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The properties of electron cyclotron and synchronous waves in varying
magneltic ficlds are discussed. Magnelic field variations in space and {time
arc considered. The problem s treated by establishing the wave excitation
from knowledge of the macroscopic beam motion. It is shown that the cyclo-
tron wave is coupled to the synchrenous wave and that both waves are al-
ways amplified in a changing ficld. Unless the charge density is an appre-
ciable fraction of the full Brillowin value, however, the individual electron
orbils will be amplified along with the waves causing beam expansion.

The phase velocity of the waves is shown lo be approximately independent
of space charge. In the case of a spatially varying field, one of the waves
must be fast, carrying positive kinetic power, and the other slow, carrying
negative kinelic power. The total kinetic power carried by the two waves is
conserved. When the magnetic field varies in time, the kinetic power of the
twao waves is not conserved but the Manley-Rowe relation is satisfied. When
the field varies al a rate greater than the signal frequency, both modes may
carry positive kinetic power.

I. INTRODUCTION

The electron eyelotron wave has received a great deal of attention in
the past year, since it forms the basis of a successful beam-type traveling-
wave parametric amplifier. As was first demonstrated by Adler et al.,' >3
the fast cyelotron wave is actively coupled to a fast cyclotron wave idler
by the action of a high-frequency transverse electric quadrupole field.
It was shown by Gordont-® that space periodic quadrupole fields actively
couple a fast and slow eyclotron wave.

The purpose of this paper is to demonstrate that cyclotron waves will
also be amplified in varying magnetic fields. It will be shown that the
idler mode associated with the eyelotron wave is a synchronous wave
associated with the spatial configuration of the beam. Analogous to the
quadrupole case, pumping in a time-varying magnetic field with the
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pump frequency greater than the signal frequency leads to active cou-
pling of two fast modes. When the pump frequency is lower than the
signal frequency one mode must be fast and the other slow. Pumping in
a spatially varying magnetic field will be seen to correspond to the limit-
ing case of zero pump frequency.

In Section II the eyclotron and synchronous waves will be described
and some simple points of view established. Then the results of an earlier
analysis,® in which a general solution for charged particle orbits in
arbitrarily varying magnetic fields is given, will be utilized to determine
the properties of coupled cyclotron and synchronous waves. The analysis
is done in such a way as to include the possibility of pumping with time-
and space-varying fields and succeeding sections will be devoted to each.
Space-charge effects will be shown to be significant in preventing beam
expansion.

II. CYCLOTRON AND SYNCHRONOUS WAVES

A wave description of the motion of an electron beam is appropriate
only to the extent that it can describe the energy exchange between the
beam and the electromagnetic field. In the case of transverse beam waves,
the beam may be thought of as made up of thin dises with no longitudi-
nal coupling. The appropriate wave variable is the center-of-mass of the
dise. The validity of this model is justified by considering the significant
coupling term between the electromagnetic field and the beam, namely
the time average value of [J-Ed’r, in which J is the electron conduction
current and E is the wrF electric field. In a given unit-volume cross
section of the beam, the significant quantities which contribute to the
time average value are

N
JE = —¢ E (rJEr + viri'gradflf"z):
=1

in which N is the electron density, v, is the z-directed drift velocity and
r; is the transverse coordinate of the jth electron. It is assumed that the
z-axis of the coordinate system is at a maximum of the transverse field
and a zero of the longitudinal field. For a thin beam placed along the
z-axis, E, and grad,E, are constant over the cross section of the beam to
within terms that are of order (8r;)* < 1, in which g is the wave prop-
agation constant. To the same degree of approximation, variations in
the drift velocity resulting from longitudinal forces also may be neglected
and »; may be assumed to be equal to the unperturbed drift velocity.
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Hence, the quantities
N N
4 ; _ ]
R=N"'Xr; and R=NIZIJ-,
Jj=1 j=1

i.e., the position and velocity of the center-of-mass of the disc, are
sufficient to describe the interaction. Since the external transverse forces
on each electron in the eross section are identieal and the internal forces
between electrons cancel exactly, the motion of the dise is exactly the
same as that of a single electron and is independent of the internal mc-
tions of the electrons within the disc or the beam density. Hence, we
may conclude that the transverse waves are independent of the beam
space charge.

