , as follows:

Machine W, Machine W,
1. m 1. m
2.+ 2. e
3. t1 3.om

4. +
5. (1.

Machines W, and W, are not completely equivalent, since they have
nonidentical external behavior. The difference is, however, of a minor
nature. We will therefore agree that, whenever a W-machine program
contains consecutive instructions

A. eorm

A+1. corm

A4+ eorm,

1272 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

only the last instruction (in address A + 7) will be retained, and the
others will be deleted. Furthermore, if it should become necessary to
mark and erase a square in succession, the final symbol in that square
will be accepted as the output symbol for that moment.

The fact that a base program is minimal itself implies that the base
program cannot contain certain subprograms.

Lemma 1:

Let P be a minimal base program of a W-machine. Then P cannot
have two consecutive addresses A and A + 1 having in them the fol-
lowing base instructions:

(i) 4. t(B) (i) A. e
A+ 1. O, A4+ 1. ¢

(ii) A. e (iv) A. m
A4+ 1. O A+1. m

Proof: In (i) and (ii), if address A 4 1 is never referred to, P cannot
be minimal since the (4 -+ 1)th instruction can be deleted. On the
other hand, if there is some instruction ¢(A + 1) in P, such an instrue-
tion can be changed to t(C), again making the (4 + 1)th instruction
superfluous. This proves (i) and (ii); (iii) and (iv) are obvious, and the
lemma follows.

Theorem 1:

I. Given a W-machine having b base instructions, there is a completely
equivalent T-machine with not more than b states.

II. Given a T-machine with s states, there is a completely equivalent
W-machine with not more than 10s + 1 base instructions.

Proof: Let a W-machine with b base instructions be given. That there
is a completely equivalent T-machine is clear. It remains for us to show
for part I of the theorem that b states would suffice.

Let P be a minimal base program for the W-machine and A be the
initial address of P. Then, by Lemma 1, the base instructions in ad-
dresses A and A + 1 are one of the following:

(1) A. t(B) (iv) A. m or e
A+ 1. ¢ A+1. +or—;
(i) A. I(B) (v) A. + or —
A+ 1. m; A4+ 1. more;
(iii) A. i(B) (vi) 4. + or —

A4+1. +4or—; A+1. +or—.

AUTOMATA AND FINITE AUTOMATA 1273

In (i), (ii) and (iii), we assert that the base instruction in address B
can be made one of the following:

(a) B. e or (b)y B. + or —.

This is true because, if the instruction in B should be #(C') and the in-
struction in €' should be ¢(D) and so on, then at some point in the chain,
say address E, the instruction must be a nontransfer instruction, for
otherwise the program would not have been minimal. We may then
replace the instruction {(B) in A by #(E). On the other hand, if the
instruction in B should be m, then the instruction in A could have been
replaced by:

A, UB 4+ 1);

and the assertion follows.

In (i) and case (a), by Lemma 1, the base instructions in addresses
A + 2and B 4 1 must be + or —. Thus, address 4 ean be associated
with a T-machine state

Q(A); e, + or —, Q(A- + 3); ¢, + or] ‘I(B + 2)'

Similarly, in ease (b) address A can be associated with a T-machine
state
q(A); e, + or —, ¢(A + 3); m, + or —, ¢(B + 1).
It should be noted that a T-machine state may replace more than
just address A. For example, in (i) case (a) the T-machine state replaces
the five addresses A, 4 + 1, A + 2, B and B + 1 if none of these ad-
dresses is referred to elsewhere in the program. Therefore, in going from
a W-machine to a T-machine as described by the procedure outlined
here, the T-machine will in general have fewer than b states.
In (ii), the (A 4 2)th instruction can be either

A+2 4+ or— or A+ 2. HO).

The former is no different from (i). In the latter, the instruction in
address (' can be made one of the following:

C. e or C. +or—.

The T-machine states to be associated with address A in case (a) cor-
responding to these two subcases are respectively

q(A); e, 4+ or —, q(C + 2); e, + or —, q(B + 2),
and

q(A); m, 4+ or —, q(C +1); e, + or —, q¢(B + 2);

1274 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

and in case (b) are respectively

g(A); e+ or —,q(C +2); m, +or—,¢(B+1)
and

q(A); m, +or —, q(C 4+ 1); m, +or —, q(B+ 1).

Case (iii) is similar to (). In (iv) and (v), the two addresses, A and
A + 1, can obviously be associated with a single T-machine state. In
(vi), each address A or 4 + 1 may be associated with a single T-ma-
chine state. Therefore, there is a completely equivalent T-machine with
not more than b states and part I of the theorem follows.

To prove part II, let a T-machine with s states be given with states
qi,i=1,2,-, 8

gi; ai(0), b:(0), g:(0); ai(1), bi(1), ¢:i(1),

where a; is either m or e and b; is either 4+ or —. Associate with each
’ . .
state ¢; two addresses A; and A; of a W-machine:

A; . ai(0), bi{0), AT(0)], m, A ,(0);

AL 1), b1, fAID)], my A1)

Next, if ¢; is the initial state of the T-machine, we will add an initial
address A; — 1 where we have

A;— 1. (A).

The W-machine so defined is completely equivalent to the T-machine,
having exactly 10s + 1 base instructions. This proves part II of the
theorem.

The bound 10s + 1 on the number of base instructions cannot be
lowered if the first address is to be always the initial address of a W-
machine program. If we are allowed to begin a program at some inter-
mediate address, the bound 10s + 1 can be lowered to perhaps 8s + 1.

