Potential Distribution and Capacitance of
a Graded p-n Junction
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(Manuseript received June 6, 1960)

For a graded p-n junction under sufficient forward bias, the usual space-
charge approximation to the potential breaks down, and a numerical solution
of the differential equation satisfied by the potential is required. A procedure
1s described which avoids the difficulties associated with direct numerical in-
tegration of the stiff differential equation, and which yields a pair of very
close upper and lower bounds to the potential at all points. For a linearly
graded junction, tables of bounds are given which nowhere differ by as much
as 1 per cent, and which effectively bridge the gap between the space-charge
case and the newlral case.

The compuler solutions are used to calculate the voltage dependence of the
stored charge (low-frequency ac capacitance) of a graded junction numeri-
cally, as a funetion of the bias vollage across the junction. The expression
for the capacitance is split into two parts, one of which dominales in the
neutral case and the other in the space-charge case. With properly norma-
lized variables, it is possible to give a universal plot of small-signal ac
capacitance against applied voltage. The results differ from the usual ap-
proximale formulas by amounts ranging up to nearly 10 per cent.

I. INTRODUCTION

In his theory of p-n junctions in semiconductors, Shockley' shows that
the potential distribution in a linearly graded p-n junction satisfies a one-
parameter differential equation of the form

d'U
dz*

= sinh U — Kz. (1)

The solution of this nonlinear equation cannot be obtained by analytical
methods. However, Shockley gives two approximations, each applicable
in an extreme case. The space-charge approximation (K >> 1) is valid
in the case of a steep gradient at the junetion, while the neutral approxi-
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mation (K < 1) holds for a gentle gradient. Since in almost all cases of
practical interest the gradients in p-n junctions are of such a magnitude
that the space-charge approximation is valid, it has become the accepted
form for the analysis of p-n junections.

Shockley derived the differential equation (1) for the case of equilib-
rium — that is, for the case of zero bias across the junction. Recently
Moll* has shown that the potential distribution in a p-n junetion under
bias satisfies the same one-parameter differential equation. The parame-
ter K is now a function of the applied voltage, and it turns out that for
most practical gradients in p-n junections under forward bias the space-
charge approximation ceases to be valid. For a proper description of the
potential distribution in a biased junction, a numerical solution of (1)
is required. Such a solution is obtained in the present paper and applied
to the computation of the small-signal ac capacitance of the junction
as a function of the bias voltage.

I'irst Moll’s derivation of the generalized differential equation for the
potential distribution in a graded p-n junction under bias is reviewed.
There follows a discussion of the physical principles which underlie the
approximate solutions and the exact solution. Caleulation of the exact
solution by numerical integration, however, encounters the difficulty
that one boundary condition is specified at infinity, and for large z the
solutions found by ordinary numerical integration procedures diverge
rapidly from the desired solution. This instability of the desired solution
is called stiffness. An effective way to calculate the potential in spite of
the stiffness consists in the computation of close upper and lower bounds,
that is, two very nearby curves between which the actual potential
must lie for all z. Mathematieal details and extensive numerical tables
are contained in Appendix A, while a graphieal comparison between
the exact space-charge distribution and the distribution assumed in the
space-charge approximation is given in the body of the paper.

Finally the computer solutions are used to caleulate the voltage de-
pendence of the stored charge (low-frequency ac capacitance) of a
graded junction, The results of the computation, which is deseribed in
Appendix B, yield a universal plot of the small-signal ac capacitance of
the junetion against applied voltage.

II. THE GENERALIZED DIFFERENTIAL EQUATION

To obtain the differential equation for the potential distribution in a
biased junction, it is econvenient to use the model of a p-n junction which
was employed by Shockley in his derivation of the space-charge capaci-
tance. The model (Fig. 1) assumes a linearly graded p-n junction in
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Fig. 1 — The pseudo-equilibrium model of a linearly graded junction.

which the net impurity concentration is given as Np — N, = ax, with
N, and N4 the density of donors and acceptors, respectively. Contacts
are applied at = +land ¥ = —I. In the model the following processes
are imagined to be prevented: (1) electron and hole recombination; (2)
electron flow across the p-region contact at @ = —I; (3) hole flow across
the n-region contact at &+ = 4L Under such a pseudo-equilibrium condi-
tion, holes which flow in at @ = —I must remain in the structure; simi-
larly, electrons flowing in at ©+ = -+ must remain inside. No direct cur-
rent is therefore possible, and the structure behaves like a capacitor,

If the potential of the p-region contact at = —I[ is increased by a
voltage V with respect to the n-region contact, holes will flow into the
specimen until the quasi-Fermi level ¢, for holes has increased hy V, so
that the holes inside are in equilibrium with the contact supplying the
potential, A similar electron flow will oceur at 2 = 40 In the pseudo-
equilibrium state the quasi-Fermi levels for holes and electrons will
have no gradient and will be separated by an amount equal to the ap-
plied voltage V.

In an actual p-n junction the region hetween @+ = —/and 2 = +/[ can
be identified with the transition region. Under forward bias the eurrent
flow across the transition region gives rise to very small gradients in
the quasi-IFermi levels, which can be neglected for a consideration of the
potential distribution. Even for the derivation of the voltage-current
characteristic, constant quasi-Fermi levels across the transition region
are commonly assumed. The use of the pseudo-equilibrium model em-
phasizes the aspeets of the transition region which are being considered
here; this is particularly true in the derivation of the capacitance.

To derive the generalized differential equation, Boltzmann statistics
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the problem is to find an integral curve of (A1) which passes through
the origin with such a slope that at infinity it approaches the curve

U(z) = sinh™'f(z); (A3)
and in fact U(z) must approach U(z) fast enough so that
lim [sinh U(z) — sinh U(z)] = 0. (A4)

z»®

One might, perhaps, be willing to take the existence of a physically
meaningful solution of the boundary value problem for granted, on the
ground that no matter how the fixed charge density f(z) varies with
position, the holes and electrons should be able to distribute themselves
so that equilibrium is produced. A formal proof that the problem does
indeed have a unique solution can be given under the assumptions that
f(z) is a nonnegative function with two continuous derivatives for
0 <z < =, that U(z) is everywhere concave downward, i.e.,

U7(z) £0 for 0 2z2< =, (A5)
and that
lim U”(z) = 0. (AG)

Doubtless it would be sufficient to assume that f(z) has only a finite
number of finite discontinuities in 0 £ z < o, and satisfies the given
conditions for all sufficiently large z. We shall not take space to write
out every detail of the proof, but the ideas are quite simple and will
now be sketched as a basis for the following analysis and computations.

Typical integral curves of (Al) are shown in I'ig. 7, these curves
actually being computer solutions for the case f(z) = 10z, Let us denote
by U.(z) the solution of (A1) which satisfies the initial conditions

U,(0) =0, US(0) = s, (A7)

where s is any real number. It is easily shown from the differential equa-
tion that if s» > s, then

U,(z) — U,(2) > (82 — ) sinhz > 0, (A8)

for any z > 0 for which U, (z) and U, (2) both exist.* We see from
(AR) that U,(z) is an increasing function of s for fixed z, and that any
two integral curves ultimately diverge with exponential speed.

* The solution {7,(z) may become infinite as z approaches some finite value z, ,

and so may not exist for z = z, . We shall not be concerned with such movable
singularities, except to recognize that they can occur,
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Fig. 2 — The parameter K as a function of forward bias and gradient at the
junction.

one obtains for Poisson’s equation the one-parameter differential equa-

tion

d'U
dz?

= ginh U — Kz. (14)

For the case of zero bias, this differential equation corresponds to the
one given by Shockley.* He gave two limiting approximations to the
solution, namely the space-charge approximation for K 3> 1 and the
neutral approximation for K < 1. Note, however, that on account of
the factor ¢ **"'* in the general expression for K as given by (13), K
can pass through unity with increasing forward bias even if Ko >> 1.

To illustrate the effect of forward bias on K, Fig. 2, which is reproduced
from Moll,* shows the values of K for practical gradients at the junc-
tion (values of @ between 10" and 10 em™) and for various values of
forward bias. Also shown are reasonable estimates of current densities
corresponding to such forward biases in practical cases. This plot dem-

* Shockley uses the normalized length coordinate y = Kz, so that (14) takes
the form
at

1 .
E=E(SthHy}'
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onstrates that one frequently encounters the condition where K is ac-
tually in the neighborhood of unity, in which case neither the space-
charge approximation nor the neutral approximation is valid, and the
exact solution is required.

