Transition Probabilities for
Telephone Traffic*

By V. E. BENES

(Manuscript received April 21, 1960)

A stochastic model for the occupancy N(t) of a telephone trunk group is
specified by the conditions that arriving calls form a rencwal process, that
holding times have a negative exponential distribution, and that lost calls are
cleared. The transition probabilities of N(t) are determined, and their limils
are studied. These transition probabilities have practical value in making
theoretical estimales of sampling error in traffic measurements, and in the
study of overflow traffic.

I. INTRODUCTION

We shall study a stochastic process {N(t), ¢ = 0}, which is a mathe-
matical model for the occupancy of N service facilities, with no provisions
for delays. For example, N(¢) can be interpreted as the number of (fully
accessible) telephone channels (trunks) out of a group of N such in use
at time ¢, with lost calls cleared. Also, we can think of N(¢) as the num-
ber of items on order at time ¢ in an idealized inventory situation in
which at most N items can be on order at one time (see Arrow, Karlin
and Secarf'). Throughout the paper we use terminology appropriate to an
application to telephone trunking. The process N(t) is determined by
the following assumptions:

i. Holding times of trunks are independent, each with the same nega-
tive exponential distribution function, of mean ¥, ¥ being the “hang-up
rate.”

ii. Times between successive attempts to place a call (interarrival
times) are independent; each has the distribution funection A(-), where
A(-) is arbitrary except for the condition A(0) = 0. This assumption
covers Poisson arrivals as a special case. The mean of A(-), when it
exists, is denoted by u; .

* This work was completed while the author was visiting lecturer at Dartmouth
College, 1959-60.
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iii. There are N trunks, NV being finite.

iv. Calls that find all N trunks busy are lost, and are cleared from the
system without effect on the flow of arrivals (no retrials). These or
similar assumptions appear in Palm,’ and in Pollaczek;"*"* certain prop-
erties of N (¢) itself have been studied by Takdcs,”" Cohen® and Benes."

II, SUMMARY

The random process of interest is N(t), which is interpreted as the
number of trunks in use, or the number of calls in progress, at time {;
N(t) is a random step function fluctuating in unit steps from 0 to N.
For the most part, we restrict attention to that version of N(t), written
N(t — 0), that is continuous from the left.

The present paper is chiefly theoretical in character. It provides (a)
formulas for the Laplace transforms of the transition probabilities of the
stochastic process N(t — 0), and (b) a statistical description of the calls
that overflow a trunk group of the kind described in Section I. The for-
mulas will be exemplified and used in a second paper," where specific
applications to switch counting and traffic averaging are described.

We begin Section 11T with a general account telling what transition
poobabilities are and why they are useful and interesting in traffic
theory. The primary result, Theorem 1, can then be stated; it completely
characterizes the transition probabilities

Pr{N(t — 0) = n|N(0+) = m}

as functions of ¢ by determining their Laplace transforms, under the
restriction that A(-) has a probability density. Section I1I ends with
a computation of some important transition probabilities for Poisson
arrivals; practical consequences of these results will be developed in the
second paper.”

We prove Theorem 1 in the Appendix A. If y(t) is the time elapsed
since the last eall arrival prior to ¢, the process {N (¢ — 0),y(#)} is Mar-
kov, and we caleulate its distributions from the usual Kolmogorov equa-
tions. The stationary distribution of this Markov process is determined
in Appendix B.

In Appendix C the process N(¢ — 0) is studied directly in terms of
renewal theory and regenerative processes, using results of Smith."” No
assumptions of absolute eontinuity are made. This procedure leads to an
extension of Theorem 1, and other results outlined in the next para-
graphs. ( Details are omitted.)

Let R, be this event: a call arrives and finds n trunks in use. Each
oceurrence of B, , where 0 < n < N, is a regeneration point of N (¢ — 0),



TRANSITION PROBARBILITIES FOR TELEPHONE TRAFFIC 1299

in the sense that the history of N(¢ — 0) prior to the given occurrence
of R, is statistically irrelevant to the development of N(¢ — 0) after
the occurrence. Let 2., be the time elapsing from an occurrence of R,
to the next occurrence of R, . We prove a,,, < = with probability one,
and, if

w = f rdA(x) < =,
0

then Efx, .} < =.
The underlying probability funections that we ealeulate in Appendix
Care,for0 = n £ N:

Q.(1)

Il

>~ Pr{kth call arrives before ¢ and finds n trunks busy)
k=1

= FE{number of occurrences of R, in [0,{)}.