From this result, it follows that whatever is true about T-machines
is functionally true about W-machines, and conversely. The choice of
whether to use the T-machine or the W-machine model is therefore
somewhat arbitrary. We have found that the T-machine model is con-
venient for state description of finite automata (Section V) and the
W-machine model more satisfactory for problems involving operations
with symbols. The latter contention is illustrated by a universal W-ma-
chine described below.

AUTOMATA AND FINITE AUTOMATA 1275

1IV. A UNIVERSAL W-MACHINE.

A very interesting result of Turing! was his construetion of a machine
which is capable of imitating any target machine when given a descrip-
tion of the target machine. Such a machine is known as a universal
Turing machine. To our knowledge there have been two independent
and very ingenious constructions of universal machines which greatly
simplified Turing’s work. The earlier one is due to Moore! and the other
to Ikeno.® Moore’s machine has two symbols and three tapes, and can
be reduced to nine states. Ikeno’s machine requires six symbols and
ten states, giving a state-symbol product of GO,

A word should perhaps be said in regard to the two extra tapes in the
case of Moore’s machine and the four extra symbols used in Ikeno’s
machine. In either case, the universal machine is just slightly different
from the target machines it imitates. Tt would he more “authentic” for
a universal machine to be immediately within the class of all target
machines it imitates. It also seems that it is as direct to construet such
an “‘authentic’” machine as otherwise. For these reasons, we include here
the construction of a universal W-machine as an example.

Let U denote the universal W-machine to be constructed. Let the
squares on the tape of U be divided into two classes: a-squares and b-
squares. If the squares are numbered beginning with one for the left-
most square and proceeding to the right, then the a-squares are the
odd-numbered squares and the b-squares the even-numbered squares.
The b-squares are there to serve as markers. The description of the
target machine together with the data occupies only the a-squares. In
order to clarify coding, the contents of a-squares are underlined. Thus
1 0 would mean a mark and a blank in adjacent a-squares, the content
of the inhetween b-square has been left unspecified.

The W-machine instructions are coded as follows:

Instruction Coade

* (Stop) 1

+ 11

- 111

m 1111

e 11111

t(n) 1111111 -1

n ones

1276 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

The program and data of the target W-machine that the universal
W-machine U is to imitate occupy only the a-squares on the tape of U.
The instructions are coded in sequence, with a single blank a-square
separating adjacent instructions. The data go directly into a-squares
without modification. There is a single blank a-square between the last
instruction and the data.

The first two a-squares are blank and all a-squares to the right of the
data are blank. The b-squares are all marked except for (a) the first
b-square, (b) the b-square immediately to the right of the data square
under scan and (¢) all b-squares to the right of square x, where x is the
a-square to the right of the last data a-square.

The coding scheme will be made clear by an example. Suppose the
program of the target W-machine is

4+

1.
2.
3.
4. 12,

where the initial address is address 1 and the data are

!
1011

where the third symbol is the initial symbol under scan. In the coded
form, the tape of U would have contents

Begin
i
9021111111111111;111@1;111
[——
13 +
01111111110111111111111111
- ———
m 2

Symbol under scan
0111011011000 ---
—
Data

The program for the universal W-machine U is divided into a main
program P and a number of subprograms. The various subprograms are
designated by symbolic addresses as follows:

RT
LT
MK
ER
TR

RTZ
LTZ
RDZ
LDZ

AUTOMATA AND FINITE AUTOMATA 1277

One square to the right.

One square to the left.

Mark square under scan.

Erase square under scan.

Transfer if data square under scan is marked. If transfer is
effective, go to the beginning of tape and hunt to the right
until the correct instruction has been found. Otherwise, go
to the next instruction.

Right to zero.

Left to zero.

Right to double zero.

Left to double zero.

The program for U begins with the main program P. Tt first examines
the instruction to be carried out. If the instruction should be +, —,
m or ¢, the program enters subprograms RT, LT, MIX or ER respectively.
If the instruction should be ¢(n), the program enters subprogram TR.

Let us begin with the basic subroutines RTZ, LTZ, RDZ and LDZ:

RTZ
LTZ
RDZ
LDZ

1. +2, (1.
1. =2, (1.
1. 42,81, +2, (1.
1. =2, 11, —2, (1.

Next the subprograms TR, RT, LT, MK and ER:

TR

LT

RT
MK
ER

1. +, e, RTZ, —, 2, —, {(LT3),
LDZ, +4,
e, +, RTZ, m, +, 14, +, LTZ, —, RDZ, m, {(P),

0 1o

4. 4+, ¢, LTZ, —, RDZ, m, RTZ, +2, ¢, LDZ, m, {3.
1. 4+, ¢, RTZ, m, —2,

2. e,

3. LTZ, m, +, {(P).

1. +, e, RTZ, m, +2, m, t(LT2).

1. 4, ¢, RTZ, —, m, t(ER2).

1. 4+, e, RTZ, —, e,

2. —, {(LT3).

Finally, the main program P:

P

1. 42,12, *,

+2, 13, RT,
+2, 4, LT,
+2, 5, MK,
+2, {((TR), ER.

Ll el

[]

1278 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

After the following sequence of instruetions of the target machine has
been executed:

3, m, 12, 4+,

the tape contents read:

Begin
l
00011111111111111111011111
[e—
13 +
Begin
instruction m
l
0111111111011 1111111111111
m 12
Symbol
under scan
!
0111011110000 -
L s —
Data

We will call a target W-machine admassible if its read-write head never
goes to the left of the leftmost square on tape. Machine U then imitates
all admissible target machines and is itself admissible.

