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Theoretical questions concerning the possibilities of proving theorems by
machines are considered here from the viewpoint that emphasizes the under-
lying logic. A proof procedure for the predicate calculus is given that con-
tains a few minor peculiar features. A fairly extensive discussion of the
decision problem is given, including a partial solution of the (x)(Ey)(z)
satisfiabilily case, an alternative procedure for the (x)(y)(Ez) case, and a
rather detailed treatment of Skolem’s case. In connection with the (x)(Ey)(z)
case, an amusing combinatorial problem is suggested in Section 4.1. Some
simple mathematical examples are considered in Section V1.

Editor’s Note. This is in form the second and concluding part of this paper’
Part [ having appeared in another journal.! However, an expansion of the author’s
original plan for Part IT has made it a complete paper in its own right.

I. A SURVEY OF THE DECISION PROBLEM

1.1 The Decision Problem and the Reduction Problem

With regard to any formula of the predicate calculus, we are interested
in knowing whether it is a theorem (the problem of provability), or
equivalently, whether its negation has any model at all (the problem of
satisfiability). Originally this decision problem was directed to the search
for one finite procedure which is applicable to all formulae of the predi-
cate caleulus. Since it is known that there can be no such omnipotent
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procedure, the main problem is to devise procedures effective for classes
of formulae which satisfy suitable conditions.

The complementary problem of reduction is to give effective proce-
dures which reduce broader classes to narrower ones while preserving
provability or satisfiability. In this way, a decision procedure for a
smaller class can be made to apply to a larger one. Thus far, most work
on the reduction problem has been directed to the special case of finding
procedures which reduce all formulae of the predicate calculus to mem-
bers of some special class (e.g., those in the Skolem normal form). Each
such class is called a reduction class relative to satisfiability or provabil-
ity according to whether satisfiability or provability is preserved by the
transformations (Ref. 2, p. 32). It follows automatically that the corre-
sponding decision problem for each reduction class is unsolvable.

The reduction classes and the procedures employed to obtain them
are, being concerned with undecidable cases, only of indirect use for the
problem of discovering positive results on the decision problem. More
directly relevant are reduction procedures which are applicable when the
reduced class is not a reduction class and may in particular be a decid-
able class. Some very preliminary results on this more general aspect
of the reduction problem will be described in Section V.

For both the decision problem and the reduction problem, there is,
beyond the ‘““yes or no” as to satisfiability, a further question of deter-
mining all models and devising transformation procedures which preserve
all models. Such questions have been studied to a certain extent (Ref.
3, p. 23), but will be disregarded in what follows.

It is customary to characterize reduction classes and decidable classes
in terms of formulae in the prenex normal form, i.e., with all quantifiers
at the beginning. Sometimes, with regard to satisfiability (or provabil-
ity), conjunctions (or disjunctions) of formulae in the prenex normal
form are considered. We shall call this the extended prenex form.

In Section V, a procedure will be given for reducing any formula to
a finite set of generally simpler formulae in the extended prenex form
such that the original formula is provable if and only if all formulae in
the reduced set are. In this and the next few sections, we shall only be
concerned with formulae in the extended prenex form. Furthermore,
we shall give in Section V a proof-decision procedure for the quantifier-
free logic, obtained from the propositional caleulus by adding equality,
funetion symbols and individual constants. Any theorem in it is called
a quantifier-free tautology, as an extension of the notion of a propositional
tautology. We shall make use of the fact that we ean always decide
whether a given formula is a quantifier-free tautology.
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1.2 A Brief Formulation of the Predicate Caleulus

1.21 Primitive Symbols

1.2.1.1 Variables z, y, 2, ete. (an infinite set).

1.2.1.2 Individual constants (a finite or infinite set).

1.2.1.3 Propositional (Boolean) operations: ~, v, &, D, =.
1.2.1.4 Predicate letters (a finite or infinite set).

1.2.1.5 Function letters (a finite or infinite set).

1.2.1.6 Equality: = (a special predicate symbol).

1.2.1.7 Quantification symbols: ( ), (E ).

1.2.1.8 Parentheses.

1.2.2 Inductive Definition of Terms and Formulae

1.2.2.1 A variable or an individual constant is a term.

1.2.2.2 A function symbol followed by a suitable number of terms is
a term.

1.2.2.3 A predicate followed by a suitable number of terms is a for-
mula (and an atomic formula); in particular, if «, g are terms = (a,8)
or & = 8 is a formula (and an atomic formula).