IMig. 3 exhibits the relationships between the approximate solutions
and the true solution. The figure is drawn for the intermediate case
K = 5, and both the potential U and the charge density p are plotted
against the normalized length coordinate z.

For the neutral approximation, one assumes p = 0 for all values of z.

NEUTRAL
APPROXIMATION

TRUE
SOLUTION

7 APPROXIMATION

POTENTIAL U
~

A _sPACE-CHARGE

SPACE-CHARGE
APPROXIMATION

CHARGE DENSITY /2

TRUE
SOLUTION

o] Zm
COORDINATE Z

Fig. 3 — Relationships between the approximate solutions and the true solu-
tion for the case K = 5.
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Then d*U/dz* =~ 0, and the potential is approximately equal to the
function

U = sinh'Kz. (15)

IFor the space-charge approximation, one neglects the contribution of
the mobile carriers to the charge density out to a point | z | = z,, , which
is regarded as the edge of the space-charge region. Thus in the space-
charge region one uses the differential equation

d'U

T —Kz, lz] < zn. (16)

Beyond the point z, one assumes neutrality and the potential is set
equal to 7 as given by (15). At the point z = z,. , the two solutions join.
One further condition is necessary to determine z,, ; Shockley supplies
this econdition by requiring the space-charge solution to have zero slope
at 2 = z, . Since the neutral solution has a small positive slope at z,, ,
this method of joining results in a slight discontinuity in dU/dz at
z = 2Zm. An improved method of joining would require that hoth the
funetion and the first derivative be continuous at 2 = z,, . However, such
a condition complicates the algebra without significantly improving
the aceuraey of the approximation.

The true solution is asymptotie to the neutral solution U as z — e,
The space-charge distribution will not have a sharp boundary, as is
assumed in the space-charge approximation. A fraction of the fixed
charges associated with the impurities are compensated by mobile car-
riers, giving rise to an actual net charge density like that indicated in
the lower part of Iig. 3. Since for the exact solution the charge is dis-
tributed over a larger distance, the total charge must be smaller than is
assumed in the space-charge approximation.

Caleulation of the exact potential distribution in the junection involves
numerical solution of the differential equation (14) subjeect to the bound-
ary eonditions U = Oat z = 0 and U — sinh 'Kz as z — . The method
of computation is described in Appendix A, where tables of upper and
lower bounds for U7 which nowhere differ by as much as 1 per cent are
given for 16 values of K ranging from 0.1 to 10,000.

The results of the ealeulations, for selected values of K, are also shown
in terms of charge densities in I"ig. 4. In this figure the fractional com-
pensation of the fixed charges by mobile carriers, namely the ratio
(n — p)/(Np — N.), is plotted against z/z, , where z,, is the space-
charge width for the space-charge approximation. The value of z,, is
plotted against K in Fig. 5. The normalization by z,. allows a complete
representation of the results in one figure. It also readily permits a com-
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Fig. 4 — Fractional compensation of fixed charges by mobile carriers for vari-
ous values of K.

parison between the true solution and the space-charge approximation,

since for the latter the ordinate is zero for z < z, and unity for z > 2. .
It is apparent from Tig. 4 that the true solution differs markedly from

the space-charge approximation, even for values of K as large as 10",

III. THE CAPACITANCE OF A GRADED D-11 JUNCTION

The significant difference between the charge distribution assumed in
the space-charge approximation and the actual charge distribution
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Fig. 5 — The space-charge width for the space-charge approximation.
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prompted us to compute the voltage dependence of the stored charge
(low-frequency ac capacitance) of a graded junction. For this problem
the pseudo-equilibrium model is particularly helpful, since only capaci-
tive currents will flow. A change in the voltage between the two contacts
at ¥ = —land x = -1 is associated with a change in the total number
of mobile carriers stored in the structure. The total number of electrons
and the total number of holes are always equal. The two types of car-
riers are equivalent to the charge on the two “plates” of the capacitor,
and by considering the total number of holes one can express the capaci-
tance as

d +
= lx ).
C (”_,q(_l pm:) (17)
Because of the symmetry of the junction, the expression (17) can be
written
d 1
C =-(ﬁ;(qf0 (p +n) da) (18)

Since the density of fixed charges associated with the impurities is volt-
age-independent, one can rewrite this equation as

1
¢=2 (qf [(p +n) — (Np — N d.v). (19)

After eliminating Np — N4 by (3), one obtains as the expression for
the capacitance

d ! d ([
i b)) I e ). 2
c-2 (Ag j; pd.a) < ([ﬁ pd.a) (20)

The capacitance accordingly consists of two parts: the “neutral” ca-

pacitance
¢, =L (2q fl D d:v) (21)
dv 0 !
and the “space-charge’” eapacitance
d f‘
= —-— 22
Cs dV( 0’ dl) (22)

Since according to (13) the parameter K depends on V' through the
factor ¢ *'"* one may express derivatives with respect to V in terms
of derivatives with respect to K. Furthermore the expression for the
space-charge capacitance converges very strongly as [ — «. Thus only
a negligible error will be made if one replaces the upper limit of the in-
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tegral by infinity. For the neutral capacitance, however, it is necessary
to retain a finite value of I. After expressing p and p in terms of the po-
tential by (2b) and (8) respectively, and transforming to dimension-
less variables, one gets

v Cy f” —U —-U; a f“ —u :I
C, = K*[ . e dz + ze 3 oz K) o e dz |, (23)
Cy 9 ol
=913 _9Y ) 2
G Koz I:g d(log K) Ul_u (24)
In both cases 'y is a normalizing capacitance given by
_
CD - 4£D’ (25)

which involves only material constants and the gradient at the junction.
For the space-charge capacitance, the expression multiplying Cy is a
function of K only. I'or the neutral capacitance, the multiplying function
contains in addition the upper limit of the integral in (21), which can
be expressed either by the actual coordinate [, by the normalized coor-
dinate z;, or by the normalized potential U; of the electrode.

TFFor K — 0 the space-charge capacitance disappears and the relation-
ship between U and K is given by (15). The neutral capacitance in this
limit corresponds to the “capacitance for the neutral case” as described
by Shockley,* and it takes the form
o~ 2, (26)

r=0 K?

TFor K > 1 the space-charge capacitance is much greater than the
neutral eapacitance. By using in (24) the funectional relationship be-
tween U and K that results from the space-charge approximation, one
obtains for the space-charge capacitance

23U, 20,

C, ~ — ~ i
P30, coth Uy — 1 5aw (3U,)?

(27)

* In the present notation, Eq. (2.41) of Ref. 1 is equivalent to

_ @t = DG

K

C

A consistent retention of terms of order 1 in Shockley’s derivation would, how-
ever, have led to a result exactly equivalent to (26) above. In particular it is
necessary to write, for large x,

exp (2 sinh™! ) = 42° 4 2,

whereas Shockley effectively approximates this function by 4z2.
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with U/,, the normalized potential at the edge of the space-charge region,

which is related to K by
.13 1
K- (smh Um) _ (28)

3 Drm

If one approximates U,, = U,y — 8V /2, where U,y is the normalized
potential at the edge of the space-charge region for zero bias, the last
term of (27) agrees with the space-charge capacitance given by Shock-
ley in Eq. (2.45) of Ref. 1.

The functions multiplying ('; in (23) and (24) have been evaluated
numerieally, as deseribed in Appendix B. In the expression for ', a
value of 10 has been used for U; . (It should be emphasized that a fixed
U; does not correspond to a fixed {!) The results are shown in I'ig. 6.
Also shown are the approximations (26) and (27) for (', and (', respee-
tively.

It may be noted that for large & the values for the exact space-charge
capacitance fall above the approximate values. This at first appears
surprising, since as mentioned above the total charge in the transition
region is actually less than assumed under the space-charge approxima-
tion. However if one remembers that the validity of the approximation
increases with increasing K, it becomes plausible that the change in
total charge with A must be larger for the exact solution.