It may be interesting to note that the coding for machine U does not
make an intrinsic distinction between program and data. The burden
of distinguishing which is program and which is data is therefore on the
coder.

Using the conversion procedure discussed in the proof of Theorem 1,
there is a T-machine completely equivalent to the W-machine U with
about 74 internal states.t The program for U itself requires some 125
base instructions. As things go, it is not impossible for someone to im-
prove our result to a 50 base instruction universal W-machine or a 25-
state universal T-machine or perhaps even better. The answer to the
problem of finding a universal machine with the smallest state-symbol
product posed by Shannon® seems to be quite remote, even for two-
symbol machines.

1 Some of the ideas that resulted in this construetion were due to D. Younger,
who indicated a possible reduection to a machine of about 56 states.

AUTOMATA AND FINITE AUTOMATA 1279

V. FINITE AUTOMATA

There is a subfamily of T-machines that are abstract models of a
class of switching circuits called sequential circuits. The dominant trait
of these machines is a strictly limited memory, so that they are called
Jintte automata. (These machines are also known as sequential machines.)
Because of their limited memory, rather simple tasks lie beyond the
reach of finite automata. For instance, there is no finite automaton that,
having the null input and ejecting symbols one at a time, will give us
the successive digits of 7 or, for that matter, any number that is not
rational. On the other hand, many decision problems become finite
problems for finite automata; in fact, in some cases efficient algorithms
have been found.

A two-symbol finite automaton consists of

i. A finite number of internal states qo,q1, - + -, q. .

ii. An alphabet of two symbols: s = 0, 5, = 1.

iil. A map M whose domain and range are both subsets of the set of
state-symbol pairs. If M is defined for a state-symbol pair (g, , s;),
then M(q:, s;) is another pair (g, s,). The symbol s; is called an
input symbol. The symbol s, is called an output symbol, and is
completely determined by ¢ ; that is, s, is independent of the
input symbol s; .

iv. An initial state gy, which can reach every state ¢;, 0 < i < n
via some suitable input sequence of symbols.

In the definition of a finite automaton given above, we included those
automata in which the map M may be undefined for some state-symbol
pairs (g:,s;). We will call such automata partial automata. Partial
automata in the past have been treated somewhat differently from
complete automata. By considering certain input sequences called
acceptable sequences, we will be able to treat partial and complete
automata on a uniform basis.

bl

5.1 Finite Automata and W*-Machines.

In the beginning of this section we mentioned that finite automata can
be regarded as a subfamily of T-machines, and hence as a subfamily of
W-machines. Let us call a W-machine a W*-machine if the base program
of the W-machine does not contain the instruetion *“—’; that is, if the
read-write head of the W-machine never moves to the left. We will see
that, by suitable interpretation of inputs and outputs, every finite
automaton is completely equivalent to some W*-machine and, further-
more, that every W*-machine differs from some finite automaton by at
most a unit of delay in the output.

1280 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

Let S be a finite automaton; S may then be considered as a T-machine
in the following sense: An input sequence of symbols to S corresponds to
having this sequence of symbols on the tape of the T-machine, beginning
with the initial input symbol on the leftmost square of the tape. In
operation, the T-machine begins by scanning the initial square, writes
the output symbol on the square being scanned, moves one square to the
right and goes into its next state. At any moment, therefore, the previous
output is contained in the square just to the left of the read-write head,
and the present input is contained in the square directly under the read-
write head. In this way the read-write head of the T-machine never
moves to the left. It follows from Theorem 1, therefore, that there is a
W-machine whose program consists of no base instruction of the form
«_» and is such that this W-machine and the T-machine are completely
equivalent.

Conversely, suppose & W*-machine is given. By Theorem 1, there isa
T-machine completely equivalent to this W*-machine such that its
read-write head never travels to the left. Such a T-machine may not be
in the form of a finite automaton since its output symbol may be a func-
tion of both the input symbol and the current state of the machine. We
wish to show therefore that such a T-machine differs from a finite
automaton by at most a unit of delay in the output.

Consider a T-machine whose read-write head never travels to the
left. It then consists of states of the following kind:

qi; ai;"l_sQf; bi1+rg-'¢!

where a; and b; are either e or m. In the particular case a; = b, for some
i, the output becomes in no way dependent upon the input. We will
therefore consider only those states ¢; for which a; = b;.

Let us now form a new T-machine by splitting each such state ¢; of
the original T-machine into two states, ¢ and g1, such that we have
for the new machine,

gio; @i, 4+, Gjo; @i, +, g
and
qi1; bi, +, Qro; bi, +, @1,

and, if g should be the initial state of the original T-machine, add a new
state ¢o* as the initial state of the new machine:

{Iﬂ*} e, +7 Goo; €, +} Qo1 -

In operation, the new machine imitates the original machine faithfully,

AUTOMATA AND FINITE

AUTOMATA 1281

except that the output of the new machine is delayed by a unit of time;
that is, the present output of the new machine is the previous output

of the original machine. We have therefore

Theorem 2: Every finite automaton with s states is completely equiva-
lent to a W*-machine with not more than 10s + 1 base instructions.
Every W*-machine with b base instructions differs from a finite automa-
ton of not more than 2b 4+ 1 states by at most one unit of delay in the

output.

An Example. Consider the following W*-machine:

1. 6
2. 4+
3.

4. 8
5.

m

[4

6. +
7. 12
8. +
9. +
10. ¢5.