IFrom this interpretation it is apparent that the @,(:) are unbounded
monotone funetions; one may expeect them to be ultimately linear. The
transition probabilities of N(¢ — 0) can be represented in terms of the
functions @,(-) and the transition probabilities of the simple death
process with death rate v per head of population, if the Q,(-) are eval-
uated for appropriate initial conditions. This is done in Appendix C.
With this representation we investigate the existence of

lim Pr{N(t — 0) = n}.

t—»®
From Theorem 4 and the solutions for the Laplace-Stieltjes transforms
of the @.(-), this limit, when it exists, can be evaluated explicitly, using
the relation

E {-T'rr,u = &1
pn

where p, is the equilibrium probability that an arriving cell will find n
trunks in use. (For p, see Refs. 7 and 11.)

III. TRANSITION PROBABILITIES OF N({)

The transition probabilities of a stochastic process z, tell how likely it
is that the random function x(., take on a value z at a time ¢, if it is
known that it took on the value y at time s. Such a transition probability
is written

Prix, = z |, = y}, (2)

the vertical bar being read and interpreted as “given that” or *if.”
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In other words, (2) expresses the relevance of the information that the
event [z, = y} has occurred to the likelihood that the event {z, = z}
will oceur. In still other words, (2) expresses the dependence of the
event {x, = 2} on [z, = y}.

The chief practical use of transition probabilities for models of tele-
phone traffic is in computation of covariance functions; these, in turn, are
used to compute theoretical estimates of sampling error in actual traffic
measurements, such as time averages and switch counts. To see how
this happens in a particular case, we consider the use of the continuous
time average

1 T
My =5 [ N
T Jo

as an estimate of the carried load. The variance of M is
E(M*) — E*(M} =

T T 3
Tf f [B{N()N(s)} — E{N(D}E{N(s)}lds dt. (3)

The integrand is just the covariance R(f,s) between N({) and N (s);
if N(¢) is stationary in the wide sense, so that R(t,s) = R(f — s), then
(3) reduces (by partial integrations) to

'%MM}=M”LQT—UMH&. (4)

The covariance R(¢) can be written in terms of the transition proba-
bilities of N(-) as

RO = 33 mipn e (V@) = 1 [ N©) = ) = (Smpa), ®)

m=0 n=
where {p.} is the stationary distribution of N(-). Formulas (4) and (5)
then indicate how the transition probabilities can be used to find the
variance of M.
Our basie result concerning transition probabilities is most easily ex-
plained and understood after some of the notions used in stating it are
discussed. The first few are merely abbreviations; we let

j: e "dA() = ao(s),

a,(s) = A*(s + ny),
X, =1,
X, = 1 — a.(s) X, = I"I 1 — a;(s)

ax(s) =1oai(s)

A*(s)



TRANSITION PROBABILITIES FOR TELEPHONE TRAFFIC 1301

These Laplace transforms enter because we shall be characterizing the
Laplace transforms of the transition probabilities in terms of the hang-up
rate ¥ and the transform A*(s) of the interarrival probability density.

In the summary we have denoted by R, the event: a call arrives and
finds n trunks in use. We let ¢.(¢,0) be the “density” of R, at time ¢,
that is, the rate at which R, is oceurring at ¢, and we let

b.(t) = ; (-;) q;(1,0) (6)

be the associated binomial moment. From (1), it can be seen that
dQ./dt = ¢.(t,0), when the former exists. The b,(-) and the ¢,( -,0) are
also related by the inversion formula

= n+j
w10 = % (-0 (" F ).
=
More generally, we use ¢,(t,u) as a density function in the variable u
with the heuristic meaning

u(tu)du = PriN(t —0) =n and w < y(t) = u + du}.

We can now state
Theorem 1: The transition probabilities of N (¢ — 0) may be deter-
mined from the generating function formula

mﬂszﬁz%a—WMMMWWM—AMMy
" (7)

+ j;m ; qﬂ(O:y - l)[Pl(x)]nT%y(y_)t) d?};

where
P.uz) =1+ (2 — 1)e ™,

and the Laplace transforms of the binomial moments b,(-) are given

by
* _ > \—1 * = N * l’f'u* 7
mm—m)% Em_mNEEAH,
* ]\10*
be*(s) = m,

s J—l’\ (S)
by*(s) = 1 - 00(3) + :z=; a,(s)
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where

* < (i e a(t + u) du
k.* = Laplace transform of J; jgn n q;(0u) e T A
The k,* introduce dependence on the boundary conditions at { = 0
expressed by the functions ¢,(0,u). The Kronecker symbol &y, in (7)
indicates that a call is lost if it finds all trunks busy.
To show how Theorem 1 can be used we shall compute the Laplace
transforms of

Pr{N({) = N|N() =m}, m=0,1--,N,

in the important special case of Poisson arrivals at rate a, for which a
great simplification of the formulas occurs. In this case,