1.2.2.4 If ¢, ¢ are formulae and « is a variable, then (a)e, (Ea)e,
~eg, 0 Vv Y e &¢, ¢ DY, ¢ = ¢ are formulae.

1.2.3 Inductive Definition of Theorems

1.2.3.1 A quantifier-free tautology is a theorem.

1.2.32 If a disjunction D of n alternatives is a theorem, ¢ is one of
the alternatives and 3 is a variable, then:

(a) If @ is a term, then the result of replacing ga by (EB)¢S8 in D is
a theorem;

(b) if « is a variable free in ga but not free in the other alternatives
and B is a or does not oceur in ga, then the result of replacing ga by
(8)eB in D is a theorem.

1233 If ¢ v -+ v ¢ is theorem, so is also ¢.

The above formulation is complete only with respect to formulae in
the extended prenex form.

1.3 The Fundamental Theorem of Logic

The main purpose of the next few sections is to study the decision
problem on the theoretical foundation of the fundamental theorem of
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logic, an approach initiated by Skolem‘ and Herbrand,” and recently
revived by Church,”” and by Klaua® and Dreben.’™

Suppose Mayz is a quantifier-free matrix:
1.3.1 () (Ey) () Maye,
1.3.2 (Ex)(y)(Ez) ~ Mayz.

Let now D, be M; v -+ v M, and M; be M14%’, i’ being an abbre-
viation for ¢ 4 1. The fundamental theorem, when applied to 1.3.1,
states:

1.3.3 The following three conditions are equivalent:
(a) 1.3.1 is a theorem of the predicate calculus; (b) for some n, D, is
a quantifier-free tautology; (c¢) 1.3.2 is not satisfiable.

If D, is a quantifier-free tautology, then, by 1.2.3.1, both it and the
result of substituting distinet variables for distinet numbers in it are
theorems. For example, suppose the result is:

1.3.4 Maab v Mabe v Macd.
We have: by 1.2.3.2(b),
Maab v Mabec v (2)Macz;
by 1.2.3.2(a),
Maab v Mabe v (Ey)(2) Mayz.

Similarly,
Maab v (Ey)(2)Mayz v (Ey)(z) Mayz,
(BEy)(2)Mayz v (Ey)(z)Mayz v (Ey)(z)Mayz,
by 1.2.3.3,
(Ey)(2) Mayz;
by 1.2.3.2(b),
(z)(Ey) () Mzyz.

Hence, condition (b) implies conditions (a) and (¢) in 1.3.3.

On the other hand, if no D, is a quantifier-free tautology, then there
is, for each D, , some interpretation of the function and predicate sym-
bols on the set {1, - -+, n’} which satisfies ~D, . By a well-known argu-
ment, there is then an interpretation on the domain of all positive in-
tegers which satisfies ~D;, ~D», ete. simultaneously. This, however,
means that under the interpretation each finite segment of the infinite
conjunction
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1.3.5 ~M112 & ~M123 & ~M134 & - -+

is true. But then there is an integer x, viz. 1, such that for every integer
y, there is an integer z, viz. y’, such that ~Mzyz. In other words, 1.3.2,
the negation of 1.3.1, is true under the interpretation. Hence, the nega-
tion of condition (b) implies the negations of conditions (a) and (c).

If we take 1.3.5 as a model of 1.3.2, it seems natural to regard y as
an independent variable, z as a dependent variable and z as an initial
variable (the limiting case of a dependent variable, a function of zero
arguments). The general principle of constructing M, from 1.3.1 may
be summarized by saying that each initial variable gets a constant
number, the independent variables taking on all possible positive in-
tegers as values and the dependent variables always taking on numbers
not used before.

In the general case, we must consider a disjunction (for provability)
or conjunction (for satisfiability) of formulae with arbitrary strings of
quantifiers, Then we can again construct the related quantifier-free
formulae in the same way, with the numbers in each clause proceeding
independently.

Thus, if we wish to study the satisfiability problem, we consider any
formula of the form:

1.3.6 o & &g (n=1),

where each g, is of the form, with d, = 0, e. = 0, ¢ = 1, ¢y, d2, €2,
c,d. = 1:

137 (Eyd) o0 (Bya (@) - (@) - (Byd) -
(Bya, ) (@) -+ (xe,YMyt - -+ 2,

One familiar way of obtaining M,;, M., ete. for the formula 1.3.7
begins by replacing the dependent variables (those with the letter y)
each with a function (sometimes called a “Skolem function™) of all the
preceding independent variables (those with the letter x), and then
dropping all the quantifiers. Let the result be M*. In particular, the
initial (dependent) variables are replaced by distinct constants which

may be viewed as trivial functions. Suppose e; + -+ + e = p, di +
.o +d, = qin 1.3.7.
The Skolem functions are any functions g,, ---, ¢, which, taken

together, satisfy the following conditions:

1.3.8 (1) For each g., giw, -+, Um) # uj, j = 1, -=+, m,
?;=1’...’q_
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(b) For each g;, gi(uy, -+, un) = gi(vy, <+, vm) only when u, =
Uy y Ty Um = Vi

(¢) For any g;, g;, ¢ # 7, gluy, -+, wn) # giloy, -+, vy), for all
Uy "oy Umy Vpy vy U

Then we can take the smallest domain which contains the constants
for the initial (dependent) variables (or an arbitrary constant when
there is no such initial variable) and is closed with respect to the Skolem
functions. Once such an (enumerable) domain is available, we can some-
how enumerate all the p-tuples of members of the domain. Then, for
each 7, M, is simply the result obtained from 1/ * when the independent
variables are replaced respectively by members of the ith p-tuple.

The satisfiability problem of 1.3.7 is then reduced to that of the infinite
conjunction:

1.3.9 ﬂ[l&ﬂfz&"'

Similarly, the satisfiability problem of 1.3.6 can be handled by reducing
each ¢; separately and then taking the conjunction of the n infinite
conjunctions of the form 1.3.9.

It is customary to use the positive integers as the domain, fix some
enumeration of the p-tuples, and specify the Skolem functions in a
natural manner. One familiar enumeration of the p-tuples is the follow-
ing:

1.3.10 (@i, -, a,) precedes (b, , - - - , by). if either

(a) they are permutations of each other but (a,, ---, a,) precedes
(b, ---, by) in the lexicographic order; or

(b) max(a,, -+, ap) = max(b, -+, by), Za; = Zb;, but (a;, -- -,

a,), rearranged according to nondecreasing magnitude, precedes (b, ,
.-+, bp), similarly rearranged, in the lexicographic order; or

(¢) max(a;, ---,a,) = max(b;, --+,b,), but Za; < Zb; ; or
(d) max(a;, ---, a,) < max(bh,, ---,b,).

The Skolem functions are usually chosen by going through the infi-
nite conjunction 1.3.9 from left to right and using each time the smallest
unused integer for the next functional expression not yet evaluated.
Thus, e.g., 11!, - -+, ¥a,' in 1.3.7 get the constant values 1, --- , d,, and
]l’[1 iS:

MU - dtl-oo1dy - (dy+do) -+ (@ —de 4+ 1) «ov gl --- 1.
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Fach time a functional expression gets a value, the value is substituted
in all later occurrences of the same expression.

In this way we arrive at a form of the fundamental theorem of logic
as a generalization of 1.3.3.

It is natural to observe that the infinite conjunction 1.3.9 can be
divided into sections (Ref. 4, p. 138):

1.3.11 The first section is the set of those M /s in which the p-tuples
replacing the independent variables are made up of integers in the set
{1, --+, dy}, or the set {1} if & = 0; the (n 4 1)th section is the set of
those M ;s not belonging to the nth section in which the p-tuples are
made up of integers which occur in the union of the first n sections.

This notion has been used by Skolem in explaining some decision
procedures (see Section 11 below).

1.4 Special Cases of the Decision Problem

The principal known decidable classes are, with regard to satisfiability
the following:

1. The monadic case. The class of all formulae which contain only
monadic predicate letters and no function symbols.

II. The EA satisfiability case (the AE provability case). The class of
all formulae in the prenex form with prefixes of the form (#y) ---
(Eym) (@) +++ (x.), m, n = 0, and no function symbols [or the form
(1) -+ (Yuw)(Ear) -+ (Ez,) for provability].

III. The conjunctive satisfiability case. Every formula in the prenex
form with a matrix which is a conjunction of atomic formulae and their
negations. (Equivalently, the disjunctive provability case.)

IV. The Skolem case. Every formula in the prenex form with no func-
tion symbols such that it has a prefix ending with (Ey) - -+ (Ey.),n > 0,
and every atomic formula occurring in the matrix contains either one
of the variables 3, -+, y», or all the independent variables. [For
provability, (y1) --- (y.) at the end.]

V. The EA.E satisfiability case (the AE.A provability case). Every
formula containing no function symbols in the prenex form with a prefix
(Ept) - (Byn)) (@) (x)(Ey®) -« - (Eya?).

V1. The Ackermann case. For satisfiability, every formula which con-
tains no function symbols, no equality sign, only a single dyadic predi-
cate (G say), and has the form (z)(Ey)Gzy & (21) - -+ (xm)May -+ Tw,
m = 4, M quantifier-free.