This W*-machine is completely equivalent to a five-state T-machine

with initial state ¢,:

Symbol
State
0 1

*q e, +, ¢ m, +, ¢
Vil m, +, qs m, +, qs
q7 €, +:| Qs n, +| q3
qs €, +, qio m, +, ¢
qro €, +! StOp €, +J q7

The T-machine is not in the form of a finite automaton, since its output
symbols depend on both the state and the input symbol. Let us there-
fore split each state whose output symbol is different for different input
symbols into two states and, in addition, define a new initial state go*.
The machine then becomes:

Symbol
State
0 1

qo e, +,qi0 €, +,q.
qi.0 e, +,¢ e, +,
qia m, +, g1.0 m, +, qr,1
qa m, +, g0 m, +, ge.1
q7.0 e, +,qa.0 e, +, qs.1
g1.1 m, +, qs m, +, gs
G9.0 e, +, quo e, +, quo
TR m, +, quo n, +, quo
qn e, +, stop e, +,qr.

1282 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

This machine is identical with the original W*-machine except that
its output symbols are delayed by a unit of time and its initial output
symbol is always a zero. For the same input, the sequence of the tape
contents of the two machines are therefore not exactly the same; the
tape content of the new machine to the left of the read-write head is
the tape content of the original machine to the left of the read-write
head translated one square to the right. The tape contents of the two
machines to the right of the read-write head are, of course, the same.

Since the output of a finite automaton depends only on its state, and
since the symbol + is redundant, the state-symbol table of a finite
automaton can be simplified. For instance, the nine-state machine given
in the example can be given by:

‘ Symbol
State Output
U] 1
q'o q1.0 i 0
1,0 q3 qs 0
q11 7.0 7.1 1
s Go.0 o1 1
q7.0 a0 da.1 0
g7 qs I3 1
9.0 q10 G 1]
a1 1o G10 1
10 stop g7 0

Tor complete automata, except for including the initial state in our
model, this deseription is the same as that given by Moore.” In the same
way, the description of the five-state T-machine in the example which
is completely equivalent to the original W*-machine can also be simpli-
fied. We may write

‘ Symbol

State |— — Outputs
0 1
0 s @ 0 1
'] qa q9 1 1
qr qs 0 0 1
Jo 1o d10 0 1
1o stop q7 0 0

where to each state may be associated two output symbols, one for each
input symbol. This description is essentially the model of sequential
machines used by Huffman® and Mealy.? It is quite clear from the fore-
going that there is a close relationship between these two models, and
that one may go freely from one to the other.f

1 Another way of relating models of finite automata is discussed by Cadden.!®

AUTOMATA AND FINITE AUTOMATA 1283

5.2 Finite Automata with a Minimum Number of States

A problem of interest to switching circuit designers is finding finite
automata having a smallest number of states. In relay circuit design,
for example, the number of relays needed is usually a monotone function
of the number of states the circuit has. For such circuits, therefore, the
number of states becomes in a way a measure of cost.

Let A be a partial finite automaton. A finite sequence is said to be an
acceplable sequence for A if there is an output sequence and a terminating
state when this sequence is presented as the input sequence to A, with
A beginning in its initial state. We will call the set of all acceptable
sequences for A the acceptable set for A and denote this set by R(A).
Now let A and B be two partial finite automata and let the intersection
Riy = R(A) A R(B) be called the common acceptable set for A and B.
Then A and B are said to be completely equivalent with respect to R 4 if,
for all input sequences belonging to R.s, A and B give identical output
sequences. If 1 is a subset of R,s, then equivalence of 4 and B with
respect to R is defined similarly. It is clear that this definition of com-
plete equivalence is the same as that given before for T- and W-machines,
except the input secquences are now restricted to just the acceptable
sequences.

As an example consider A and B defined as

A: B:
Symbol } Symbol
State | Output State |———— | Output
0 ‘ 1 | 0 1
*(lo @y | 1 *bu bl 1
a a 0 7 [b 0
| B by I 0

The acceptable set. R(A) for A is the set of all finite sequences |0, 01,
011, 0111, - - - } and the acceptable set R(B) for B is the set of finite
sequences {1, 11, 110, 1101, 11010, 110101, - - - }. There is no sequence
that is acceptable to both 4 and B. The common acceptable set R 5 is
therefore empty.

Theorem 3: Let A and B be two partial finite automata with a and b
states respectively, where a,b > 1. Let R,p be the common acceptable
set for 4 and B and let R, ,(I) be the subset of R, such that every
sequence in K 5(1) is of length =I. Then A and B are completely equiva-
lent with respect to Ry if and only if they are completely equivalent
with respect to R x(l) for { = ab — 2.

Before going through the proof, it would be helpful to discuss some

1284 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

notations that will be used later. If A is a finite automaton, its initial
state will be denoted by ao. If ¢ is any state of A, we will denote the
output symbol associated with the state g by w(g). Moreover, let s =
(so, 81, * - -, Sm_1) be an acceptable input sequence for A. Then we will
at times let a; stand for the state reached by A after receiving the ith
symbol of s. It will be convenient here to speak of the motion diagram
for A:

Input symbols: s & R
NN /N
Transition of statesof A: @@ @ @ -+ Guoa An.

Proof: The theorem is clear in one direction. In the other direction, let
A and B be completely equivalent with respect to the set Ris(ab — 2);
that is, A and B will give identical output sequences to every commonly
acceptable sequence of length not greater than ab — 2.

Let us now suppose that there is a common acceptable sequence s =
(S0, 81, - * , Sm_1) of minimum length m where m > ab — 2 such that
in the motion diagram for A and B we have

So S T Sm—1
NN N
Ay a ds ' Q1 A
NN N
bo bl b:z et bm—l bm
where
wla) = wb) for i=0,1,---,m—1 but wla.) #= «(ba).