1—e¢™ 120
A = ’ =
® {0 . t<o.
Also, we set y = hang-up rate = 1, which amounts to measuring time
in units of mean holding time; then

a
an(s) = m—ﬁ (8)
Our choice of the transition probability to the ‘“all trunks busy” con-
dition {N(¢) = N} as an example is not arbitrary; it turns out that, in
many ecases, including Poisson arrivals, the mean of N (¢) and the co-
variance depend only on the transition probability to the “boundary”
condition {N(t) = N}. A similar situation oceurs in the theory of queues
with one server: the mean delay can be written as an integral of the
probability of being on the “boundary,” i.e., the chance that the server
is idle."
Since arrivals are Poisson, the y(-) process is in fact superfluous, and
we may assume N(0) = m,y(0) = 0, so that

® —gl—nl—al m _ m a
fl, € a(n.)dt_(n)a—i-s-l-n’ B = m, (9)

=0, n > m.

A

ko (s)

In formula (7) (Theorem 1) set 2 = 1 + w, and take Laplace transforms
with respect to ¢; the coefficient of w" is

f: ¢ Pr (N(1) = N|N(0) = m} dt

= _/; e_“_m_nt dt[(bv* + qN—l* + 5Arm],
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where ¢,*(s) is the transform of ¢.(¢,0). Now, from (6), (9) and (24)
we find

gv* — dxmay(8) .

r* > * —_
Q" + Gn—1 ﬂ-,v(S) )

hence
= *
[ Pr (NG = N N(O) = m} @t = L (10)
0
This result can also be obtained heuristically as follows:
a = total density of arrivals at ¢

= gn(,0) + a[l — Pr{N(t — 0) = N};

taking Laplace transforms, we get (10).
From Theorem 1 and (10), we find

(m) n (m) 1 — ay(s) I (m) (1 — ao(s)] - [1 — api(s))

1 a(s) + Amoi(8)

But, for our example, (8) implies

1 _ari(s) S+’n.

a.(s) a '

hence, defining (after J. Riordan in the Appendix to Wilkinson") the
“sigma’ functions ax(m) by

am . m J'n' ‘I“ _] _ 1) am—j .l.
m) = —, A(m) = . —_,
ao(m) m! o (m) ,;n( J (m —j)!
with m (but not k) an integer, we can show that a”'¢gx* reduces to

a‘vf"'n!ars(m)l
N!Sﬂs+1(N) '

This and similar results for Poisson arrivals have been found by 8. 0.
Rice in unpublished work.

[“e P (N = N [N(O) = m] dt = (1)

t The “sigma’’ funetions are related to the Poisson-Charlier polyvnomials p,(x) =
p

a"*(nh)t Z (=1 (’J’) Jla=i (j) by ai(m) = (—a)ym(m)2p,.(—k). See Szego.

7=0
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Since the event {N(f) = N} (the “all trunks busy” condition) is of
primary interest, the transition probability

has been used (e.g. by Kosten') as a “recovery”” or “relaxation” function
that is characteristic of the dynamic behavior of the system, especially
of its approach to equilibrium from the “all trunks busy” condition.
Such a function has been computed from (11) and plotted as Fig. 1,
for a (heavy) load of 10 erlangs offered to 5 trunks, giving a loss proba-
bility of 0.563.

IV. OVERFLOW TRAFFIC

In the design and engineering of trunking plans in telephony, it is
common practice to offer the calls lost by one trunk group to a second
or overflow group. It has been discovered that the right choices of group
size and the pooling of overflow traffic can lead to efficient trunking
arrangements, called graded multiples. For this reason, some theoretical
work, as well as much empirical study, has been devoted to the statisti-
cal behavior of overflowing calls. The principal references are to Brock-
meyer,”® Cohen," Kosten,” Palm,’ Takdes,”™* and Wilkinson."

In accordance with current usage in mathematical literature, let us
refer to a sequence of mutually independent, identically distributed,
positive random variables as a rencwal process. The interarrival times
that we have assumed in the model describing the trunk group then form
a renewal process. It has been shown by Palm® that, if calls arriving in

1.0 ‘ l ‘
0.9 [ ]
Pr{N(t) = N|N(0) = N}
08— I_ - —
0.7 ‘ ~. |
\\
0.6 | - -
_____ EQUILIBRIUM VALUE =PT {LOSS} = 0.563 +
0.5 T |
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35
t

Fig. 1 — “Recovery funetion” Pr {N(t) = N | N(0) = N} forN =5 trunks and
a = 10 erlangs (heavy traffic).
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a renewal process are served by a finite group of trunks, with exponential
holding times and lost calls cleared, then the overflowing calls can also
be described by a renewal process. That is, the time intervals between
successive overflowing calls are mutually independent and identically
distributed. Palm also showed how the distribution function of these
interoverflow times can be calculated from the interarrival distribution,
the hang-up rate and the group size.