4

Y

Sl ::—‘—‘-'-?_:j

—_— EXACT
=== APPROXIMATE

NORMALIZED CAPACITANCE C/Cgo

|
1000 10,000

Fig. 6 — Approximate and exact values of the normalized neutral eapacitance
and the normalized space-charge eapacitance.
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The abseissa in Fig. 6 can be considered as a linear seale in — V| the
applied voltage, with zero coinciding with the point KX = K,. Thus
Fig. 6 may be used as a plot of the small-signal ac capacitance against
voltage. In particular, it is apparent from I'ig. 6 that in the range in
which the neutral capacitance dominates, the approximation given by
(26) is a good description of this capacitance. This finding is important,
since in practical cases the value of U/; needs to be specified. One would
choose ag the boundary of the transition region a point up to which the
assumption of constant quasi-I'ermi levels is reasonably correct. Beyond
this point one has to use the continuity equation to find the “diffusion”
capacitance, which must be added to the capacitance of the transition
region.

IV. ACKNOWLEDGMENTS

We wish to thank R. C. Prim for stimulating discussions of the mathe-
matical aspects of this problem and for the use of his unpublished results.
The numerical work has also had the benefit of unpublished investiga-
tions by A. IKooharian and W. L. Miranker.

APPENDIX A
Caleulation of the Potential Distribulion
We have to integrate numerically
U” = sinh U — f(2), (A1)

where primes denote differentiation with respect to z, and f(z) is a given
funetion proportional to the density of fixed charge. For a linearly graded
junction, of course, f{z) = Kz. In general, if f(z) is an odd function of
z, then U(z) is an odd function of z, and we want a solution of (Al)
satisfying the boundary conditions
U(0) =0, lim U”(z) = 0. (A2)
The second condition states that the total density of fixed plus mobile
charges tends to zero at great distances from the junction.
A preliminary graphical treatment of (A1) is almost indispensable.
Because of the first of the boundary conditions (A2), we need consider

only the one-parameter family of integral curves passing through the
origin with arbitrary slope. In view of the second boundary condition,
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the problem is to find an integral curve of (A1) which passes through
the origin with such a slope that at infinity it approaches the curve

U(z) = sinh™'f(z); (A3)
and in fact U(z) must approach U(z) fast enough so that
lim [sinh U(z) — sinh U(z)] = 0. (A4)

z»®

One might, perhaps, be willing to take the existence of a physically
meaningful solution of the boundary value problem for granted, on the
ground that no matter how the fixed charge density f(z) varies with
position, the holes and electrons should be able to distribute themselves
so that equilibrium is produced. A formal proof that the problem does
indeed have a unique solution can be given under the assumptions that
f(z) is a nonnegative function with two continuous derivatives for
0 <z < =, that U(z) is everywhere concave downward, i.e.,

U7(z) £0 for 0 2z2< =, (A5)
and that
lim U”(z) = 0. (AG)

Doubtless it would be sufficient to assume that f(z) has only a finite
number of finite discontinuities in 0 £ z < o, and satisfies the given
conditions for all sufficiently large z. We shall not take space to write
out every detail of the proof, but the ideas are quite simple and will
now be sketched as a basis for the following analysis and computations.

Typical integral curves of (Al) are shown in I'ig. 7, these curves
actually being computer solutions for the case f(z) = 10z, Let us denote
by U.(z) the solution of (A1) which satisfies the initial conditions

U,(0) =0, US(0) = s, (A7)

where s is any real number. It is easily shown from the differential equa-
tion that if s» > s, then

U,(z) — U,(2) > (82 — ) sinhz > 0, (A8)

for any z > 0 for which U, (z) and U, (2) both exist.* We see from
(AR) that U,(z) is an increasing function of s for fixed z, and that any
two integral curves ultimately diverge with exponential speed.

* The solution {7,(z) may become infinite as z approaches some finite value z, ,

and so may not exist for z = z, . We shall not be concerned with such movable
singularities, except to recognize that they can occur,
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Fig. 7 — Integral curves of the differential equation U” = sinh U — Kz.

An integral curve which once crosses U(z) can never recross, since it
has positive second derivative thenceforth, while by assumption U(z)
has negative second derivative. Similarly, an integral curve which crosses
the z-axis going downward has negative second derivative thenceforth,
and can never recross the axis.

Now let us imagine, as is always possible, that we start with an initial
slope s large enough so that U,(z) does cross U(z), and that we gradu-
ally decrease s until we come to the first integral curve that does not
cross U(z) for any z. On the other hand we could start with a negative
value of s, so that U,(z) surely lies below the z-axis, and increase s until
we reach the first integral curve that does not lie below the z-axis any-
where. It turns out that these two distinguished integral curves are
actually one and the same, so that the differential equation has exactly
one solution which lies hetween U7 = U(z) and U = 0 for all z. (If there
were two such solutions, by (A8) the distance hetween them would ulti-
mately exceed U.) We shall call this solution Ug(z). It may be proved
that Us(z) approaches (7(z) and satisfies the boundary condition (A4)
at infinity.

The object from now on is to find upper and lower bounds for the de-
sired solution; that is, neighboring functions U, (z) and U_(z) such that

U_(z) = Us(z) = Ul(2) for z = 0. (A9)

Clearly, if s < S < s, then U, (2) is a lower bound and U,,(z) is
an upper bound; but according to (A8) these two curves are infinitely
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far apart for infinite z. From the preceding discussion we know that
Uy(z) = U(z) is always an uppet bound and U_(z) = 0 is always a
lower bound. Furthermore, if {7, (z) and U,,(z) are upper bounds, then
min [{7;(2), Us(2)] 1s an uppel h()und, and if U, (z) and U, _(z) are
lower bounds, then max [U; (z), Us_(z)] is a lower bound.

(iiven a lm\ er bound U7 4(_~), an upper bound may be constructed by
two quadratures, as follows: Let

n"(z) = sinh U _(z) — f(z),

7(0) = 0, (A10)
7(0) = s,
and choose the initial slope s so that for some 2, > 0 we have
21(za) = Ulza). (A11)
The upper bound is then
[n(2), 02z = za, (A12)

+(2) = lC"(z), Z> 2y -

To prove that 9(z) = Us(z) for 0 £ z £ z,, we observe that the
inequality is certainly satisfied at z = 0 and at z = z,, . If there were a
gsubinterval in which n(z) < Ug(z), then at some point z, of the sub-
interval we should have 9" (z) > Us"(z), which is impossible in view
of the differential equations (A1) and ‘'A10). The contradiction estab-
lishes that n(z) is an upper bound in 0 £ z £ z,, .

Similarly, from a given upper bound U, (z) we can construct a lower
bound by taking

7”(z) = sinh U (z) — f(z),
7(0) =0, (Al13
7(0) = s,
and choosing s so that for some z, > 0 we have
7' (z0) = 0. (A14)

The lower bound is then

z < 2z < =z
U(s) = {12 0=z=a, (A15)
an 2> 2o,

but it is not a very good bound because it is ultimately constant, while
Us(z) may tend to infinity for large z.
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The Shockley space-charge approximation may be obtained as an
elementary upper bound, using (A10). Setting U_(z) = 0, we get for
a linearly graded junction with f(z) = Kz an upper bound of the form

T _)s: = KZE/G, 0 =Sz = Zm ,
Uslz) = {sinh"fcz, £> 2, (A16)
where

szm — Kz, /6 = sinh 'Kz, . (AL17)

Since both ¢ and z, are disposable parameters, a second relationship
may be imposed between them. Shockley requires the slope of the upper
bound to vanish* at z,, — 0, so that

s — Kz,2/2 = 0. (A18)

The solutions of (A17) and (A18) are then expressed, in terms of a
parameter U,, which satisfies

sinh* 7., \* _
( 30, ) =K, (A19)
by the equations
sinh U,
zm - T 3 1
£ (A20)
_ sinh® U, .
T 2K

The space-charge width 2, , which was plotted in Iig. 5, is tabulated in
Table I as a function of K, together with the initial slope s according
to the space-charge approximation, and the initial slope S obtained by
the numerical method described below.