There are now two cases to consider. The case m > ab — 1 is simpler and
will be left to the reader.

Let us therefore assume m = ab — 1. In the motion diagram above,
we have then exactly ab pairs of states: (ao, ba), (a1, b1), = + -, (@m 5 D).
First, suppose that these ab pairs are not distinct; that is, suppose
(a:,bs) = (aj, b;) for some 0 £ ¢ < j = m. The motion diagram then
becomes

Sn DR S‘- e w s’- PR sm—tl
AN AN N N
g a - a; @iyl = Q5 Ajyy """ Am—1 Om
N N /N /N

bU bl e bi bl‘+1 T bj bj+l e bm—l bm .

Consider the common acceptable sequence s* = (so, - - -, 8i1, §j,

AUTOMATA AND FINITE AUTOMATA 1285

-, 8u_1), which is of length I, where I < m = ab — 1. Since w(a.) =
w(bn), A and B would give different output sequences to the input
sequence s*, contradicting our hypothesis that A and B are completely
equivalent with respect to R.x (ab — 2). We must therefore assume that
the ab pairs of states (aq, bo), -+ - -, (@m , bn) are distinet, and thus in-
clude every possible’ pair of states of A and B. ’

Now let a,, and b, be states of A and B respectively such that a,,
@ and by, 5 b, . Then we assert w(a,) = w(a,) and w(b,) = w(b:,.). For,
if w(a.) = m(a:,.), then w(a:,.) # w(bn). This is impossible, however, since
the pair (a-:,1 , b)) is one of the ab distinet pairs of states. The same argu-
ment shows w(b,) 5 w(b,). We have now then the inequality w(a,,) 5=
w(b:,.). But again this is impossible. This concludes the proof.

Although we cannot say that the bound ab — 2 is the best for all
pairs (a, b), we will show that ab — 2 is very close to the best we can
hope for, To do this we will now exhibit a pair of families of finite auto-
mata.

Consider first a family of finite antomata {4,.}, m = 1, as follows:

Symbol
State Output
0 1
*aq @ 0
a [e23 0
Am—1 tm 0
m ao 0

Next, define a family of finite automata {B,}, n = 1, as follows:

Symbol
State — Output
0 1
*bn bo bl 0
by b, b 0
b‘n—l bnvl i)n (’]
b bn 1

Tor any pair of automata (A4, , B.), one from each family, the set
Rz, of all commonly acceptable sequences consists of all sequences
each of which must be of the form
oo0---0100-+-01-+-00-:--01
- < y
m (’s m 0’s m 0’s

bl

1286 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

since these are the only sequences acceptable to 4,, . For these two finite
automata (4, , B,), the minimum length of any input sequence in
R.,», that would cause A,, and B, to give different output sequences
would be ab — min (a, b), where in this casea = m 4+ land b = n + L
For instance, the motion diagram for the pair (4, B;) would be

¢ 0o 1 0 0 1 0 0 1
INCSNN N N NN NN

Gy a1 da Qy @ Ao dy a1 Az

INNN N N SN SN N N
by by by b by by ba ba by

Since by is the only state of By that gives an output symbol of 1, we see
that the input sequence (0 0 1 0 0 1 0 0 1) is the first such sequence
that causes A: and B; to give different output symbols.

In general, by the same construction, we find that given two finite
automata, one from each of these families, no input sequence of length
less than ab — min (a, b) would enable us to tell them apart. We there-
fore have

Theorem 4: Theorem 3 would not hold if [were made less than
ab — min (a, b).

In particular, we note that Theorem 3 implies Theorem 4 for the case
min (a, b) = 2. For the cases min (a, b) > 2, there may be some slight
improvement{ possible for Theorem 3.

Actually, Theorem 3 is interesting for another reason. It is essentially
a theorem showing the existence of a decision procedure for finding
finite automata with a minimum number of states. Historically, the
problem of finding finite automata with a minimum number of states
was studied and solved in a rather special way. Thus, both Moore” and
Huffman® gave ingenious procedures for state minimization of complete
finite automata. It was not uncommon for people to assume that these
procedures also worked for partial automata before the introduction of
several interesting counter-examples by Ginsburg.”® As we see from
Theorem 3, much of the earlier confusion was probably due to a disre-
gard of the idea of acceptable sequences.

bg .

VI. FINITE AUTOMATA DEFINED BY INPUT SEQUENCES

Up to now we have shown that finite automata can be described in two
different ways. In the definition given in the previous section, a finite

t In the paper by Rabin and Seott,'* a theorem similar to Theorem 3 was ob-
tained for the family of complete automata, In view of the fact that they were
dealing exelusively with complete automata, their theorem could be considerably
improved,

=

AUTOMATA AND FINITE AUTOMATA 1287

automaton is characterized essentially by its state-symbol table. On the
other hand, one may characterize a finite automaton by giving its W*-
machine program. The latter characterization illustrates the close paral-
lel between computer programming and logical design. In this section,
following the earlier work of Kleene,® we will consider a third characteri-
zation of partial finite automata. This characterization leads to a very
interesting algebraic-like structure for finite automata. Our purpose here
is to connect this characterization with the others. Much of the work
along the approach of Kleene had been pursued and simplified by Myhill'?
and Rabin and Scott.!! The interested reader may refer to these papers
and other unpublished work by Myhill.