We can deduce Palm’s results in a simple way from our basic theorem
and give a general formula for the Laplace-Stieltjes transform of the
interoverflow distribution. Let Oy(t) be the average number of overflows
oceurring in the closed interval [0,/], assuming that an overflow occurred
at time 0. Thus Oy((¢) is the particular form of Qu(t) that arises when
u = 0and N(0—) = N. We use G(u) to denote the distribution fune-
tion of the interoverflow times. Since these times are independent, it
can be seen that

t
OvD) = UM + [ 0yt = wdGt), 20,  (12)
0
where U(1) is 1 for ¢t = 0, and 0 otherwise. If Oy*(s) and G*(s) are the
respective Laplace-Stieltjes transforms of Oy and @, then (12) implies
ON*(S) -1
Ox*(s) ’
which determines G'(u) uniquely if Ox* is known.

Since, as noted, Ox* is the particular case of Qx* arising when u;, = 0
and N(0—) = N,aformula for it can be found from (32). In the particu-

lar case being considered
. N
]\n* = (n 3y

(*(s) =

and so Ox* is given by

1
1 — A*(s)
N\L —a(s) (N[ —als)] - [1 = ava(s)] (13
.1+(1) als) +(N) ar(s) - an(s) 1
o~ (N1 — ai(9)] -+ [1 — au(s)] '
nz=:o (n) ar(s) -+ aa(s)

If o, = f x dA(x) < =, the mean time between overflows is
1]

8
P’
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where py is the equilibrium probability of loss (studied in Refs. 7 and
11).
For N = 1, (13) gives

w_ L= A%(s) + A*(v + S)
O T — 4%(s) (14)
0 = A*('Y + S) (15)

T— A%(s) + Ay + 8
Since A*(y + s) is the Laplace-Stieltjes transform of

L) = [ e aaw),

(15) can be inverted to give

where
1= LI:
Putl = ©n * (A - Ll)

and “3¢” denotes Stieltjes convolution.

Formula (13) agrees with the recurrence relation given by Palm® for
the overflow distribution from N trunks. The ‘“‘one-trunk” case of (14)
through (16) is important theoretically because all other cases can be
obtained from it by iteration. Formula (16) defines a mapping G = %(A)
and the interoverflow distribution for N trunks can be written as FV(A4),
the Nth iterate.

For one trunk, the first two moments of the interoverflow time u are

E{u} = ﬂ,
ax
2 2 2 1 @

By = ¥ 4 2 [1 R dA(t)],
@ a H1 0

where y; = f u' dA. In particular, the ratio of second to first moment
18

E{u*} _ ke 2m |_1 _1 F e dA(O].-

E{ul m @ m1 Yo
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so that the mapping § always increases this ratio, by an amount pro-
portional to Kju}.

APPENDIX A

Approach Using a Markov Process

Let N{t) be the number of trunks in use at time f. To study the dis-
tribution of N(¢) we introduce the two-dimensional process [N (t),y(t)],
where y(¢) is the length of the time interval from ¢ back to the last
arrival epoch prior to t. We assume that A(-) is absolutely continuous,
with a continuous density a(-).

The reason for using the two-dimensional variate is that, unless arriv-
als are Poisson, the N(t) process by itself is not Markov. To avail our-
selves of the functional equations satisfied by the distributions of Markov
processes, we include y(¢) in the “state of the system.” This inclusion
does result in a Markov process. The device of “Markovization” by the
inclusion of variables has been suggested and developed by Cox,” and
also has been used by Takdes.”**

It is natural physically to think of the random funetions N(¢) and
y(t) as being continuous from the right. However, we shall assume only
that y(¢) is always defined to be equal to y(¢ 4+ 0), and shall study the
two processes | N(t 4 0),y(! + 0)} and {N(¢t — 0),y(t + 0)} jointly.

That N(t — 0) and N(¢{ + 0) are not the same process is clear:
N(t—0) = Nand y(t) =0imply N(¢{+0) = N;but,if N(t + 0) = N,
y(t) = 0, then N({ — 0) = N or N — 1 according as the call that just
arrived is lost or accommodated. The analysis of N(¢t — 0) and N(¢ + 0)
shall be carried out in terms of two sets of probability density functions,
p.(ty) and ¢, (L)), where

palty)dy = PriN(t+0) =n and y < y(t) £y + dyl,
@lty)dy = PriN({t—0) =n and y < y(t) =y + dy).

Lemma: p.(Ly) = q.(Ly) for almost all y.