In the uniform coupler fields the internal motion of the electrons with
respect to the center-of-mass proceeds as if no external forces were ap-
plied. In pump fields the significant forces vary over the cross section
of the beam. As a result the individual electron trajectories measured in
the center-of-mass coordinate system may also be pumped. This can be
avoided by making the beam sufficiently dense that the internal mo-
tions of the electrons within the beam are sufficiently different from the
motion of the center-of-mass itself. This point will be discussed in detail
later.

In the earlier paper,® it is shown that the position of a charged particle
in a plane transverse to the applied magnetic field is conveniently de-
seribed in terms of a complex vector quantity r = =z 4+ @y = r, + 1, ,
in which « and y are the rectangular coordinates of the charged particle
in the transverse plane. The quantity r, represents the instantanecous
center of curvature of the charged particle orbit, called the guiding
center, and r, , called the radius vector, denotes the instantaneous radius
of curvature of the trajectory and the position of the particle with re-
spect to the guiding center (see Fig. 1). In a uniform magnetic field,

iwel(t—tg)
I = Iy 4+ e, (1)

in which r,0 and r, are the appropriate values at ¢ = {, and o, is the
eyclotron frequency. The motion of the beam dise is precisely the same.
The four independent quantities, x, &, ¥ and 3, of the beam disc center-
of-mass make possible four transverse waves on the electron beam.
These are the fast and slow cyclotron and synchronous waves. It will be
seen that the radius vector and guiding center of the beam disc are the
appropriate quantities to express the eyclotron and synchronous wave
excitation of the beam.

The cyclotron wave is excited by a circularly polarized transverse
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Ly =

Fig. 1 — Particle coordinates for motion in a magnetic field directed along the
z-axis.

electric field. The electric vector may rotate in the same or the opposite
direction to the natural eyclotron motion of the dise. If the exciting
electrie field has a signal component at a frequency w, then we may say
that w, is positive if the electrie field rotates with the dise and is nega-
tive if the electric field rotates in the opposite direction (see Fig. 2).
The initial phase of the field-excited rotation of the disc depends on
the phase of the field at the time of entry. As a result, a cyclotron wave
excitation at a signal frequeney w, can be described in the following way:
Each dise rotates about the axis with an angular velocity w, . An observer,
standing at a fixed plane, will note that the phase angle of rotation of
successive discs as they pass through the plane will change af a rate w,
because of the spatial twist of the beam. If w, is positive, the excitation
is a fast cyclotron wave. The slow wave is associated with a negative
value of w,. If a cyclotron wave excitation exists, the phase angle of
rotation of any dise which passes some plane, say z = 0, at a time
{ = {o can always be written as w,lp . The radius vector of the rotational
motion ean then be written

Ry = Rue™", (2)
in which R is a real number representing the radius of the dise orbit.

Thus the radius vector of any dise along the beam, with arbitrary 4,
can be written for a uniform static field as

g (1—1p) o (t— .
Ry, = Rype™ 0 = Ry’ (3)
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in which we have used the relation, ¢ — #, = z/v, v being the electron
drift velocity. Clearly this isa wave motion for which v, = wo/(w, — w,)
is the phase velocity. Note that when w, is positive, v, is either greater
than » or negative, and the wave is said to be “fast.” When o, is nega-
tive, v, is always less than » and the wave is said to be “slow.”

In TIig. 2 the eyclotron wave is assumed to be in synchronism with a
circularly polarized electromagnetic field of phase velocity u. The Dop-
pler-shifted frequency in the frame of reference moving with the beam
is w,(1 — v/u). Equating v, = w yields o, = w,(1 — v/u); hence, syn-
chronism implies that cyclotron resonance oceurs at the Doppler-shifted
frequency and the rotating disec remains in phase with the rotating
uniform electrie field, ¥, .

The longitudinal forces on the rotating disc arise from the uniform
transverse magnetic field, H, , and longitudinal electric field, £}, , which
increases with distance from the axis. The forces excited by these fields
are proportional to the rotational velocity and radius respectively.
Since the electromagnetic fields in free space are related by Maxwell’s
equations, and the transverse velocity and radius are related by the
cyclotron frequency, the changes in rotational and drift energy of each
dise are uniquely related independent of the structure propagating the
cleetromagnetic wave.