In addition to these, two other cases may be mentioned:

VII. The A.E\A, satisfiability case. Every formula with the prefix
(xy) (Ey)(xs) and with no function symbols.
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VIII. The Surdnyt normal form case. Tor satisfiability, every formula
which has no equality sign, no function symbols, only dyadic predicate
symbols, and has the form (a;)(x2) (x3) Mayxavs & (21) (22} (Bya)Nxzays ,
M, N quantifier-free.

It may be noted that in all the cases, with the single exception of III,
no function symbols are permitted. Indeed, very little is known about
the decision problem of formulae containing funetion symbols (compare
Ref. 3, pp. 98-107). Unless otherwise stated, we shall always assume
that no funection symbols occur.

In what follows, cases I and VI will not be considered. So far as the
monadic case without equality (a subecase of I) is concerned, it is possible
to obtain a decision procedure from one for case II. Some of the prob-
lems suggested by the Ackermann case are also encountered by the
A1E A, case, while other implications of this case seem to call for a
closer examination of certain arithmetic predicates.

Formulae under case VIII form a reduction class in the sense that
there is an effective procedure by which every formula, possibly con-
taining = and function symbols, can be reduced to one in the class with
satisfiability preserved (Ref. 2, p. 60). It follows that there exists no
decision procedure for this case. It is, however, desirable to find some
“semidecision procedure” for the class which is a decision procedure for
some subelass of it that is not specified explicitly in advance. It is thought
that such semidecision procedures are a useful way of extending the
range of formulae decidable by a predetermined finite set of procedures.
A brief discussion is included in Section IV to point to the sort of thing
which ean be done along this line. It should be of interest to design semi-
decision procedures for case VIII, as well as for other reduction classes.

The case VII is perhaps the best known unsettled case; it has been
mentioned in various connections (see, e.g., Ref. 11, p. 576 and Ref. 12,
p. 420). In Section IV a procedure will be given which may be a decision
procedure for the whole case but has only been shown to terminate for
certain special cases. A proof of finiteness of the procedure is wanting.
It is thought that, incomplete as the solution is, it is quite suggestive
for further works on the decision problem. Some rather amusing com-
binatorial problems are also related to the considerations on this case.

An alternative decision procedure for the much-studied case V will
be given in Section IIT in the equivalent form A,E (for satisfiability).

The Skolem case will be examined in considerable detail in Section II,
using ideas proposed by Skolem® (p. 138) and Church® (p. 264). Remarks
relevant to machine realizations of the procedure will also be included.

The Skolem case includes the following special cases:
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IVa. The A,E satisfiability case. Because every atomic formula has
to include some variable and there is only one independent variable.

IVb. For satisfiability, every formula whose prefix ends with (Ey,)
.++ (Ey,), and in which every atomic formula contains at least one of
the variables ¥y, <=+, ¥n .

IVe. For satisfiability, every formula whose prefix is

(Eyt) -+ (Bya)(zy) -+ (@)(Ey?) -+ (Byid)

and in which every atomic formula contains either all of @, -+, @, or
at least one of y:2, -+, yi*

1Vd. For satisfiability, every formula in the Skolem normal form,
i.e., with prefix (z;) -+ (xa)(Ey) --- (Ey.), such that every atomic
formula contains at least m distinct variables.

For the extensive literature on the decision problem, the reader is
referred to the bibliographies in Refs. 2 and 3. The writer has not been
able to study carefully much of the relevant literature, and is not certain
that the procedures described in Sections IT and ITI may not turn out
to be inferior to existing ones. Recently, the writer noticed that ideas
along the line of the solution of the E1A provability case given in Section
3 of Part I! are contained in Skolem’s writings (e.g., Ref. 4, p. 135).

Of the two remaining cases, II and III, some brief comments will
suffice.

1.5 Two Simple Cases

The EA satisfiability case IT has agreeable decision procedures not
dependent on the fundamental theorem of logic (see Ref. 13, p. 13). It
is also easy to devise a decision procedure on the basis of the fundamen-
tal theorem. Consider

1.5.1 (Eyy) -+ (Eym)(ey) -« (@) My, -+ 2,
This is in fact equivalent to:
1.5.2 M, & --- & M, k= m" or 1 when m = 0.