Proof: Let P be a basic probability measure determined by our as-
sumptions (i) through (iv) of Section I; P is defined for sets of elements
w in a space . We assume further that N(¢{,») is separable, so that

Se= N {wNUt—u) =N{U+0) =N+ u)

0<u <e

is 2 measurable set,
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Now if y(t) > & > ¢ then y(t — ) = y(t) — ¢ almost surely, and

—2yNe 1 - A(a + E)

Pr{S.|N(t+0),y(t) > 8} = ¢ 1= 4(8)

independently of N (¢ + 0), almost everywhere, so that

—2yNe 1 - A(6 + E)

Pr{S.|y(t) > o} z ¢ 1— A()

The sets S, are monotone nondecreasing, so Sy = lim S, as e — 0 is
measurable, and

Pr{Se|y(t) >8 =1, almost everywhere [P], (17)

and S is the w-set on which N(¢) is constant in some interval (¢ — u,
{+u). The lemma follows from (17).

It remains to establish the relationship between p.(t,y) and g.(ty)
when y = 0. From our previous remarks about N (¢ — 0) and N (¢ + 0)
it can be seen that

pﬁ(t70) = qN(tJO) + ql\"—l(tso)l
pu(0) = qua(t0), 1 =n =N -1,
pu(i,{)) = 0.

To formulate the Kolmogorov equations for p.(¢,-) and g.(¢,-), we
need the function A(-) defined by

a(y)

1= AQ)’ A(y) < 1.

AMy) =

This is the probability density that an interarrival time will end in the
next dy, given that it has lasted a time y to date. The functions g.(¢, -,
where 0 < n = N, (with gy = 0), satisfy the difference-differential
system

0 d —
[ﬁ + W + yn + )\(y):l g = Y(n + 1)gns1, (18)

and the behavior of the densities g.(t, -) for y = 0 is determined by the
additional condition

7. (1,0) = f: ¢ (Ly)N(y) dy. (19)
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We introduce the generating function

N
‘J/(I)t:.’/) = Z:u:vnqn(tly)!
and from (18) obtain

I, 0 )
[a+@+7(a-—l)ﬁ+h(y)]¢=0,

whose general solution is

Wlaty) = K{t =y, ¢ ™(x — D}l — A(p))

1309

(20)

Before continuing, we note that the functions p,(¢,y) also satisfy the

system (18), but that the analog of (19) is

Pn+1—5~,,.(5,0) = ](; pu('tﬂ ))\(y) dy ’

(21)

where the IXronecker 8 symbol is used to indicate that an arriving call
is lost if it finds all ¥ trunks busy. The generating function ¢(z,t,y) of

the p.(t,y) is also a solution of (20).

The function ¢(x,t, -) is y-continuous for y > 0, so, from the lemma
proved previously, we conclude that ¢(z,t,y) = e(x,t,y) almost every-

where in ¥, and that

lim ¢ (z,ty) = o(x,t,0).
y-»0

Because of the “lost ealls cleared” assumption, we must have
Ylat04) = ag(x,t,0) — 2% (x — 1gn(2,0)
= Qa(-r;t‘}O):

so that  is discontinuous in y at y = 0.

Let P, = P,(x) abbreviate 1 + (z — 1)e ™. Tt can be verified that

the function K(-,-) in the solution of (20) is given by
K(u,z) = (1 4+ 2)¢(1 + 2u,0) — 2(1 + 2)"gx(u,0),

(1 4 ze™0,—u)
1= A(=u)

for the solution ¢(a,t,y). From this we find that, for ¢ = y,
‘}"(-'L':f:'b') =

t <y,

Py(Pyt — y0)[1 = A(y)] = (P, — NP gu(t — y0)[1 — A(y)],
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while, for ¢t < y,

1 — A(y)
1 — A(y — 1)

The solution for ¢(x,l,y) is analogous; in view of this and of the close
relationship between ¢ and ¢, only ¢ shall be treated from now on.

The funetion y(x,0,y) represents initial conditions, and is considered
as given. To find ¢(x,t,0), we use the integral condition (19), and con-
clude that

‘lr’("rxtly) = ‘!’(Pl )0}."1' - f/)

Ylat0) = [ w(Py t — y0)Pyaly) dy

ot
- /ﬂ (P, — )P, qy(t — y,0)aly) dy (22)
” a(y) dy
P - —
To solve the functional-integral equation (22), we set @ = 1 + w,

and equate coefficients of like powers of w. This yields

brc(t) = j{; [bn(t - !]) + b,.—](t - ?])

N (23)
— (n _ 1) by(t — y)] e "Maly) dy + k.(1), n =0,
where
o~ (7

bn(t) = Z (n) Qj(t,O),

: _ (" e a(t + u) du

k() = fo b S A
Note that

N
bo(t) = 22 qa(t,0) = ¥(1,0).
Let the Laplace transforms of b.(-), k.(-) be b,*(s), k,*(s), respec-

tively. We obtain a simple recurrence for the b,* by applying the Laplace
transformation to (23). The recurrence is

ba* = a,(s) {bn* + bua* - (nf 1) bfv*} + kX onz0, (24)



TRANSITION PROBABILITIES FOR TELEPHONE TRAFFIC 1311

where

A*(s)

f: e " dA(u),
a,(s) = A*(s + ny).T

To find be*, let x approach 1 in (22); then P,(x) goes to 1, and we reach
the following renewal equation for be(t):

* w(10,u)
1 — A(u)

It can be verified that the last term on the right of (25) is just ko(¢);
upon solving (25) by transforms, we find that be* = ko*/[1 — A*.