Unfortunately it does not appear to be possible to converge on the
desired solution Ug(z) by repeated applications of (A10) and (A13).
A limited amount of numerical experimentation suggests that iteration,
even starting from a bound which is known to be very close to Ug(z),
rapidly leads to a particular pair of curves which are a finite distance
apart for every z > 0. Although it is possible, as Prim’ and Morrison*
have shown, to obtain a number of analytic upper and lower bounds for
Us(z) of varying degrees of complexity, the most practieal way of actu-
ally computing close upper and lower bounds seems to be in terms of
integral curves of the differential equation itself. Thus let U,,(z) be an

* A slightly better bound would be obtained by making the slope of U, (2) con-
tinuous at zn .
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TaBLE 1 —SracE-CHARGE WIDTH AND INITIAL SLoPE oF U(z)

Space-Charge Approximation Exact Solution
K
Zm s S
0.1 1.7278 0.14926 0.099094
0.2 1.7158 0.29440 0.19402
0.5 1.6535 0.68348 0.44698
1 1.5396 1.1852 0.78927
2 1.3760 1.8035 1.3134
5 1.1350 3.2206 2.3792
10 0.9610 4.6180 3.5599
20 0.8046 6.4737 5.1709
50 0.6287 9.8810 8.1895
100 0.5183 13.432 11.379
200 0.4255 18.108 15.614
500 0.3262 26.610 23.378
1000 | 0.2660 35.389 31.449
2000 0.2165 46. 864 42.049
5000 0.1644 G7.568 61.264
10000 0.1333 88.791 81.052

integral curve of (A1) which passes through the origin with some initial
slope s, and crosses U(z) at some point 2z, . Then an upper bound for
Us(z) is given by

. _ JU.L(2), 0
Us(z) = {[-'(2% 2

2= 2,

= (A21
> Zn. A2l)

Similarly a lower bound may be constructed from any integral curve
U,,(z) which starts with a positive slope s but ultimately turns down-
ward. Ordinarily we do not have to follow U, (2) beyond the point where
its slope is zero. Let us introduce the auxiliary funection

U_y(z) = sinh™'[f(z) + U"(2)]. (A22)
U/_y(z) iz a known function of z which approaches U(z) from below for

large z as U”(z) approaches zero; it is plotted in Fig. 8 for the case
f(z) = 10z. Now suppose that for some positive 2, we have

Uz) — Ui(2) £ & for z = z, (A23)
where
e = U(z) — Uy, (). (A24)
Then a lower bound for Us(z) is given by
. U, (2) 022
U(z) =107 ’ A2
\2) {L(z)—eu, 2> . (425)
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Fig. 8§ — Upper and lower bounds, together with the curves U(z) and U_i(z).

In other words, Us(z) lies in a strip of constant width & below U(z)
forz = .
To prove the last statement, define

e(z) = U(z) - Us(z). (A26)

Since U,,(2) ultimately turns downward, we know that it lies below
Us(z) at 2 = 2. We also know that Us(z) approaches U (z) at infinity,

80

e(z) < & and lim e(z) = 0. (A27)

>

Tt follows that if there were some interval beyond z, in which e(z) > «,
there would be some point z of the interval at which ¢”(z) < 0. Buf
at this point we have

e (z) = U (z) — Us”(z1)
= sinh U_;(z) — sinh Us(z) > 0,

(A28)

since, by (A23), Us(z) < U_y(z) if U(z1) — Us(z1) > . This con-
tradiction proves the theorem.
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In practice it is usually possible to choose z, to minimize the distance
between U, (z) and U(z), i.e., so that
('Y:‘,(En) = I_”(En}- (iAQQ)
However, this condition is not required for the preceding proof.

Representative upper and lower bounds obtained in this way for
K = 10 are shown in Fig. 8, together with the curves [7(z) and U_(z).
For ease in plotting, the value of ¢ has been chosen larger than would
be necessary to accept in a practical case. The vertical arrows indicate,
respectively, the point at which {7, becomes U7 and the point at which
[7_ becomes U7 — ¢ .

To mechanize the computation of upper and lower bounds, one has
only to integrate (Al) numerically, starting from the origin with a
given slope, out to the point where the integral curve identifies itself
either by erossing U(z) or by attaining zero slope. The initial slope is
then adjusted (downward in the former case, upward in the latter), and
the process repeated until the hounds nowhere differ by more than a
preassigned amount. This approach may be called the “sweep method.”

Any standard procedure may be used for the numerical integration.
We took the fourth-order Runge-Kutta method,” adapted for an equa-
tion of the form y” = f(x, ). In practice the IBM 704 was supplied
with the value of K, an initial guess at the slope s, and criteria for stop-
ping; integral curves could be run off at the rate of several per minute.

The ecriterion for refinement of a particular solution was more or less
arbitrarily taken to he the determination of the initial slope to five sig-
nificant figures.* This led to upper and lower bounds which differ by
less than 1 per eent of their mean value in all eases. Typiecal plots are
shown in Iigs. 9, 10, and 11. In TVig. 9, where K has the small value
0.1, the solution Ug(z) nowhere differs from U(2) by more than 1 per
cent, and no attempt has been made to plot the two curves separately.
Fig. 10 represents the intermediate value K = 10, and I'ig. 11 the large
value K = 10,000. The difference hetween upper and lower bounds for
a given K, while obvious in the tabulated values near the upper end of
the range of z, is too small to be conveniently plotted on these figures.

Table II shows U(2), U (z), and U_(z) for 16 values of K ranging
from 0.1 to 10,000, The values of U7 (z) and U_(z), considered as nu-
merieal solutions of the differential equation (A1), are believed to be
accurate, with a few possible exceptions, to the four decimal places shown.

* More preeisely, U,7(0) exceeds U_'(0) by one unit of the fifth significant fig-
ure, where U7, (0) is given as S in Table I.
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Tasre II —Tue Funcrions U(2), U,(2), axp U_(2)

K =01 [ K =02

z Tz V=) vy || s Ui) | Uslo) U_(z)

0. 0. | 0. 0. 0. 0. 0. 0.
0.500 | 0.0500 | 0.0495 0.0495 0.200 0.0400 0.0388 0.0388
1.000 | 0.0998 | 0.0989 0.0989 0.400 | 0.0799 | 0.0775 0.0775
1.500 | 0.1494 | 0.1481 0.1481 0.600 | 0.1197 | 0.1162 0.1162
2.000 | 0.1987 0.1970 0.1970 0.800 0.1593 0.1547 0.1547
2,500 | 0.2475 0.2454 0.2454 1.000 0.1987 0.1930 0.1930
3.000 | 0.2957 | 0.2933 0.2933 1.200 | 0.2378 | 0.2311 0.2311
3.500 | 0.3432 | 0.3406 0.3406 1.400 0.2765 0.2690 0.2689
4.000 | 0.3900 1 0.3872 0.3872 1.600 0.3148 0.3065 0.3064
4,500 | 0.4360 | 0.4331 0.4331 1.800 0.3526 0.3436 0.3436
5.000 | 0.4812 | 0.4782 0.4782 2.000 0.3900 | 0.3804 0.3804
5.500 | 0.5255 | 0.5224 0.5224 2.200 0.4269 0.4168 0.4167
G.000 | 0.5688 | 0.5657 0.5657 2,400 0.4633 0.4527 0.4526
6G.500 | 0.6112 | 0.6081 0.6081 2.600 0.4990 | 0.4881 0. 4881
7.000 | 0.6527 0.6496 0.6496 2.800 0.5342 0.5231 0.5230
7.500 | 0.6931 0.6902 0.6901 3.000 0.5688 0.5576 0.5575
8,000 | 0.7327 | 0.7299 0.7297 3.200 | 0.6028 | 0.5915 0.5914
8.500 | 0.7712 | 0.76G86 0.7683 3.400 0.6362 0.6249 0.6248
9.000 | 0.8089 0. 8066 0.8059** || 3.600 0.6690 | 0.6578 0.6576
9.500 | 0.8456 | 0.8437 0.8426** || 3.800 0.7011 0.6901 0.6898
10.000 | 0.8814 0.8803 0.8784** || 4.000 0.7327 0.7218 0.7215
10.500 | 0.9163 0.9163* | 0.9134%* | 4.200 0.7636 0.7530 0.7526
4.400 0.7939 0.7837 0.7832
4.600 | 0.8237 | 0.8138 0.8132
4.800 0.8528 0.8434 0. 8426
5.000 0.8814 0.8724 0.8715
5.200 0.9094 0.9010 0.8998
5.400 | 0.9368 | 0.9200 0.9275
5.600 0.9637 0.9567 0.9547
5.800 0.9901 0.9838 0.9814
6.000 | 1.0160 1.0106 1.0075
6.200 1.0413 1.0371 1.0331
6.400 1.0662 1.0633 1.0581
6.600 | 1.0906 1.0894 1.0827
6.800 1.1145 1.1145% | 1.1067

7.000 1.1380 | 1.1380% | 1.1302**
*U(z) ** U(z) — 0.0029 *Ulz) ** Uz) — 0.0078
K =05 K =10

Uiz | Usa) U_(z) 5 Uiz) Uylz) U_(z)