In fact, this is a limiting case of the fundamental theorem because no
Skolem funections are needed, so that the m constants for the initial
variables are all we need for fabricating a model. In other words, either
the negation of 1.5.2 is a quantifier-free tautology, and the negation of
1.5.1 is a theorem; or 1.5.2 has a model, and 1.5.1 has a model too. The
presence of the equal sign is permitted, but the presence of function
symbols in 1.5.1 would invalidate the procedure.
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The conjunctive satisfiability case III was originally solved by Her-
brand (Ref. 5, pp. 4445). Suppose the matrix is:

1.5.3 A4, & - & A &E~B & -+ & ~B,,
or, in a different notation:
1.5.4 Ay, -, Apn+ By, ---,B,.

Assume first that neither equality nor function symbols oceur. If no
predicate letter occurs both on the left side and on the right side, then
we can simply choose to make all predicates oceurring on the left side
true of all numbers and those on the right false for all numbers, and then
the infinite conjunction corresponding to the given formula is true under
the interpretation.

Whenever there is one clause on the left and one on the right which
contain the same predicate letter, e.g., 4; is Gabe and B; is Gurw, we
compare them and ask whether it is possible to assign the same integers
to their arguments in some M, and M, respectively. If the answer is
yes, the original formula can have no model, because the infinite con-
junction must be always false. If the answer is no for every such pair,
then the original formula has a model.

To compare A; and B;, we examine the three pairs of corresponding
variables. If both variables in some pair are distinet dependent vari-
ables, then the two clauses 4; and B; can never get the same numbers.
When this is the case for none of the pairs, we can decide the question
by asking whether there are positive integers s, ¢ such that a(s) = u(t),
b(s) = () and ¢(s) = w(f), where, for each variable @« in the original
formula, a(n) is a funetion giving the number which replaces « in M, .
It is possible to give a scheme to generate such function for each given:
formula. When there are solutions for some pair of clauses, the original
formula is not satisfiable.

If the formula 1.5.4 contains function symbols but not =, then the
comparison of A; and B; has to take functions into considerations some-
times. We may have to ask whether f(a(s)) = g(u(t)), instead of a(s) =
u(t), has a solution. In such cases, there is a solution only when f and g
are the same function, because otherwise we can always give different
values to f(a(s)) and g(u(f)) to avoid the incompatibility of M/, and M, .

When the equals sign also oceurs, we have to list all the equations
among A,, ---, A, , if there is any, and complete the list by using
transitivity. If there are none, we need only to proceed as hefore, except
that we can also reject satisfiability on the ground of, e.g., having an
equation ¥ = v among By, ---, B, , and u(p) = v(p) has a solution in



PROVING THEOREMS BY PATTERN RECOGNITION — II 11

p. In the general case, we must compare A; and B;, which have the
same predicate letter, in a more complicated manner. One way to do
this is to give an effective survey of all the equalities obtainable in
M,,---,M,, for every t. And then the question of comparing Gabe
and Guvw is reduced to the following: whether there are p, ¢, ¢t such
that, with the help of the equalities obtainable from M, , --- , M,, we
have a(p) = u(g), b(p) = v(q), c(p) = w(q). Since these considerations
are only subsidiary for the main purpose of the paper, details for this
and other steps sketched above will not be supplied.

II. THE SKOLEM CASE
2.1 Outline of a General Method

The subcase IVb, where every atomic formula contains at least one
of the last string of dependent variables, is particularly simple. Thus,
in every M, each such variable always gets replaced by some new
number so that no atomic formula in M), can have occurred in any of
My, -+, M,_,. Hence, a formula of such a form is satisfiable if and
only if ~M, is not a quantifier-free tautology.

In the general Skolem case, we make use of the definition of sections
given above in 1.3.11. Let (af, -+, @) be the p-tuple which replaces
the dependent variables in M to get M, .

Given any member M, of the nth section, the only related instances
in the nth section are those M for which (a)*, -+ - , a,%) is a permutation
of (a)’, - -+, a,"), and the only related instances in the (n + 1)th section
are those M; for which (a, -- -, a,’) include only numbers occurring
in M; and at least one number not in the set {a,?, - -+, a,}.

Hence, it is possible to get a decision procedure by determining
whether there exists any set of possibilities which includes models for
the instances of the first section, as well as models for all related in-
stances M, and M for every model for M ; in the set.

When the formula is in the Skolem normal form or the form of IVe,
somewhat more is true:

2.1.1 If M; belongs to the (n + 1)th section, then it can have common
atomie formulae with only at most one 3, in the nth section,

This is so because each atomic formula in M; either contains a new
number not oceurring in any member of the nth section, or otherwise
contains all of {a,?, - -+, a,7} with at least one number (say a;’) which
appeared for the first time in one specific member (say ;) of the nth
section. In the first case the atomie formula in 7, does not oceur in any
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member of the nth section. In the second case, M; can contain no com-
mon atomic formula with any member of the nth section except possibly
M;, since as does not occur in any of the other members of the nth

section.
Detailed considerations will be confined to the treatment of a simple

special case.