Let A be a finite automaton. A finite input sequence to A4 is said to
be a signal sequence for A if this input sequence causes A to terminate
in a state whose output is the symbol 1. The set of all signal sequences
for a finite automaton A is called the signal set for A, and is denoted by
T(A).

Given a finite automaton A, the signal set T'(4) is uniquely defined.
On the other hand, if signal sets are to represent finite automata, it
would be most desirable that two “different” automata have different
signal sets. Let us consider automata A and B given by

| B:
Symbol Symbol
State - —_———— —| Output State Output
0 1 0 l 1

|
|

*CLO | a, 1 *bu bz 1

a, a, | 0 by bs 0

}’ bz b[0

If nothing is said about input sequences, one may say that A and B are
different, since every input sequence acceptable to A is unaceceptable to
B and vice versa, although 4 and B both have the empty set as their
signal set. In order to have a clear-cut correspondence between signal
sets and finite automata, we must therefore restrict ourselves to accept-
able sequences.

Theorem 5: Let A and B be two finite automata and R 45 the common
acceptable set for A and B. Then A and B are completely equivalent
with respect to R4 if and only if A and B have the same signal set.

Proof: Trom the definition of signal set, it is clear that, if 4 and B
are completely equivalent with respect to R.z, then T'(4d) = T(B).
Now suppose 4 and B have the same signal set but are not completely
equivalent with respect to R.p. Then there is some input sequence

1288 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

8,81, * *, 8.1 in R4s giving the motion diagram
So §1 e Sp—1
NN /N
1) [45] dy '+ Qp Qp
NN N

bﬂ bl bz e bn—l bn

such that w(a,) # w(b.); that is, the output symbols associated with
states a, and b, are different. Since we are considering only two-symbol
automata, it is clear that the input sequence sy, s, + - -, 8,—1 cannot
be a signal sequence for hoth A and B. The proof now follows from this
contradiction.

We see from this that signal sets indeed represent finite automata. In
many ways this is a rather natural characterization. For example, con-
sider a sequential lock on a vault. The vault can be opened only if a
given sequence s of symbols is applied to the lock. Any other sequence
of input symbols may cause the lock to go into an alarm state. In this
case, we may consider the lock as a finite automaton defined by the one-
element signal set {s}.

There are other situations, however, where it seems simpler to deseribe
a finite automaton by its W*-machine program or its state-symbol table.
Tt is therefore not clear in general how a finite automaton is best charac-
terized; as far as we can tell, a great deal depends on personal faste.
The next best thing one can do, therefore, is to find ways to go from one
form of characterization to another,

We will begin by redefining several operations on sets of finite se-
quences due to Kleene. Let X and Y be two sets of finite sequences;
X v Y is then the set union of X with Y. By XV, called the string
product of X with ¥, we mean the set of all concatenated finite sequences
of the form zy with * € X y £ V. Finally, by the closure of the set X,
denoted by X*, is meant the set

X¥=fv XvIXvXXXvV. ...,

where # is the empty set.
To illustrate the use of these operations, let us consider the following
automaton A:

Symbol
State Output
0 ‘ 1
*ao i a; @y 0
ay i @y 1

AUTOMATA AND FINITE AUTOMATA 1289

The signal set of A is then given by

I'(A) = 1*0 (1 1*0)*,
where we have used the notations 0 and 1 to stand for the one-element
sets {0} and {1}.

In general, to find the signal set for some finite automaton A is not
as straightforward as this example indicates. We will describe below
one such procedure. T

Let A be a finite automaton with % states ao, @1, - + -, @c_1. Then
by P(a;, a;) we mean the set of all finite sequences such that beginning
with state a; , each of these sequences causes A to terminate in state a; .
Furthermore, let us denote by P(a;, a;; ,) the set of all finite sequences
such that, beginning with state a. , each of these sequences not only causes
A to terminate in state a; , but also never causes A to pass through state
a; . In other words, it is permissible for a; = a;, but in the chain of
states a;, - - -, a;, the state a; must not appear other than at either
end. Then it is clear that

Lemma 2: Pla;, a;) = Pla;, a;; a) [Pla;, a;; ap)]*

More generally, let sq, si, © + -, s,—1 be a sequence in ’(a; , a;) with
the motion diagram

So 81 e Sn—1
NN AN
a oy, @, v @y, 5.
We denote by Pla;, a;; al, , a, ceyan)a subset of Pla;, a;) such
that a sequence sy, sy, « - - s,i 1 is in Pla:, a;; a.l s a, R azm) if
and only if the two setsof%tate%{a., y iy, v ,a.m)and (a,l y iyt
a;,_,) are disjoint. In other words, P(a:, a;; a.1 , a,, yr o aim) is the

set of finite sequences such that, l)egmmng with state a;, ea(,h of these
sequences not only causes A to terminate in state a; but also causes A

never to go through states a;, , ai,, - - -, @i, . It is permissible, how-
ever, for a; or a; to be one of the states a;, , as,, - - -, @i, .
Lemma 3: Let A be a finite automaton with & states ao, a1, - - -,
a;_y . Then, for all pairs of states a;, a;,and forallm, 1 = m = k — 1,
! ! ’
Pla;, a;; ai,, aiy, + + ;) =
! ’ ! 7
Plai,a;;ai,, - -+, @i,) v Pla, a5 @i, - - 5 @Gig,)
! 1 ! 1
. * .- . .
[I)(H‘m+] y Qiggy 3 @iy 5 0 0 raim+|)1 P(al'an y @i 5 Qigy = " vy a'lm+|)'

Proof: Suppose that an input sequence belongs to the set on the left-
hand Qide Then this sequence causes A to either go through state a;,,,,

t In an unpublished report shown to me by H. Wang, I found a similar result
worked out independently by R. MeNaughton and H. Yamada.