It can be seen that by(t) is the density of arrivals at the time ¢; thus
bo(t) is a familiar function of renewal theory, for which the reader is
referred to Smith® and the bibliography therein.

The solution of the recurrence (24) is

bt = (X)) {bn* - Z[( v )b.v*— ’]X} (26)

bo(t) = f: bo(t — y)a(y) dy + \ a(t + u) du. (25)

=L\ — 1 a,(s)
where
Xo = 1,
X, = 1 - als) X,

a(s)
In particular, the Laplace transform of the density (at ¢) of arrivals
finding all trunks busy is given by
ko* S XJ—JCJ'*(S)
by* = qu* = f: e qn(t0) dt = L= an(sg i ai(s) .20

£0)x

n=0 n

The generating function of distr {N (¢ — 0)} is

BN ") = [ wla, b, y) dy
Jo

= [ Tt = y0PUI — 4G dy (28)

+ [ Z a0y - oy 1—-1;4(1—(”:)}—) dy.

;r The functions a,(s) are to be distinguished from the constants a, of Ref. 11,
which use the same model and notation. The two quantities are related by a, =
A*(ny) = a.(0).
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APPENDIX B

The Stationary Distribution of [N (&),y(t)}

We now consider which initial distributions ¢.(0,u) for {N(0+),
(04 )} are stationary, i.e., are invariant under the transition probabili-
ties of the Markov process {N(¢ — 0),y(¢)}, studied in Appendix A.
Intuitively, since we show in Theorem 3 of Appendix C that a limiting
distribution exists as ¢ — =, we expeet this limit to give the stationary
distribution. This is the content of

Theorem 2: If A(u) has a continuous derivative and p; < o, the
x,u function

Z puP. nHI=byn (g )1___‘1!“_) w0, (29)

Hi
generates the unique stationary distribution of {N(0+),y(0)}; (29) is
a generating function in x and a probability density in w. The number
p» is the equilibrium probability that an arriving customer find n trunks
busy.
To show that (29) generates a stationary distribution, it is sufficient
to prove that the choice of (29) for the initial condition makes each
¢.(1,0) = p,/u for all £. This is equivalent to

G*(s) = B=

Su1 ’
or to
b,*(s) = h,
SH1
with

w £ Q)

In order to use the recurrence (24) and the formula (27) for gx*, we
must first ealeculate the quantities k,* imposed by (29). Now k,(t) is
the nth binomial moment associated with the generating function

[voow -0 =%

for ¢ (z,0,u) given by (29). Thus, k.(t) is associated with

Cap> j:w PaPyd TP (2)] dA(y).
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This is equal to
o0
-1 14+n—3
.ul Zj; pnPu-i-t " Nn(ﬂ:) d“l('l{),
and so, for n > 0,

]"‘n(t) = ﬂ171 {bu + bn—l - (H- ]i 1) pﬂ} j; 37"?“ (L"l(”).

The Laplace transform of this is

ku* = {bn + bn—l - (nir 1) PN} w, n > 0.

S
Forn =0,
I\'ﬂ(ﬂ) = i—l — 4 (“,
M1
pk o= L= A*(s) 1 — aols)
0 = = .
Sp Suy

We now note that, for these k,*, the condition by* = py/su; implies
b.* = ba/sus for all lower n. This can be proved by induetion from (24).
We now substitute these &,* in (27) for gx* (= by*). If we divide out
a factor [1 — ao(s)] in the numerator, the first term is 1/sy, ; the general
term is

N 1 — a(s)] - [1 — ay(s)lla, — a.(s)]
I:b" R (n — 1) p~] (su)ai(s) --- aq(s) ’

Using the recurrence of Ref. 11,

N
bn = a, [brl + bi"lfl - (n 1__ 1) pN] ’ n > O,

we find after much algebra that ¢x* = pwy/su; , which proves the theorem.
The stationary value pw/p; for the density gxy(t,0) has the following
physical interpretation: 1/u, is the equilibrium density of arrivals, and
pw 15 the chance that such an arrival find all trunks busy.

The uniqueness of the stationary distribution follows from that of
the limiting distribution as { — =. For two distinct stationary distribu-
tions of necessity give rise to distinet limits, contradicting Theorem 4
of Appendix C.