2.2 An Explicit Procedure for a Special Case

We consider a very simple special case in which the matrix contains
no equals sign (and of course no function symbols), and a single dyadic
predicate G':

2.2.1 (2)(y) (Ez) Maye.
As an illustration, we use the negation of Example (2) of Part I

2.2.2 (o)) (E)[(Gry & Gye & ~Grz & ~Gzy & ~Gzz2)
v (Gxz & Gzy & Gzz & ~Gry & ~Gyx)).

In an alternative notation, the matrix is:

2.2.3 Gay,Gyx + Gaz,Gry,Gez;
Grz,Gzy,Gzz + Gay,Gyx.

We construct a truth table of all the possibilities which can satisfy
the above matrix:

2.2.4 Gry Gyoe Grz Gzx Gyz Gzy Gzz
t t f f f
f f t t t

The blanks may take either t or f as values. Hence, there are eight rows
in all.

For the prefix (z)(y)(Ez), the numbers to substitute for (z,y,2) in
My, My, My, My, ete., are (1,1,2), (1,2,3), (2,1,4), (2,2,5), ete. In order
to decide whether a formula of the form 2.2.1 has a model, we ask whether
it is possible to make M112, M 123, M214, ete., simultaneously true, or,
in other words, whether we can find for each }{; one row from the above
table according to which M is true, such that these infinitely many rows
are all compatible in the sense that the same atomic formula always
gets the same truth value (t or f).

Among the number triples we can distinguish two classes, those in
which x and y get the same numbers, such as (1,1,2), and those in which
they get different numbers, such as (2,1,4). The conditions under which
a model is possible are roughly: (i) to satisfy Maab, a row in the truth
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table has to behave in a way that z and y are interchangeable; (ii) for
each row satisfying Mabe, there must be a related row satisfying Mbac;
(iii) for the two types of row, two corresponding patterns of continua-
tion must be possible, e.g.,

123 M136
M112— M123——M238
L M99
M225 ——M33(10)

These conditions can be formalized more exactly and applied, in par-
ticular, to show that 2.2.2 has a model, and therefore its negation is not
a theorem. For this purpose, we assume a formula of the form 2.2.1 for
which a truth table 7' like 2.2.4 is constructed. When, for example, Gy
in a row R of T gets the same value as Gzz in a row S of T, we shall use
the brief notation R,, = S...

2.2.5 A row S in the table 7 is a uniform row if S, = S,., S.. = S,.,

Sie = Sz .

Clearly, for a row to satisfy M 112, it is necessary that it be uniform.
If there is no uniform row, then there is no model for the original for-
mula.

2.2.6 A row S in the table 7" is an heir of a row R in T if S is a uniform
row and R.. = S, .

2.2.7 A row in T is trivial if it has no heir.

Since a row having no heir cannot be continued, we may cross out all
trivial rows and be concerned only with nontrivial rows. This is not
theoretically necessary beecause further requirements would cross out
trivial rows anyhow, but it makes for efficiency.

2.2.8 A row R in the table T is an ordinary row if there is a row S such
thﬂt Rzu = Sy,]: ) Ryz = Sxy 3 R:z = Syz ) Rz: = Szy ] Ryz = S.u 3 Rzy =
S.. . R and S are said to be mates of each other.

This is the condition under which R and S can satisfy (M123, M214)
or (M214, M123) respectively.

In the table 2.2.4 for the formula 2.2.2, it is easily verified that only
the two following rows are uniform rows or ordinary rows:

Gzy Gyr Grz Gzx Gyz Gzy Gzz
a t t f f f f f
B f f t t t t t
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In fact, @ and 8 are the only uniform rows, as well as the only ordinary
rows. Each of o and 8 is only a mate of itself.

2.2.0 A uniform row R is permanent if (i) it has an heir which is per-
manent, and (ii) there is a permanent ordinary row S such that R,, =
S, R., = S,.. S is said to be a subordinate of R.

2.2.10 An ordinary row R is permanent if (i) it has an heir which is a
permanent, (uniform) row, (ii) it has a mate that is a permanent ordinary
row, and (iii) there are two permanent ordinary rows P and S such that
Ry, =P,y,R=Py,,R.=8,,R, = 8,.. Pand S are said to be
a pair of subordinates of K.