Fig. 2 — Beam motion for (a) fast and (b) slow eyclotron waves excited at a fre-
quency w.
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Tach disc experiences precisely the same forces and hence undergoes
the same changes in rotational and drift energy. As a result, the total
power carried by the beam changes. The power change is called the
kinetic power of the beam wave and for the cyclotron wave it has two
components:

I);-_,_ = %m(Ig/e)wfRf,
l)f.-” = %m(]o/e)wc(wg - (rJ,;)Rbg,

in which I, is the beam current. The total kinetic power P, = P, +
Py has the value™®?

(4)

P}.— = %m(fg/e)w,wcl?f. (5)

The longitudinal kinetic power of the slow cyclotron wave is always
negative (w, < 0) and larger in magnitude than the transverse kinetie
power. The longitudinal kinetic power of the fast cyclotron wave may
be positive or negative depending upon whether the fast wave is a for-
ward wave (w, > «,) or a backward wave (w, < w.). When it is negative
its magnitude is always less than that of the transverse energy. When
w, = w,, the longitudinal part of the kinetic power is zero since the
phase velocity becomes infinite. Such a wave is excited by electromag-
netic waves of infinite phase velocity which do not have a longitudinal
component of electric field nor transverse magnetic field. In this limit
wyw. Ry’ becomes just the transverse velocity squared.

Now consider the average position or guiding center of the beam discs.
Suppose that the guiding centers of the discs are correlated in such a
way that we may write

—fwgyl
Ry = Rype teato
R Dgfz'w,(t—zfv)
g

(6)

for the dises which pass the plane z = 0 at ¢ = #. This represents a
wave motion with phase velocity equal to v. It implies that the beam is
shaped in the form of a helix which translates forward with a velocity v
without rotation. To an observer standing at a fixed plane, the phase
angle of position with respect to the axis of the helix of each successive
dise, as it passes the plane, changes at a rate —w, even though the discs
themselves may not be executing orbital motion. When «, is positive
the dises form a right-handed or clockwise helix in space; when w, is
negative the dises form a left-handed or counterclockwise helix, as shown
in Fig. 3. The excitation associated with such a spatial configuration is
known as a synchronous wave.
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The synchronous wave is also excited by circularly polarized electro-
magnetic fields. Synchronism requires v = u, so that the Doppler-shifted
frequency as observed by the drifting dises is zero and they remain in
phase with the exeiting field always. Hence the dises will drift radially
outward with a velocity ¥ ./B, in which B is the pc magnetic flux den-
sity, in a direction depending upon the phase of the field £, . When
the field is removed, the discs stop drifting outward and there is no net
change in the transverse energy. The change in drift energy comes from
the longitudinal electric field. The kinetic power is given by’*’

P, = %m(l};/e)wgweﬁgg. (7)

The synchronous wave which forms a left-handed helix carries nega-
tive kinetic power, while the wave which forms a right-handed helix
earries positive kinetic power, as can be seen from Ifig. 3. Consequently,
a convention of positive frequencies referring to positive kinetic power
waves and negative frequencies to negative kinetic power waves is
pertinent to both eyclotron and synchronous waves. Henceforth, the
terms ‘“‘fast’ and “slow” synchronous waves will be used in reference to
their kinetic power, although the phase velocity of both waves is always
synchronous with the drift velocity of the beam.

The kinetic power carried by the synchronous wave is proportional to

Fig. 3 — Beam motion for (b) fast and (a) slow synchronous waves excited at
a frequency w.
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R, In this case the guiding center plays the role that the radius vector
plays in the cyclotron wave. For either wave the important quantity is
the transverse displacement associated with the disc as has been shown
by Bobroft” [see Eq. (50)], and more recently by Siegman® and Kliiver.’

III. AMPLIFICATION IN SPATIALLY VARYING MAGNETIC FIELDS

Suppose that the initial excilation of the beam at z = z, consists of a
cyclotron wave of frequency w, with normalized amplitude a.o(e,),

aeolw,) = | wweo |* Ryoe™"
. (8)
= l Wsled t- Rbﬂ
and a synchronous wave of frequency w, with amplitude a,o(w.),
asﬁ(wm) = i WmWen Ii -E-“u[:@_ﬁ.,’!u
(9)

= I WmWeo |} Rn(] .