The analog of Theorem 2 for the more general formulation of Appendix
C is proved by the same form of argument that established Theorem 2,
with the difference that Laplace-Stieltjes transforms are involved, and
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that special mention must be made of the “periodic” case, in which
A(-) is concentrated on a lattice.

APPENDIX C

Approach Via Renewal Theory and Regeneralive Processes

This last appendix is a quick sketch of results for general distributions
A(+); no proofs are given.

Smith" has defined a regenerative stochastic process x(t) as one for
which there is an event R such that, if  occurs at ¢, then knowledge of
z(s) for s < t loses all prognostic value, and the future development of
z(7) for r > t depends only on the fact that R occurred at ¢. The points
at which R occurs are called regeneralion points of the process.

Let R, denote the event: an arriving customer finds n trunks busy.
Since the interarrival times form a renewal process, each point in time
at which R, occurs is a regeneration point of N(¢ — 0), forall0 s n =
N. In fact, we have already' made use of this property of the arrival
process in constructing the imbedded Markov chain.

We are therefore in a position to use Smith’s results™ directly. The
regenerative property of I, implies that the time intervals between suc-
cessive occurrences of R, form a renewal process, i.e., a sequence of
independent, identically distributed variates. To apply the results of
Ref. 13 we must investigate whether these variates are proper, ie.,
finite almost surely, and whether they have finite expectations. We
content ourselves with the following result:

Theorem 3: Let Zw.» be the time elapsing from an oceurrence of R,
until the next occurrence of K, . Then

Tmn < o with probability 1,
and, if the mean interarrival time u, = f x dAd < o, then

E{xm,rl} < o0,
We use the following notations:

u; = the 7th interarrival time, ¢ = 1, 2,3, -+,

Il

the time interval between the (7 — 1)th and the
sth occurrences of R, ,

1‘.—(m}

Up = Z u; = the epoch of the kth arrival,
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k
Xi(m) = 2 rim) = the epoch of the kth occurrence of the event R,, ,
1

T, = the epoch of the last arrival prior to ¢ and
after 0.

The wu; all have the common distribution A (u), except for u, , which
has G. Also, the r;(m) have a common distribution, exeept for r,(m).

During the interval (T, ¢), the process N(x — 0) forms a pure death
process whose transition probabilities P, (-) are known. Let U/(2) be
the unit step function at 0 and 4,y the Kronecker delta. The probabil-
ity that N(¢ — 0) = n can be represented as

Pr{N(t —0) = n| = E{pyop(DU(u, — 1)}

t
+ > [ Prtrspy(l — w) dy Pr{T, £ wand N(T, — 0) = m},
0

n—l1=m=N

where the measure implicit in the £ operation is the joint distribution of
N(0+) and u, . With the notations just introduced in mind, it can be
verified that

Pr{T, <u and N(T,—0) =m| =2 Pr (T, = Xi(m) £ u
=1
= f 1 — A —0)]d, 2Pr{Us<v and NU, — 0) = m}
0 k
- f (1 — A(t — )l d, 20 Pr {Xu(m) < v},
0 k

the series being absolutely convergent. By introducing

Q) = 2PriU, =t and N(U,—0) = n},
k
we ean write

Pr(N(t —0) =n} = Elpyop.. () Ul — 1))

t
+ 2 [ Putitpyn(b — 0)[1 — At — w)] dQ, (v).
n—l<m<N -0
This representation has been used by Takdes’ to study lim Pr {N (¢ —
0) = m{ as { — = by methods similar to those used in the proof of
Theorem 4.
We can now describe directly some conditions under which Pr {N (¢ —
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0) = n} goes to a limiting distribution as { — 0, mdependent of initial
conditions. The result is due essentially to Tak4es.”
Theorem 4: If A(w) is not periodic, if w; < « almost surely, if p1 =
E{ui} < »,7> 1, then

1 — A(w)]
)——E{ - du.

This result follows at (mce from the previous results of this section and
Theorem 2 of Smith," upon noting that p, x(w) is a linear combmatlon
of monotone decreasing functions. From Theorem 3 of Smith® there also
follows

Theorem 5: If A(w) has period p, if uy < « almost surely, if p1 =
Efu} < o,i > 1,and 0 = y < p, then
lim Pr {N(kp +y — 0) = n} =

k-»o0

t—>

lim Pr {N(t —0) = n} = 41<25N-/(; Dutibmu.n (U

Y st snlkp + 9) L ﬁikpj )

n—1<m<N k20

We now derive and solve equations for the quantities
Qu(u) = 2 Pr{lUis 2w and N(Ux— 0) = m},
k

which oceur in the representation for the probability Pr {N (¢t — 0) = n}.
Using the generating variable x and the abbreviation