0. | o. 0. 0. 0. 0. 0. 0.
0.200 | 0.0998 0.0893 | 0.0893 0.200 0.1987 0.1576 0.1576
0.400 | 0.1987 | 0.1782 | 0.1782 0.400 0.3900 0.3135 0.3135
0.600 | 0.2957 0.2663 | 0.2663 0,600 0.5688 0.4662 0.4661
0.800 | 0.3900 @ 0.3532 | 0.3531 0.800 0.7327 0.6142 0.6142
1.000 | 0.4812 | 0.4384 0.4384 1.000 0.8814 0.7564 0.7563
1.200 | 0.5688 | 0.5218 0.5218 1.200 1.0160 0.8918 0.8918
1.400 | 0.6527 | 0.6030 0. 6030 1.400 1.1380 1.0198 1.0198
1.600 | 0.7327 0.6819 0.6819 1.600 1.2490 1.1401 1.1401
1.800 | 0.8089 0.7582 0.7581 1.800 1.3504 1.2526  1.2526
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TasLe 1T — Continued

K=05 K =10

z U(z) U,(z) U_(z) z =) Uilz) U_(z)
2.000 | 0.8814 | 0.8318 0.8317 2.000 | 1.4436 | 1.3574 1.3573
2.200 | 0.9503 | 0.9026 0.9026 2.200 | 1.5297 | 1.4547 1.4546
2.400 | 1.0160 | 0.9707 0.9706 2,400 | 1.6094 | 1.5450 1.5450
2.600 | 1.0785 = 1.03G0 1.0359 2.600 | 1.6837 | 1.6289 1.6288
2.800 1.1380 1.0985 1.0084 2,800 1.7532 1.7068 1.7066
3.000 1.1948 1.1584 1.1583 3.000 1.8184 1.7792 1.7790
3.200 1.2490 1.2157 1.2155 3.200 1.8799 1.8468 1.8465
3.400 | 1.3008 | 1.2705 1.2703 3.400 | 1.9379 | 1.9101 1.9097
3.600 1.3504 1.3230 1.3227 3.600 1.9928 1.9694 1.9688
3.800 | 1.3980 | 1.3732 1.3728 3.800 | 2.0450 | 2.0253 2.0245
4.000 | 1.4436 | 1.4213 1.4208 4.000 | 2.0947 | 2.0780 2.0769
4.200 | 1.4875 | 1.4675 1.4668 4.200 | 2.1421 | 2.1281 2.1263
4.400 | 1.5297 | 1.5118 1.5109 4.400 | 2.1874 | 2.1757 2.1731
4,600 | 1.5703 | 1.5543 1.5532 4,600 | 2.2308 | 2.2213 2.2173
4.800 | 1.6094 | 1.5953 1.5937 4,800 | 2.2724 | 2.2651 2.2501**
5.000 | 1.6472 | 1.6349 1.6327 5.000 | 2.3124 | 2.3074 2.2001**
5.200 | 1.6837 | 1.6731 1.6700 5.200 | 2.3509 | 2.3487 2,3376%*
5.400 | 1.7191 | 1.7101 1.7059 5.400 | 2.3880 | 2.3880* | 2.3747**
5.600 | 1.7532 | 1.7461 1.7403**
5.800 | 1.7863 | 1.7813 1.7734%*
G.000 1.8184 1.8158 1.8055%*
G.200 | 1.849G | 1.849G* | 1.836GG**

* U (z) () — 0.0130 * U (z) ** J(z) — 0.0134
K =20 K =350

3 Utz) Ulz) U_(z) z Uz U+(z) U_(z)
0. 0. 0. 0. 0. 0. 0. 0.
0.100 | 0.1987 | 0.1312 0.1312 0.100 | 0.4812 | 0.2375 0.2375
0.200 | 0.3900 0.2618 0.2617 0.200 0.8814 0.4724 0.4724
0.300 | 0.5688 | 0.3910 0.3909 0.300 | 1.1948 | 0.7022 0.7022
0.400 | 0.7327 | 0.5182 0.5181 0.400 | 1.4436 | 0.9246 0.9246
0.500 | 0.8814 | 0.6428 0.6427 0.500 | 1.6472 | 1.1377 1.1377
0.600 | 1.0160 | 0.7643 0.7642 0.600 | 1.8184 | 1.3399 1.3398
0.700 | 1.1380 | 0.8822 0.8822 0.700 | 1.9657 | 1.5208 1.5297
0.800 | 1.2490 | 0.9962 0.9961 0.800 | 2.0947 | 1.7068 1.7067
0.900 | 1.3504 | 1.1058 1.1057 0.900 | 2.2093 | 1.8705 1.8704
1.000 | 1.4436 | 1.2109 1.2108 1.000 | 2.3124 | 2.0208 2.0207
1.100 | 1.5297 | 1.3114 1.3112 1.100 | 2.4061 | 2.1583 2.1582
1.200 | 1.6094 | 1.4070 1.4068 1.200 | 2.4918 | 2.2835 2.2833
1.300 | 1.6837 | 1.4978 1.4976 1.300 | 2.5708 | 2.3972 2.3970
1.400 | 1.7532 | 1.5839 1.5836 1.400 | 2.6441 | 2.5005 2.5002
1.500 1.8184 1.6653 1.6650 1.500 2.7125 2.5943 2.5939
1.600 1.8799 1.7422 1.7419 1.600 2.7765 2.6796 2.6792
1.700 1.9379 1.8148 1.8144 1.700 2.8367 2.7576 2.7569
1.800 1.9928 1.8832 1.8828 1.800 2.8934 2.8289 2.8281
1.900 | 2.0450 | 1.9478 1.0473 1.900 | 2.9472 | 2.8947 2.8936
2.000 | 2.0047 | 2.0088 | 2.0082 2,000 | 2.9982 | 2.9555 2.9541
2.100 | 2.1421 2.0663 | 2.0656 2.100 3.0468 3.0121 3.0102
2.200 | 2.1874 | 2.1207 2.1198 2.200 | 3.0931 | 3.0651 3.0625
2.300 | 2.2308 | 2.1721 2.1711 2.300 | 3.1374 | 3.1151 3.1115




GRADED pP-I JUNCTION

TaBLE I — Continued

K =20 K =350

s Us) U.i(z) ] U_(z) 5 Uz Uilz) U_(z)
2.400 2.2724 2.2200 2.2197 2.400 3.1798 3.1625 3.1576
2.500 2.3124 2.2672 2.2657 2.500 3.2205 3.2078 3.2010
2,600 | 2.3509 | 2.3113 2.3094 2,600 | 3.2596 | 3.2516 3.2420
2.700 | 2.3880 | 2.3533 2.3500 2.700 | 3.2072 | 3.2043 3.2807
2.800 2.4238 2.3934 2.3905 2.800 3.3335 3.3335% | 3.3172%*
2.900 | 2.4584 2.4318 2.4282
3.000 | 2.4918 | 2.4687 2.4641
3.100 | 2.5241 | 2.5042 2.4984
3.200 | 2.5555 | 2.5384 2.5310
3.300 | 2.5859 | 2.5716 2.5621
3.400 | 2.6154 | 2.6038 2. 5917%*
3.500 | 2.6441 | 2.6352 2.6204**
3.600 2.6720 2. 6660 2. 6483 %*
3.700 | 2.6992 | 2.69064 2.6755%*
3.800 | 2.7256 | 2.7256% | 2.7019**