The two definitions 2.2.9 and 2.2.10 embody a simultaneous recursion.
Condition (ii) in 2.2.9 is necessary, if, e.g., R is to satisfy M112 and S
is to satisfy M123. Condition (iii) in 2.2.10 is necessary if, e.g., R is to
satisfy M123, P is to satisfy 27136 and S is to satisfy M238.

2.2.11 The formula 2.2.1 has a model if and only if its truth table T
contains a permanent uniform row.

This assertion will be justified in 2.3. We observe first that both «
and 8 are permanent uniform rows for the example 2.2.2. In fact, we
have various models for the formula, which are determined, in outline,
hy the following patterns of continuation:

- e T [
a—| ,6—~| f——« a——f8
L L. - L,

More exactly, choose, e.g., @ as a model of M112. As a continuation
of this, 8 satisfies M123 and M225; since § is its own mate in the sense
of 2.2.8, 8 also satisfies M/214. Similarly, since « is its own mate, as a
continuation of g satisfying M123, « satisfies M 136, M 317, M238, M 329,
and M33(10). In this particular case, the model 8 of M214 can be con-
tinued in the same way. Moreover, the model 8 of 37225 can be contin-
ued by the row a, and, e.g., the model a of M136 can be continued by
the row 8, and so on.

In the general case, a symmetry argument is needed to show that if
a model of, e.g., M123 can be continued, then a model of /214 can also
be continued. For example, if (R, S) satisfy (1123, M214) respectively,
and (A, B, C, D) satisfy respectively the continuation (M136, M317,
M238, M329) of M123, then it is easy to see that (B, 4, D, () satisfy
the corresponding extension of M214. This means that condition (ii)
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of 2.2.10 can be weakened to require a mate that is an ordinary row with
a permanent heir,

The decision procedure implicit in the above definitions may be de-
scribed explicitly thus:

2.2.12 The decision procedure:

1. Construet a truth table 7.

2. Find all uniform rows.

3. Cross out all trivial rows.

Let U, be the set of remaining uniform rows, ¥, be the set of remain-
ing ordinary rows. Ilach time, assume U, and V', are given and continue
the following four steps:

4. Eliminate every uniform row from U, which has no subordinate
row in V, , thus obtaining U, 4, from U, and V,, .

5. Eliminate from V, every ordinary row which has no mate or no
pair of subordinate rows in V,, , thus obtaining V.4, from V, .

6. Lliminate every uniform row from U,4; which has no heirin U, ,
thus obtaining U, .. from U,y .

7. Eliminate every ordinary row from V,.; which has no heir in
U,,», thus obtaining Vs from V.4 and U,ye .

8. The steps 4 through 7 are repeated until one of two things hap-
pens: either at some stage we obtain an empty U; and an empty V;,
then we stop and conclude that the original formula 2.2.1 has no model;
or else, after a whole round of the steps 4 and 7, we find U, 2 and Vs
remain the same as U/, and V,, then we stop and conclude that the
original formula 2.2.1 has a model.

In practice, it is more efficient to perform, if possible, each of the steps
4 through 8 repeatedly, before going to the next step.

The procedure is clearly finite, since U, and V), are finite, and each
round of steps 4 through 8 must reduce the size of U, or V, if the proce-
dure has not come to a stop yet. Moreover, the final sets U; and V; must
be both empty or both nonempty.

2.3 Justification of the Procedure

As a Skolem case, the formula 2.2.1 must not contain Gex and Gyy.
It is, however, not obvious that we are justified in not including two
columns Gxx and Gyy in the truth tables such as 2.2.4. For a model
constructed on the basis of such reduced tables, it is not evident that,
for some positive integer a, Gaa might not be compelled to take on the
value t at one place, and the value f at another. However, we can prove
the following:
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2.3.1 In every model obtained on the basis of a truth table not includ-
ing columns for (xa and Gy, for every number a, (Gaa is never compelled
to take on two different values.

Take, for example, G22. If Gzz occurs in the original formula, G22 is
compelled to take a fixed value in a model with a row R for M112. In
the same model, if S is the row for M225, then R., = S,, = S,. . Hence,
it is harmless that S.. and S,, are compelled to take the same value as
both R.. and S., (or S,.:). In all other cases, the values for G22 can al-
ways be given the value of R.. because there is no other place where G22
is independently compelled to take a certain truth value.

For the same reason, if neither an atomic formula nor any one ob-
tainable from it by permuting the variables occurs, we may leave out
the columns for them. For example, if Gzz does not occur, we can leave
it out. If neither Gxy nor Gyx occurs, we can leave both of them out.