1290 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

or it do'es not. If it does not, then it clearly belongs to P(a;, a; ; a.:l s
-, @i,,,). If it does, then it belongs to the second set on the right

hand side. Conversely, suppose a sequence belongs to the set on the right
hand side. Then it clearly belongs to P(a:, a; ; a;“ Ceey a:m), and the
proof follows.

Combining the two lemmas, we get

Theorem 6: Let A be a finite automaton with k states ap, a1, - - -,
ax_; . Let ap be the initial state of A and a,, , @, , + + +, a,, be all those
states of A whose output symbol is one. Then the signal set for A is the
union

P(A) =V P(aﬂ: Qr;) a:'i) [P(ah’ y Ary a:‘i)]*)
i=1

which ean be obtained by repeated application of Lemma 3.
As an illustration, let us consider the automaton A below:

Symbol
State Output
0 1
@g Qo ay 1
ay ay az 1
a: a:z @ 0

By Lemma 2, we have
(4) = Plas, ao; @) [Plas, a5 a)l*

v Play, ar; ar) [Pay, ar ; ap)}*.

Now
Play, av; ag) = 0,
Play, ar ; a1) = 0% 1,
Play,ay;a) =0 v 1 0* L.
Therefore,

T(A) =00*v 0*1(0 v 10* 1)~

The expressions for signal sets ean get very lengthy. The problem of
reducing the length of these expressions without recourse to an exhaus-
tive search appears very difficult and intriguing.

AUTOMATA AND FINITE AUTOMATA 1291

The next problem we will consider is how to give a state-symbol
characterization of signal sets. The procedure we will describe here is a
modification of the abstract ideas of Rabin and Scott" and Myhill."®

Let us begin this discussion of several examples. Let A and B be the
following finite automata:

A: B:
Symbol Symbol
State Output State Output
1] 1 0 1
*ﬂ 0 (18] g 0 *bu b[b1 0
ap @y 1 bl b:) bu 1

with signal sets T(A) = 1*0 (1 1*0)*and T'(B) = (0 v 1) [(0 v 1)
O v I*

Example 1. Suppose we wish to construct an automaton €' such that
(") = I'(4) v T(B). We begin by defining a set of new states (aq, bo),
(ao , 1), (a1, by), (a1, by), some of which may turn out to be superfluous.
The state (ap, be) is defined to be the initial state of . Beginning with
the state (ao, bo), we can construct a part of C':

Symbol
State - Output
1 0

@,b) | (@, b (a0 , by) w(@0) v lby) = 0

where, if we let M, denote the function taking state-symbol pairs to
states for the automaton €' and « be the function taking states to output
symbols, then

ﬂ[e[(ﬂ-o y bu), 0] = (Af_q(ﬂu , 0), fl[g(bn y 0)),

Mel(ao, bo), 1] = (M 4(ag, 1), Mu(bo, 1))
and

wl(ao, bo)] = wlas) v w(b).

In this process, we reached two new states (a, , by) and (a0, by). Con-
tinuing the process, we eventually get for (' the state-symbol table

1292 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

Symbol
State Output
0 1

*(ao , bo) (ar, by) (ao, by) 0
(ao, b) (a1, bo) (ao , bo) 1
(a1, b) by (ao , bo) 1
(ar, bo) by (ao , b1) 1
0 b 1 0
b by bo 1

Let us suppose that an input sequence sq, $;, - - -, S,—1 belongs to

I'(A) and gives the motion diagram
So 81 e Sn—1
NS N
ay iy Qiy v Qi Q.
Then the same sequence would give rise to a chain of states of C such
that the terminal state of this chain must be (a:, , b;) for some state b;
of B. Since

w(ﬂl;n , b,) = w(a;") v w(bj) = 1,
it follows that this input sequence belongs to I'(C') and T'(4) c T'(C).

In the same way, we may show that I'(B) < I'(C).
Conversely, if a sequence in I'(C') gives a chain of states of C': (a0, bo),

(@i, , biy)y - - -, (ai,, by,), then either w(a;,) = 1 or w(b;,) = 1. There-
fore, this input sequence is either in T'(A) or T'(B), and thus I'(4) v
I'(B) = I'(C).

Example 2. We wish to construct a finite automaton C such that
r(C) = I'(A)r'(B). We begin with the initial state of A as the initial
state for C. Now, whenever a state of A is reached whose output symbol
is a 1, we must then allow C the opportunity to imitate the behavior of
B. In such cases, therefore, new states may be created. Thus, a part of
the state-symbol table for € would be

Symbal
State Output
0 1
*ao 131 [11)] 0
a by (a0, bn) 1

The state (aq, b)) is defined by (M ,(a, , 1), M(bo, 1)). In this way, the
new state allows €' to imitate immediately the behavior of state bo of
B. Also, if either w(as) = 1 or w(b;) = 1, then w(ao, by) = 1. We may
therefore continue this process to get for C' the state-symbol table:

AUTOMATA AND FINITE AUTOMATA 1293

Symbol
State Qutput
0 1

*au ay [17)] 0
ay by (an N bl) 1
by bo bo 0
b by by 1
(aq, by) (a1, bo) (@, bo) 1
(al] bu) bl @y , bl 1
(@o , bo) (ar, bi) (ao, b1) 0
(a1, by) (b1, ba) (aq , bo, by) 1
(b1, bo) (bo , b1) (bo, b1) 1
(@0, bo, by) (ay, b, b1) (@a, bo, 1) 1
(@av, bo,) (bt , bo) (@, bo, by 1

where we see that (a1, by, b1) = (a1, b1).
The process can be formulated as follows: If (a;, - - -, a;,bx, - - -,
bn) is a new state, then