The phase of a. and a., at z = z is included. The longitudinal magnetic
field is assumed to be azimuthally symmetric but varying with both z
and t. The eylotron frequency at z = z, has the value w,o . The purpose
of the following analysis will be to find the amplitude of the cyelotron
and synchronous waves at some plane z > z . It is not difficult to see
that the eyclotron and synchronous waves are coupled by a changing
magnetic field. In Ref. 6 it is shown that the radius vector and guiding
center are coupled by field variations. In particular, if we make use of
(29) of the Appendix of this paper, which describes the transverse
trajectory of the disc for an azimuthally symmetric but otherwise ar-
bitrarily varying magnetie field, and the definition of the instantaneous
radius veetor and guiding center, R, = R/iw, and R, = R — R, . (see
Fig. 1), it follows that

dc(ma) - 'I:Wcﬂc(wﬁ) = e EJ‘F‘ a'a(wm)a
2w, | W
. ; (10)
ds(wm) = e ﬁ ac(mn)l
2w, | w,
in which a; = | wsw, l% Ry and a; = | wmeo, |%Rﬂ . The dot denotes the total

time derivative. It is assumed that w. # 0. These equations are in the
coupled-mode form. The coupling disappears for a constant magnetic
field, o, = 0.

The solutions of (10) become somewhat more transparent if use is
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made of the solutions of (29) for the quantities R, and R, , which are
given in Ref. 6 and are included in the Appendix:

R, = (wo/w.) [RuF*e™ — R,XF),
R, = (w/w.) ' [—Ruo( XF)*e™ + R,oF].

Tor a static field the quantities X, F and ¢ are functions of z which are
dependent only on the spatial variation of w, between z; and z and the
drift veloeity of the dises. Their values are determined from (31), (32)
and (33). For a spatially varying field, (31) takes the form

dX dw(2)X d In [we(2)/we
dz e(z) dz

with X(z,) = 0. The quantities F and ¢ are obtained from the integrals

F=ex1)(—%jz{X(g’) Md(_z’)/_“’"“]} ) (13)

w.(2")
- [ :
o) (1
In (12), (13) and (14), v ean be considered to be independent of z
for the small-signal case in the absence of static longitudinal electric

(11)

+31(1 — X% =0 (12)

and

fields. If we choose w,, = —e,, then we may rewrite (11) as
| wowe | Ry = | wwen | [F*e Ripe™* " — XFRe™ "), )
I Wytde |5 R, = I W0 |% [— (XF.)*(’-thuuem'f" + FRUDE{%'D], )
which can finally be written in the form
c(w,) ¥’ —XF || aco(w,) _
a,(—w,) —(XF)*e™® r Ao — wy) (16)

We see that, if w, > 0, the fast eyelotron wave is coupled to the slow
synchronous wave. The determinant of the transformation has the value
| F[*(1 = | X [*)e™, which, in view of (34), has the value ¢*. Equation
(35) shows that the total kinetie —Ja. = |aw — | awl,
of the two waves is conserved. The quantity | F |* represents the kinetic
power gain of each wave and | XF |* represents the kinetic power gain
of one of the waves as a result of an initial exeitation of the other.
Fquation (34) expresses the conservation of kinetic power and the
faet that | # | = 1 and | X | < 1. Thus, one may conclude that varia-
tions of any kind will always amplify existing eyclotron or synchronous




1612 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1960

waves. If both waves exist coherently, one fast and the other slow, then
field variations may deamplify the waves. Inspection of (12) shows that,
when . is a slow function of z, then X will remain very small and F
must remain very close to unity. Henece, for slow changes in the magnetic
field strength the kinetic power of each wave is conserved.

Tt follows that the noise temperature of the eyclotron and synchronous
waves is invariant under slow changes in the magnetic field strength.
Solutions for X and F for monotonically changing fields are given in
Ref. 6. Under the appropriate conditions, X returns periodically to zero.
Hence, the noise temperature of the waves may be preserved even for
rapid changes in the field if the contour is designed properly.

Sinusoidal field variations of the form w = w1 + A sin 27z/L] lead
to exponentially growing values of F if 2mv/L = w. . Thus, large amplifi-
cation is also possible.