* U(z) ** [J(z) — 0.0237 * U (z2) *¥* U(z) — 0.0163
K =100 K = 20,0

P U(z) Ui(z) U (z) z U(z) U.(z) U_(z)
0. 0. 0. 0. 0. 0. 0. 0.
0.100 | 0.8814 0.3549 0.3549 0.100 1.4436 0.5146 0.5146
0.200 1.4436 0.7035 0.7035 0.200 2.0947 1.0147 1.0147
0.300 1.8184 1.0398 1.0397 0.300 2.4918 1.4870 1.4870
0.400 | 2.0047 1.3585 1.3585 0.400 2.7765 1.9206 1.9205
0.500 | 2.3124 1.6555 1.6554 0.500 2.9982 2.3079 2.3078
0.600 | 2.4918 1.9278 1.9278 0.600 3.1798 2.6453 2.06452
0.700 | 2.6441 | 2.1739 2.1739 0.700 | 3.3335 | 2.9330 2.0329
0.800 | 2.7765 2.3935 2.3934 0.800 3.4667 3.17406 3.1745
0.900 | 2.8934 2.5875 2.5874 0.900 3.5843 3.37506 3.3755
1.000 | 2.9982 2.75706 2.7575 1.000 3.6895 3.5427 3.5424
1.100 | 3.0931 2.90063 2.9060 1.100 3.7847 3.6823 3.6820
1.200 | 3.1798 3.0361 3.0358 1.200 3.8716 3.8005 3.8000
1.300 | 3.2596 3. 1497 3. 1494 1.300 3.9516 3.9020 3.9012
1.400 | 3.3335 | 3.2498 3.2403 1.400 | 4.0257 | 3.9910 3.9896
1,500 | 3.4023 | 3.3386 3.3379 1.500 | 4.0946 | 4.0702 4.0680
1.600 3.4667 3.4181 3.4171 1.600 4.1591 4.1423 4.1385
1.700 3.5272 3.4900 3.4885 1.700 4.2197 4.2089 4.2024
1.800 3.5843 3.55506 3.5534 1.800 4.276Y 4.2719 4.2604**
1.900 3.6383 3.6161 3.6128 1.900 4.3309 4.3309* | 4.3145%*
2,000 3.6895 3.6723 3.6673
2.100 3.7382 3.7252 3.7175 |
2.200 | 3.7847 | 3.7754 3.7640%*
2.300 | 3.8291 3.8235 | 3.8084**
2.400 | 3.8716 | 3.8704 | 3.8500**
2.500 | 3.9124 | 3.9124* { 3.8017**

*U(z) ** U(z) — 0.0207 *U(z) ¥ U(z) — 0.0164
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TasLe IT — Conlinued

K = 500 K = 1000

P U(z) Ulz) U_(z) z U(z) U () U _(z)
0. 0. 0. 0. 0. 0. 0. 0.
0.050 | 1.6472 | 0.4086 | 0.4086 0.050 | 2.3124 | 0.5671 | 0.5671
0.100 | 2.3124 | 0.8120 | 0.8120 0.100 | 2.9982 | 1.1232 1.1231
0.150 | 2.7125 | 1.2052 | 1.2052 0.150 | 3.4023 | 1.6579 1.6578
0.200 | 2.9982 | 1.5835 | 1.5835 0.200 | 3.6805 | 2.1615 | 2.1613
0.250 | 3.2205 | 1.0427 1.9427 0.250 | 3.9124 | 2.6260 | 2.6257
0.300 | 3.4023  2.2793 | 2.2792 0.300 | 4.0046 | 3.0454 | 3.0451
0.350 | 3.5562 @ 2.5905 | 2.5904 0.350 | 4.2487 | 3.4162 | 3.4158
0.400 | 3.6805 | 2.874G | 2.8745 0.400 | 4.3822 | 3.7378 | 3.7373
0.450 | 3.8072 | 3.1309 | 3.1308 0.450 | 4.4999 | 4.0120 | 4.0114
0.500 | 3.9124 = 3.3505 | 3.3595 0.500 | 4.6053 | 4.2429 | 4.2422
0.550 | 4.0077 = 3.5617 | 3.5616 0.550 | 4.7006 | 4.4358 | 4.4349
0.600 | 4.0046 = 3.7391 3.7390 0.600 | 4.7876 | 4.5068 | 4.5956
0.650 | 4.1746  3.8941 | 3.8940 0.650 | 4.8676 | 4.7316 | 4.7209
0.700 | 4.2487  4.0203 | 4.0201 0.700 | 4.9417 | 4.8458 | 4.8433
0.750 | 4.3177 @ 4.1471 | 4.1470 0.750 | 5.0107 | 4.9438 | 4.9403
0.800 | 4.3822  4.2503 | 4.2501 0.800 | 5.0752 | 5.0297 | 5.0244
0.850 | 4.4428 = 4.3411 4.3408 0.850 | 5.1358 | 5.1066 | 5.0086
0.900 | 4.4090  4.4215 | 4.4211 0.900 | 5.1930 | 5.1774 | 5.1649
0.950 | 4.5540 @ 4.4935 | 4.4930 0.950 | 5.2471 | 5.2471* | 5.2250
1.000 | 4.6053 @ 4.5584 | 4.5577 1.000 | 5.2983 | 5.2083* | 5.2799
1.050 | 4.6541 @ 4.6176 | 4.6167 1.050 | 5.3471 | 5.3471* | 5.3301
1.100 | 4.7006 | 4.6721 | 4.6708 1.100 | 5.3936 | 5.3936* | 5.3767**
1.150 | 4.7450 | 4.7228 | 4.7209
1.200 | 4.7876 | 4.7703 | 4.7675
1.250 | 4.8284 | 4.8152 | 4.8111
1.300 | 4.8676 = 4.8580 | 4.8520
1.350 | 4.9053 | 4.8993 | 4.8904
1.400 | 4.9417 | 4.9396 | 4.9268**
1.450 | 4.9768 | 4.9768* | 4,9619**

* U(z2) ** [T(z) — 0.0149 * {7(z2) #* [7(z) — 0.0170
K = 200.0 K = 500.0

5 U Us(z) U_(s) = Tz Uy(s) U_(z)
0. 0. 0. 0. 0. 0. 0. 0.
0.020 | 2.0947 | 0.3120 | 0.3120 0.020 | 2.9982 | 0.4669 | 0.4669
0.040 | 2.7765 | 0.6226 | 0.6226 0.040 | 3.6895 | 0.9300 | 0.9300
0.060 | 3.1798 | 0.9302 | 0.9302 0.060 | 4.0946 | 1.3856 | 1.3855
0.080 | 3.4667 | 1.2335 | 1.2334 0.080 | 4.3822 | 1.8299 1.8298
0.100 | 3.6895 | 1.5310 | 1.5300 0.100 | 4.6053 | 2.2595 | 2.2504
0.120 | 3.8716 | 1.8214 | 1.8212 0.120 | 4.7876 | 2.6709 | 2.6708
0.140 | 4.0257 | 2.1034 | 2.1032 0.140 | 4.9417 | 3.0613 | 3.0612
0.160 | 4.1591 | 2.3758 | 2.3756 0.160 | 5.0752 | 3.4280 | 3.4278
0.180 | 4.2769 | 2.63756 | 2.6373 0.180 | 5.1930 | 3.7689 | 3.7687
0.200 | 4.3822 | 2.8877 | 2.8875 0.200 | 5.2983 | 4.0825 | 4.0823
0.220 | 4.4775 | 3.1254 | 3.1252 0.220 | 5.3936 | 4.3680 | 4.3678
0.240 | 4.5645 | 3.3501 3.3499 0.240 | 5.4807 | 4.6254 | 4.6251
0.260 | 4.6445 | 3.5613 | 3.5611 0.260 | 5.5607 | 4.8552 | 4.8549
0.280 | 4.7186 | 3.7588 | 3.7585 0.280 | 5.6348 | 5.0588 | 5.0584