I‘/Ic[(ﬂ“‘r . :a’fibk: D :bﬂl))w]
= (ﬂ{c(ﬂ;, :E)y] IIIC'(G'J') ﬂ:)a ﬂ:[l?(blw .’E), T, ﬂfﬂ(bm, ’C))

where a is either O or 1, and o[(a;, - - -, a;, b, - - -, bn)] = w(a;) v

- v (b)) v - v w(ba). Also, if a; is any state such that w(a;) = 1,
then Mc(a;, x) = (M i(a:, x), Mg(by, x)). For all other a; and for all
bx we have

Mela;, x) = M a;, x),
Me(be ,) = Mp(y,),

where x is again either 0 or 1.

Fzample 3. We wish to construct an automaton € such that T'(C) =
[T'(A)]* The idea here is that whenever a state of A is reached whose
output symbol is a 1, we must allow € the opportunity to begin again
at state aq of A. Furthermore, since the empty sequence is a member of
I'(C), it is necessary to define for €' a new initial state €'y whose output
symbol is 1. Following this line of thought, we see that the state-symbol
table for C is

Symbol
State Output
0 1
*eg Qg Qo 1
[+ 1)) a, ado 0
ay ay ap 1

1204 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

In general, the process is formulated as follows. If (a., -+ - , a;) is a new
state, then

Md(ai, -, a), 2] = (Melai,), -+, Mc(a;, 2)),
where x is either 0 or 1 and
wl(a;, -+, a)] = wl@) v - v ola;).
If a; is any state of A whose output symbol is 1,
Mela;, x) = (M4(a;, x), Malao, x)), x = 0orl.
For all other states a; of 4,
Mola;, x) = M4(e;, 2), x = 0orl.

The ideas of conversion from signal sets to state-symbol table for
a finite automaton are all contained in these examples. Since to state a
theorem means a repetition of what we outlined in the examples, we will
content ourselves with the following form of Kleene’s result.?

Remark. Let T(A) be a set of finite sequences built up from the opera-
tions union, string product and elosure operating on a finite set of finite
sequences. That is, I'(A) is given by a finite expression involving the
operations union, string product and closure. Then, following the proce-
dures outlined in Examples 1, 2 and 3, a finite automaton can be con-
structed having T'(A) as its signal set.

This remark, together with Theorem 6, thus provides the two-way
linkage between finite automata and signal sets.

VII. CONCLUDING REMARKS

We have discussed three approaches to a theory of automata and finite
automata: the state-symbol table model, the W-machine program model
and the signal-set model. Of these, we are most intrigued by the pro-
gramming model. This approach not only resembles strongly computer
programming, but it also offers possibilities of symbol operation and
other combinatorial programs, all based on a very simple and elegant
program structure. (One other model not studied here is a system pro-
posed by Post.) It is quite possible a combination of these systems may
offer deeper insight into the global structure of programming and auto-
mata which is lacking at present.

VIII. ACKNOWLEDGMENT

The writer is indebted to E. . Moore and T. H. Crowley of Bell
Telephone Laboratories for their suggestions which led to an improved
version of Theorem 4.

AUTOMATA AND FINITE AUTOMATA 1295

REFERENCES

1.
2.
3.

[I

10.
11.
12.
13.

Turing, A. M., On Computable Numbers, with an Application to the Entschei-
dungs Problem, Proc. London Math. Soe., 24, 1936, p. 230.

Wang, H., A Variant to Turing’s Theory of Computing Machines, Jour.
A.C.M.,'4, 1957, p. 63.

Kleene, 3. C., Representation of Events in Nerve Nets and Finite Automata,
Automata Studies, Annals of Math. Studies, No. 34, Prineeton Univ. Press,
Princeton, N. J., 1956, p. 3.

- Moore, K. F., A Simplified Universal Turing Machine, Proc. A.C.M. (Sept.

8, 1952), 1953.

. Ikeno, N., An Example of Universal Turing Machine, (in Japanese), Proc.

Inst. Elec. Comm. of Japan, July 1958.

. Shannon, C. E., A Two-State Universal Turing Machine, Automata Studies

Annals of Math. Studies, No. 34, Princeton Univ. Press., Princeton, N. J.,
1956, p. 157.

. Moore, E. F., Gedanken Experiments on Sequential Machines, Aulomala

Studies, Annals of Math. Studies, No. 34, Princeton Univ. Press, Princeton,
N. J., 1956, p. 129.

. Huffman, D. A., The Synthesis of Sequential Switching Circuits, J. Frank.

Inst., 267, 1954, pp. 161; 275.

. Mealy, G. H., A Method for Synthesizing Sequential Circuits, B.8.T.J., 34,

1955, p. 1045.
Cadden, W. J., Equivalent Sequential Circuits, .R.E. Trans., CT-6, 1959,

p. 30.

R;bin, M. O. and Scott, D., Finite Automata and Their Decision Problems,
I.B.M. J. Res. & Dev., 3, 1959, p. 114,

Ginsburg, 8., On the Reduction of Superfluous States in a Sequential Machine,
Jour. A.C.M., 6, 1959, p. 259.

Myhill, J., Finite Automata and Representation of Events, W.A.D.C. Report,
1957.