Pfx) =14 (z — e ™,
we find that

N
E En Pr [Uk+.1 é t und N(Uk+1 - 0) = n} =

n=0

t t—u
):ff P, (5) dA(y) du Pr{Us S u and N(Ui—0) = m).
m 0 1]

The series formed by adding all these equations up on the index k are
absolutely convergent; hence no additional generating functions are
needed, and we reach the equation:

N o0
E:E“ZPr{Ukét and N(UL_'O)=H]=
n=0 k=1

N
Yo a"Priu £t and N(uy — 0) = n}
n=0 (30)

t t—u
3 f f PN (5) dA(y) do 3 Pr{Us < u and
m 0 0 k
N(Ux = 0) = m}.
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This is an integral-functional equation for the function

T(zt) = 2 a" ;Pr{m <t and N(Ux—0) = n},
which is closely related to the function ¢(x,t,0) treated in Appendix A.
In fact, when ¥ is absolutely continuous in {, then ¢ is its derivative,
and (22) is similar to (30) in the special case where the density ¢ exists.

Equation (30) may be solved by the same method as (22), except
that Laplace-Stieltjes transforms replace the ordinary Laplace integrals
used for (22). We introduce the following notations:

Q.(t) for ; Pr{Us £t and N(U: — 0) = n},

B,(t) for i(i)@;(t),

j=n

N

K.(t) for > (?‘i) Pr{u; <t and N(u, —0) = j}.

j=n

When each of Q,, , B, and K, is absolutely continuous, the corresponding
(lower case) quantities ¢, (¢,0), b.(¢) and %.(¢) are the respective deriva-
tives. Let the respective Laplace-Stieltjes transforms of @, , B, and K,
be @.*, B,* and K,*. Then (30) leads to the recurrence

B.* = a,(s) {Bn* + B,* — (n IX 1) BN*} + K.* (31)

The rest of the solution is in complete analogy with the solution for the
b.*, ¢.* in Appendix A. We find

By(t) = Qx(1),

B(t)

N
20 Qu(t) = ¥(1,D).
The function ¥(1,t) satisfies the renewal equation
t
V(1) = [ ¥ — y) dAly) + 6O,
0

where G = distr {u,). The Laplace-Stieltjes transform of ¥(1,t) is

fo TG
1 — A*(s) 1 — A*(s)’

Bo* = [ e av(1t) =
Jo
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The solution of the recurrence (31) is

B.* =

oa,(s) . _ - N . Ki* =1 — a(s)
I;I 1 - a,,(s) {BG ng [(J - 1) - a;’(S)] I;I Ch’(S) }’

where the first term of the produets is taken to be one. The @,.* are given
in terms of the B,* by the equation

Qu* = iﬂ (_I)J(n :J) Bn+i*'

=0

In particular, the analog of (27) is

B~*=Q~*=f G_“dt;PI'{Ukét and N(Up —0) = N}
o .

=[1 — A*(s)]™ (32)
. = ads)] | w [l — a(s)] - [1 — axa(s)]
Ko* + K, ai(s) to At Ke ai(s) - -+ ax(s)
N\ 1 — af(s) (NI = als) --- [1 = aw(s)]
1+ (1) ai(s) Tt (N) ai(s) - -+ ax(s)

From the representation of Pr {N(¢ — 0) = n} it can be seen that
the generating function of N(¢ — 0) is

E{:BN(:—O)} — E{P;N(DH(IC)U(H; _ t)}
t
+ 2 [ L@l — A= ] dQu(w),
with Py(z) = 1 + (x — 1)e ™, and U the unit step at zero. It follows
that the Laplace transform (with respect to ¢) of the generating function
of N(t — 0) is

f ¢ B2V} dt = [ e E{PN Y (2)U(uy — )} dt
0 0

+ ; Q.*(s) j;m PN ()1 — A(y)] dy.

. N(t—0) .
When lim E{2"""""} exists as { — =, we can use Abel’s theorem
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for the Laplace transform to evaluate the limits lim Pr {N({ — 0) = =}
explicitly. As s — 0,
sG,*(s)
1 - Fn.n*(s)
=_1
Elz,.}°

lim $Q,*(s) = lim

But from (32) we find

lim sQ.(s) = P
H1
R L

f:di(z)’

where p, is the equilibrium probability that an arriving customer finds
n trunks busy. (These probabilities have been studied in Takdes” and
Benes," inter alia.) Hence

E{z,..] = mean recurrence time of R,

f x dA(z)
0— — H_l

Dn Dn’
and, from Theorem 3,

imPr{N(t —0) =n) = 2. pa fmp,,,HAsm_N'"(u) [ — ACw)] du
0 m

t=o n—l<m<N

lim E{z¥") = 3 p"j P, () (1 _7,; (w)] dy,
n 0 1

=]
with

Py(x) =14 (x — 1)e ",
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