TaBLE II — Continued

K = 200.0 K = 5000

z U(z) Uylz) U-(2) 5 U(z) U.(z) U_(z)
0.300 | 4.787G | 3.9425 3.9421 0.300 | 5.7038 | 5.2378 5.2374
0.320 | 4.8521 4.1125 4.1121 0.320 5.7683 5.3946 5.3941
0.340 | 4.9127 | 4.20691 4.2687 0.340 | 5.8290 | 5.5313 5.5308
0.360 | 4.9699 | 4.4128 4.4123 0.360 | 5.8861 | 5.65006 5.6499
0.380 | 5.0239 | 4.5442 4.5437 0.380 | 5.9402 | 5.7547 5.7539
0.400 | 5.0752 4.6640 4.6635 0.400 5.9915 5.8460 5.8450
0.420 | 5.1240 4.7731 4.7725 0.420 6.0403 5.9264 5.9251
0.440 | 5.1705 | 4.8722 4.8715 0.440 | G6.0868 | 5.9978 5.9961
0.460 | 5.2150 | 4.9622 4.9614 0.460 | 6.1312 | 6.0616 6.0594
0.480 | 5.2575 | 5.0440 5.0431 0.480 | G.1738 | 6.1192 6.1163
0.500 | 5.2083 | 5.1185 5.1174 0.500 | G.2146 | 6.1718 6.1678
0.520 | 5.3376 5. 1863 5.1850 0.520 G.2538 6.2201 6.2147
0.540 | 5.3753 | 5.2483 5.2467 0.540 | G.2016 | 6.2649 6.2577
0.560 | 5.4117 | 5.3051 5.3033 0.560 | 6.3279 | 6.3069 6.2970
0.580 | 5.4468 | 5.3574 5.3552 0.580 | 6.3630 | 6.3466 6.3320%*
0.600 | 5.4807 | 5.4057 5.4030 0.600 | 6G.3969 | 6.3843 6.3668%*
0.620 | 5.5134 | 5.4506 5.4473 0.620 | 6.4297 | 6.4200 6.3996**
0.640 | 5.5452 | 5.4924 5.4884 0.640 | 6.4615 | 6.4557 G.4313**
0.660 | 5.5760 5.5316 5.52067 0.660 6.4922 6.4902 G.4621**
0.680 | 5.6058 | 5.5085 5.5624 0.680 | 6.5221 | 6.5221* | G.4920**
0.700 | 5.6348 | 5.6034 5.5958
0.720 | 5.6630 5.063065 5.6270
0.740 | 5.6904 5. 06682 5.6562
0.760 | 5.7170 | 5.G986 5.6834** |
0.780 | 5.7430 | 5.7278 5. 7004 **
0.800 | 5.7683 | 5.7561 5. 7347+
0.820 | 5.7930 | 5.7836 5.7504**
0.840 | 5.8171 | 5.8105 5.T835%*
0.860 | 5.8406 5.8370 5.8070**
(. 880 | 5.8636 5.8636* | 5.8300%*

* UU(z) ** [7(z) — 0.0336 * Ul(z) ** T7(z) — 0.0301
K = 1000.0 K = 2000.0

5 J Uz) Ui(z) f U_(z) H Uz Ui(z) U_(3)
0. 0. 0. 0. 0. 0. 0. 0.
0.020 | 3.06895 0.6277 0.6277 0.010 3.6895 0.4202 0.4202
0.040 | 4.3822 @ 1.2477 1.2476 0.020 | 4.3822 | 0.8384 0.8384
0.060 | 4.787G | 1.8523 1.8522 0.030 | 4.7876 | 1.2527 1.2526
0.080 | 5.0752 2,4342 2.4341 0.040 5.0752 1.6611 1.6611
0.100 | 5.2083 | 2.9864 2.9863 0.050 | 5.2983 | 2.0619 2.0618
0.120 | 5.4807 | 3.5027 3.5025 0.060 | 5.4807 | 2.4530 2.4529
0.140 | 5.6348 | 3.9777 3.9775 0.070 | 5.6348 | 2.8327 2.8326
0.160 | 5.7683 | 4.4075 4.4073 0.080 | 5.7683 | 3.1992 3.1991
0.180 | 5.8861 | 4.7899 4.7897 0.090 | 5.8861 | 3.5510 3.5509
0.200 | 5.9915 | 5.1245 5.1243 0.100 | 5.9915 | 3.8866 3.8865
0.220 6.086G8 5.4128 5.4126 0.110 (.0868 4.2046 4.2044
0.240 | 6.1738 | 5.6582 5.6579 0.120 | 6.1738 | 4.5039 4.5038
0.260 | 6.2538 | 5.8G49 5.80G45 0.130 | 6.2538 | 4.7838 4.7837
0.280 | 6.3279 | 6.0381 6.0376 0.140 | 6.3279 | 5.0438 5.0436
0.300 | 6.3969 6.1831 6.1825 0.150 | 6.3969 5.2834 5.2833
0.320 | 6.4615 | 6.3049 6.3041 0.160 | 6.4615 | 5.5030 5.5028

1597



1598 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1960
Tasre II — Continued
K = 1000.0 K = 2000.0

z U(s) Uslz) U_(z) z U(z) U(z) U_(s)
0.340 | 6.5221 | 6.4082 | 6.4071 0.170 | 6.5221 | 5.7029 | 5.7027
0.360 | 6.5793 6.4967 6.4952 0.180 6.5793 5.8838 5.8836
0.380 | 6G.6333 (.5738 6.5716 0.190 6.6333 6.0466 6.04064
0.400 | 6G.G6846 6.6420 6.6390 0.200 6.6846 6.1926 6.1924
0.420 | 6.7334 6.7036 6.6991 0.210 6.7334 6.3231 6.3228
0.440 | 6.7799 6.7601 6.7535 0.220 6.7799 6.4394 6.4391
0.460 | 6.8244 (6.8133 6.8033 0.230 6.8244 G.5430 6.5426
0.480 | 6.8669 6.8644 6.8493 0.240 6.8669 6.6354 6.6349
0.500 | 6.9078 6.9078* | 6.8919 0.250 6.9078 6.7178 6.7172
0.520 | 6.9470 6.9470* | 6.9315%* || 0.260 6.9470 6.7916 6.7909
0.270 6.9847 6.8578 6.8570
0.280 7.0211 6.9176 6.9166
0.290 7.05862 6.9719 6G.9707
0.300 | 7.0001 | 7.0215 | 7.0200
0.310 7.1229 7.0672 7.0653
0.320 7.1546 7.1094 7.1071
0.330 7.1854 7.1489 7.1458
0.340 7.2152 7.1859 7.1821
0.350 7.2442 7.2210 7.2161
0.360 | 7.2724 | 7.2545 | 7.2481
0.370 7.2998 7.2867 7.2785
0.380 7.3265 7.3179 7.3072
0.390 7.3524 7.3485 7.3345
| 0.400 7.3778 7.3778% | 7.3604

0.410 7.4025 7.4025% | 7.3851%*
*U(z) ** U(z) — 0.0155 *U(z) ** J(z) — 0.0173

K = 5000.0 K = 10000.0
3 Ul(z) U.lz) U_(z) 3 U(z) Us(z) U_(z)
0. 0. 0. 0. 0. 0. 0. 0.

0.010 | 4.6053 0.6118 0.6118 0.005 4.6053 0.4051 0.4050
0.020 | 5.2983 1.2187 1.2187 0.010 5.2983 0. 8089 0.8089
0.030 | 5.7038 1.8157 1.8157 0.015 5.7038 1.2102 1.2102
0.040 | 5.9915 | 2.3981 | 2.3981 0.020 | 5.9915 | 1.6078 | 1.6078
0.050 | 6.2146 | 2.9610 | 2.9610 0.025 | 6.2146 | 2.0005 | 2.0005
0.060 | 6.3969 | 3.4009 | 3.4998 0.030 | 6.3969 | 2.3870 | 2.3870
0.070 | 6.5511 4.0105 4.0104 0.035 6G.5511 2.7662 2.7662
0.080 | 6.6846 | 4.4889 | 4.4888 0.040 | 6.6846 | 3.1368 | 3.1368
0.090 | 6.8024 | 4.9318 | 4.0317 0.045 | 6.8024 | 3.4977 | 3.4977
0.100 | 6.9078 5.3367 5.3366 0.050 6.9078 3.8478 3.8477
0.110 | 7.0031 | 5.7021 | 5.7020 0.055 | 7.0031 | 4.1860 | 4.1859
0.120 | 7.0901 6.0276 6.0275 0.060 7.0901 4.5112 4.5111
0.130 | 7.1701 G.3139 6.3137 0.065 7.1701 4.8226 4.8225
0.140 | 7.2442 G.5629 G.50627 0.070 7.2442 5.1193 5.1192
0.150 | 7.3132 6.7774 6.7772 0.075 7.3132 5.40006 5.4005
0.160 | 7.3778 6.9607 6.9605 0.080 7.3778 5.6659 5.6668
0.170 | 7.4384 7.1169 7.1166 0.085 7.4384 5.9149 5.90148
0.180 | 7.4955 7.2496 7.2492 0.090 7.4955 G.1472 6G.1472
0.190 | 7.54906 7.3620 7.3622 0.095 7.5496 6.3630 G.3629
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TasLE II— Concluded

K = 5000.0 J K = 10000.0
1]