IV. AMPLIFICATION IN TIME-VARYING FIELDS

In time-varying fields the quantities X and I will depend upon the
initial or entry phase of the dise. An example will be given to demon-
strate the phase dependence. It is assumed that the varying component
of the magnetic field is a traveling wave, so that one may write

we = weoll + A sinfw,t — Bp(z — 20)]}, (17)
in which w, is the pump frequency and 8, the pump propagation con-
stant. The field near the axis of a eylindrical TISy; mode structure is

appropriate for this case. It is assumed that A < 1, so that one may
rewrite (31) as

X — dwoX + 3A(w, — Bpv)coswgt — By(z — z0)] = 0, (18)

in which terms in A® have been neglected. This corresponds to very
weak coupling. Equation (16) has the solution, using the boundary
condition X(&) = Oand 2z — 20 = v(¢{ — t),

X(r) = —iA(w, — pr}ei“’““’f coslw, (7' + 1) — Br'le " dr', (19)
(1]

in which + = { — #; is the elapsed time in the pump field. Performing
the integration, one obtains

i(wp—Bpr—weq)T . 1

X(r) = ~1le, — 8a) |

1(wp — Bpl — we)

—i (wp—Bprtweo)T
e r ¢ -1 —fupln] Bl'w:ur

iy — B + wa)

(20)
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In the limiting case w, — B = weo, WaT > 1, one can approximate
(20) by

TwegT

eiuplﬁ . (21)

X = —1Awqre

It ean be seen that X is a function of the time the electron enters the
pump field and increases linearly with drift time. In this limit it can be

shown that
F oo fBeer!d? (22)

which satisfies (34), and that ¢ = wer,
In this cage, choosing w, = w, — s, (11) takes the form

l Wl PRE: = F*(’-fp l Wle P Rm@iwnln
—| wy/wm {% XF, Rgue_m"‘r" | wmweo l% ,
| wnee 'Ry = — | wm/e |F (XF)** | o | Ruse™"

1 — W
+ F | onwe | Ree™ ™™,

Notice that the combination Xe “m" has a dependence on {, of the

—iwm ty

form ™" and X*¢™* has a dependence of the form e . Conse-
quently, one may write
a.(w,) F*e'* —lw/an | XF| | aclw,)
- Y vy #a ) , (24)
as(wm) '—‘ wm/wu h (-\F) e F (1) w,,,)

and one may note that the eylotron wave of frequency w, is coupled to
the synchronous wave of frequency wn = w, — .. If w, > w. >0
then w, > 0 and both waves may carry positive kinetic power. Both
may also carry negative power when w, < w. < 0.If | wp| <|ws| onewave
must carry negative kinetic power. Notice first that the transformation
represented by (24) reduces to the transformation for the space-vary-
ing case given in (16) in the limit @, = 0, @wm = —w, . The transforma-
tion still has a determinant of magnitude unity because of the condition
given in (34). The significance of this fact can be understood from the
following considerations. One may write for the kinetic power output
at the signal frequency for unit power input, Py, = | F " and the power
output at the idler frequency as Pr. = | wm/w. | | XF °. Note that the
Manley-Rowe relationship” for a three-frequency reactive enegry con-
verter

(Pis — 1) — | @wo/wm | Pk = 0 (25)

is satisfied as a result of the relationship given in (34).
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Equation (34) has been seen to play a major role in both stationary
and time-varying field pumping. As a result of this condition the kinetic
power is conserved in the coupling of a fast (slow) eyclotron wave and
a slow (fast) synchronous wave by a spatially varying static magnetic
field. In the case of high-frequency pumping, (34) is equivalent to the
Manley-Rowe relationship. In fact, conservation of kinetic power and
the Manley-Rowe relationship are the same in the special case w, = 0.
In Ref, 6 it is shown that the condition expressed by (34) is merely a
statement of the fact that the momentum canonically conjugate with
the angular coordinate is time independent. This implies that the con-
servation of angular momentum of the total system, beam plus field, and
the Manley-Rowe condition are analogous. In line with this fact one
may note that the constraints which were placed on the solution,
wp — B = we and w,, = w, — w,, in combination with the unperturbed
propagation constants of the eyclotron and synchronous waves, 8, =
(wy — wo)/v and B,, = w,/v, yield the more commonly known con-
straints

wy + wn = w,,

Bs + Bm =IBJJ-

It is interesting to note that there are only two coupled modes in the
space-varying (w, = () pumping independent of the degree of coupling,
whereas in the high-frequency case there are two modes only in the
limit of weak coupling. As the coupling is made stronger, inspection
shows that sidebands of mixing between multiples of the pump fre-
quency and the signal frequeney are introduced. The idler waves will
be hoth synchronous and cyclotron waves, but the most important waves
will Le those discussed there. Clearly the difference arises because there
can be no multiples of the pump frequency in w, = 0 pumping.