: ) v | Ui | s e) U.02) U_(z)
0.200 | 7.6009 | 7.4595 7.4589 ‘ 0.100 | 7.6009 | 6.56G22 6.5621
0.210 | 7.6497 | 7.5431 7.5424 | 0.105 | 7.G497 | 6.7453 6.7452
0.220 | 7.6962 | 7.6161 7.6151 | 0.110 | 7.6962 | 6.9128 6.9126
0.230 | 7.7407 | 7.6805 7.6792 0.115 | 7.7407 | 7.0653 7.0652
0.240 | 7.7832 | 7.7382 7.7364 0.120 | 7.7832 | 7.2038 7.2036
0.250 | 7.8240 | 7.7907 7.7882 | 0.125 | 7.8240 | 7.3290 7.3289
0.260 | 7.8633 | 7.8390 7.8355 0.130 | 7.8633 | 7.4421 7.4419
0.270 | 7.9010 | 7.8841 7.8792 0.135 | 7.9010 | 7.5440 7.5438
0.280 | 7.9374 | 7.9270 7.9200 0.140 | 7.9374 | 7.6358 7.6355
0.290 | 7.9725 | 7.9G85 7.9583 0.145 | 7.9725 | 7.7184 7.7181
0.300 | S.0061 | S.0064* | 7.9947 | 0.150 | 8.0064 | 7.7929 | 7.7926
0.310 | $.0392 | S.0392* | 8.0202 | 0.155 | 8.0392 | 7.802 | 7.8508
0.320 | 8.0709 8.0709* | 8.0623 1.160 8.0709 7.9212 7.9207
0.330 | 8.1017 8.1017* | 8.0939 0.165 8.1017 7.9765 7.9760
0.340 | 8.1315 | 8.1315* | 8.1243 0.170 8.1315 8.0270 8.0264
0.350 | 8.1605 8.1605*% | 8.1535%* || 0.175 | 8.1G05 8.0733 8.0726

0.180 | 8.1887 8.1159 8.1151
0.185 | 8.2161 8.1554 8.1543
0.190 | 8.2428 | §,1921 8.1908
0.195 8.2687 8.2265 8.2249
0.200 | 8.2040 | 8.2589 8.2569
0.205 | 8.3187 8.2806 8.2871
0.210 | 8.3428 | 8.3187 8.3157
0.215 | 8.3664 8. 3466 8.3420
0.220 | 8.3894 | 8.3735 8. 3688
0.225 | S.4118 | 83995 | 8.3930
0.230 | 8.4338 | 8.4248 8.4174
0.235 | 8.4553 8.4496 8.4402
0.240 | 8.4764 8.4740 8.4622
0.245 8.4970 8.4970* | 8.4833
0.250 | 8.5172 | 8.5172* | 8.5036**
*Ulz) ** Uz) — 0.0070 *Ulz) ** U(z) — 0.0135

They have heen rounded off and retabulated from the original IBM re-
sults, which were at shorter intervals and nominally to eight significant
figures.

[t goes without saying that one must be wary of roundoff and trunca-
tion errors when tryving to integrate a stiff differential equation numeri-
cally. Ioven if one could start with exactly the right initial conditions,
accumulated errors would shift the computation to a neighboring inte-
gral curve which would ultimately diverge rapidly from the desired
solution. Strietly speaking, we cannot even be sure of the upper and
lower bounds computed by stepwise integration of the differential equa-
tion, since roundoff errers could make two numerical solutions with
nearly equal initial slopes cross each other and tend to infinity in the
wrong directions. (No such crossing was observed in the present study. )
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Unfortunately it is not easy, especially for the Runge-Kutta method,
to obtain error bounds which are both rigorous and realistic. We there-
fore fell back on the usual test which is made to judge whether the error
in a numerical integration is tolerable; namely, we ran the integration
again with a double interval and compared results. This test was ap-
plied to most of the upper and lower bounds included in the tables. The
difference between the two integrations was found to increasze rapidly
toward the end of the range, but always to ke small compared to the
difference between upper and lower bounds. In the worst case (K = 0.1)
the difference between the two integrations for a given bound was less
than one-tenth of the difference between upper and lower bounds; and
for larger K the discrepancies were considerably smaller. We therefore
feel quite confident that the tabulated results really are upper and lower
bounds for the exact solution.

The range of the caleulations shown here was chosen to bridge the
gap between available approximations for small K (the “neutral” case)
and large K (the ‘“‘space-charge” case). For K < 0.1 the present method
begins to run into instability trouble, though it ecould probably he mod-
ified to work for smaller values of K in the unlikely event that such cal-
culations are wanted. T'or large K, on the other hand, there is no indi-
cation that K = 10,000 marks the upper limit of what can be handled
with this technique.

In summary, then, a program has been written for the IBM 704 which
will produce in a few minutes, for any value of K between 0.1 and some-
where above 10,000, very close upper and lower bounds for the potential
distribution in a linearly graded p-n junction. A minor modification of
the program would permit similar calculations for a junction with any
reasonable distribution of fixed charge. So far as numerical techniques
are concerned, therefore, the problem may be regarded as completely
solved.

APPENDIX B

Numerical Capacitance Calculations

The neutral capacitance of a junction of normalized width z; is given
by (23) of the text as

_ Cu _ 6[(21 ,K) —U.l]
Cu - K*[I(ZI’K) SMTgK) +2’(6 ] (Bl)
where
z]
(2, K) = fo IR g (B2)
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The value of 7 may be calculated numerically from Table II, which
gives [/(z, K) for 16 values of K ranging from 0.1 to 10,000. Extension
to arbitrarily large values of z; is straightforward, since for sufficiently
large z the tabulated functions differ by at most a constant from the
asymptote U(z, K) = sinh 'Kz, If U is replaced by U — e for
z = z = 0, where e is constant, then provided that z, = z and U is
continuous at zg, the expression for 7(z;, K) becomes

20 €§rr T P
1(z,K) = fu ¢ ldz + %ﬁﬂ 4 % % (B3)
When K is small (the neutral case), then U &~ U for all z, and (B1)
and (B3) yield the approximation (26).

The numerical evaluation of (,/Cy was carried out by evaluating
I(z, K) for each value of K using Simpson’s rule. The function log [
was then fitted at three adjacent values of K by a quadratic polynomial
in log K, and the derivative of 7 was found approximately by differ-
entiating the polynomial at the middle value of K (except, of course,
at K = 0.1 and K = 10,000, where the end value had to he used). The
value of z; was chosen to make Uz, , K;) = 10, where K, is the point
at which the derivative is evaluated. The value of z; is supposed to be
held constant during the differentiation.

Table III shows the values found for C',/Cs as a function of K. These
values are actually averages of the results found by taking for U(z, K)
the upper and lower bounds given in Table II. The two numbers aver-
aged differed from each other by less than 2 per cent in all cases, and
usually by less than 1 per cent. As is well known, numerical differentia-

TABLE IIT — NorMALIZED CAPACITANCES

K Ca/Co ‘L Cp/Co
0.1 ‘ 432 0.423
0.2 ‘ 171 0.608
0.5 ‘ 50.5 0.889
1 ‘ 20.1 1.052
2 ‘ 8.05 1.139
5 \ 2.44 1.156

10 1.02 1.123

20 0.436 1.082

50 } 0.152 1.020

100 0.0721 0.972
200 0.0360 0.931
500 [ 0.0153 0.883
1000 | 0.00834 0.850
2000 | 0.00468 0.822
5000 0.00225 0.790
10000 0.00132 0.762
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tion magnifies the errors in inaccurate data. One may hope, however,
that the values obtained for (', are aceurate to about 1 per cent. Com-
parison with the approximate formula (26) is shown in Fig. 6. Agree-
ment is good for K < 5, but the approximation gives too low a value
for (', when K is large.

The space-charge capacitance is given by (24) as

v C}] as _
Co = [3 3oz ) S], (B4)
where
S = U'(0, K) (B5)

is the initial slope of the potential function. The initial slope is given, as
a function of K, to five significant figures in Table 1. Logarithmic differ-
entiation, using a three-point interpolating function, leads to the values
of (,/Cy shown in Table III (the difference between the upper and lower
hounds of the slope rarely affects the third decimal place). Again the
accuracy is not precisely known, but is presumed to be 1 per cent or
better.
For the neutral case, say K < 0.2, one has S =~ K and
O, = 200K, (BG6)

When K >> 1, the initial slope according to the space-charge approxi-

madtion is
. = (SUm Szﬂl Um)” (BT)

where U,, is defined in terms of K by (28). A straightforward if some-
what laborious substitution of (B7) and (28) into (B4) leads to

30U, coth U, — 1’

as in (27). The approximation to C,/Cy given by (B8) is plotted against
K in Fig. 6. It is seen that the approximate value of €, lies above the
correct value for K less than about 6, and below it, by amounts ranging
up to nearly 10 per cent, for larger K.

(B8)

Cy
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