(26)

V. INFLUENCE OF SPACE CHARGE

In the presence of space charge the motion of o heam electron in the
center-of-mass system of a uniform beam can be written approximately
as

b — i(wp + 3ap) — da'p = 0, (27)
in which w, is the plasma frequency of the heam. Compare this to (34)
for the beam dise. In the limit @, = 0 this leads to two natural motions
of the electron, one at a frequency w.” = tw[l — (1 — 2w,*/w.’)’] and
the other at w,” = 3wl + (1 — 2w,’/w?)"]. In the limit of zero space
charge, w, = 0, these motions correspond to the guiding center and orbi-
tal motion.
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In order to amplify the internal motion of the electrons it is necessary
to pump at either @/ or .” rather than w,. Hence, if 2w,’/w.” is suffi-
ciently close to one, then both w. and w.” are appreciably different from
w. and pumping at a frequency equal to w. will amplify the beam motion
and consequently the beam waves without amplifying the electron orbits
as has been shown by Adler et al. for quadrupole pump fields."

VI. CONCLUSION

The eyclotron wave associated with the rotational motion of the beam
electrons and the synchronous wave associated with the spatial configu-
ration of the beam have been shown to be coupled by varying magnetic
fields. Spatial variations of any kind in the strength of the magnetic
field always amplily existing eyclotron or synchronous waves. One of
the coupled modes is fast and the other slow, and the total kinetic
power is conserved. Sinusoidal variations in the field strength such that
2mv/L = w.o, in which v is the drift velocity and L is the periodieity,
are particularly effective in coupling the modes. The kinetic power in
each mode is conserved when the field varies slowly.

In magnetic pumping with a time-varying field, a fast eyclotron wave
and a fast synchronous wave are coupled if the signal frequency is lower
than the pump frequency. If the signal frequency is larger than the
pump frequency one of the modes must be slow. The Manley-Rowe
condition is satisfied by this interaction. The space-varying magnetic
field is seen to be a special ease of parametric pumping at zero pump
frequency. Conservation of kinetic power in this case is a special case
of the Manley-Rowe relationship.

VII. ACKNOWLEDGEMENTS

The author would like to acknowledge the interest and stimulation
provided by J. Feinstein, S. J. Buchsbaum and J. W. Kliiver.

APPENDIX

The azimuthally symmetric fields are derived from a vector potential,
A, with rectangular ecomponents ( —3yH (z,t), 3xH(z,t), 0) which give
rise to an electric field, E = —¢ '9A/dl, with components (3¢ 'yoH/
al, —ic 'xaH /at, 0) and a magnetic field, H = curl A, with components
(—1xdll/dz, —tydH /dz, H ). The equation of motion for the beam dise
is

—(e/e)3y(0H ot + z0H Joz) + yH),
(e/e)dx(aH /ot + 20H /dz) + 2H].

mi

(28)

Il

mij
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Multiplying the second equation by 7 and writing R = 2 4 iy yields
R — i(wR 4+ &R) = 0, (29)
in which w.(z,t) = eH(z,)/mec. Assuming that the time dependence of

the z-coordinate of the dise can be specified the solution for (29) may
be written

Ry(t) = R(1)/iw. = (wl,o/wc)*[mnﬁ*l*e"*’ — R,,UXF]., 30)
Ry(t) = R(t) — Ry(t) = (wuo/we)’[—Run(XF)*e" + Ryol],
in which X satisfies the first-order differential equation
X — iwX + Lo.(1 — X*)/w. = 0 (31)
with initial conditions X (#) = 0, Ry = Rs(t), Ry = R,(t),
o) = [ alt) al (32)
and 0
Pt) = exp{—é [ (6 X /] dt’}. (33)

Multiplying (31) by X* and the complex conjugate equation by X,
adding and integrating yields

[FFL—-|X) =1 (34)
Combining (30) and (34) yields
wo(R,) — R) = we(Ry — Ruo’). (35)
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