On the other hand, if, e.g., Gxy and Gzy occur but Gyr does not, we
still must include a column for Gyz. Otherwise, since we do not record
the value of Gyr, it may happen that R satisfies M112, with R., = t,
and S satisfies M214 with S;, = f. Then no row P can satisfy M123,
because P, is compelled to take both the value t and the value f, and
this is not recorded without a column for Gya.

To prove 2.2.11, we remark first that there are three types of instances
illustrated by M112, M123, M214. For the first kind, an M; of the form
Maab, the only M;, 7 > i, which have common atomic formulae with
M; are Mbbe, Mabd, Mbae, because these are the only ways in which
both the independent variables x and y can be replaced by numbers
occurring in M;, and having only one of the two arguments from M ;
yields no common atomic formula. Similarly, if M; is Mabe, a < b, there
are only five M;,j > 7 which have common atomic formula with M, .
By the symmetry argument preceding 2.2.12, the mate Mbae is also
taken care of.

Hence, if there is any permanent uniform row, we can find a model
for all instances M, , M, , etc., such that each has some common atomic
formula with an earlier one, or, in other words, all those occurring on an
infinite tree beginning at M, . This does not exhaust all the instances,
Ifor example, My, and M5 [i.e., M34(15) and M43(16)] are not included.
Since, however, they contain no common atomic formulae with the in-
stances already interpreted, we can take two permanent ordinary rows
which are mates and get a model for another sequence of instances. In
this way, it is seen that, if there is a permanent uniform row in the table
T, then one can so interpret the predicate @ in the domain of the positive
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integers that the whole sequence My, M., ete., are simultaneously
satisfied.

The converse ig quite obvious. If there is no permanent uniform row,
then no interpretation of M112 can be continued indefinitely, and there
is an 7. such that M, & --- & M, is true under no interpretation.

2.4 Questions of Efficiency

When doing an example by hand, there are shorteuts we find natural
to use. These may be viewed as more refined methods which can be
mechanized by additional efforts. We give some informal illustration of
the type of quick method we tend to use.

Consider the negation of Example (3) given in Part I:!

241 (x)(y)(E2){[Gry & (~Gyz v ~ Gzz)]
v [(Gry & Hay) & (~Hzz v ~ Hzz)]l.

In the alternative notation, the matrix of the above formula is:
2.4.2  Gury - Gyz; Gry -+ Gzz; Gey,Hry + Haz; Gey,Hey - Hzz
The truth table for this is:

943 Gry Hxy Gyr Hyr Hrz Haze Gyz Gzy Gz Hz
t f
f

> ™R

t
t t f
t t f

Although the formula contains two predicates instead of just one, it
is easy to see that the procedure described above can be extended to
cover the case in a very straight-forward manner.,

Since there are many blanks in the table, it is essential for efficiency
that we do not expand the table by filling in the blanks (there would
be 2* rows), until we are compelled to do so. In other words, we try
to carry out the decision procedure by treating each row containing
blanks as a single row and make expansion only when we are not able
to eliminate them as single rows.

We observe that for every row, in particular, every uniform row, Gry
gets the value t. It follows that row 8, or more exactly, all the 2" rows
obtainable from 3 are trivial by 2.2.7, since an heir of 8 must have Gry
take the value of Gzz in 8, which is f. Hence we may delete row 8 alto-
gether.

In order that row a, or any specification R of «, be permanent (uni-
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form or ordinary), it is necessary, by 2.2.9 and 2.2.10, that there is a
subordinate row S, such that Gey gets the same value in S as Gyz in R,
or Rg,. = Sgay - But this is impossible because Rg,. is f in every row
obtainable from «, but Sg., is ¢ in every row. Hence, we can delete row «
altogether, and be concerned only with the rows v and .

Since Hxy gets t in all the remaining rows and Hzz gets the value f in
§, every row obtainable from § has no heir, and the whole row & can be
deleted.

However, no permanent ordinary row can be obtained from v alone
because, hy 2.2.10, for any such row R there must be a subordinate row
P such that Ry,. = Py, but in row v, Hzz is always f and Hry is
always t. Hence, there can also be no permanent, uniform row, and, by
2.2.11, the formula 2.4.1 has no model. Therefore, Example (3) in Part
I1,! the negation of 2.4.1, is a theorem.

Another method of deciding 2.4.1 is the following. We begin with
M, , which is a disjunction of conjunctions, and choose M, M;, ete.,
which contain common atomic formula with 2Af,, in the hope that
M, & M; & M; & --- as multiplied out into a disjunection of conjunc-
tions will include in each conjunction some atomic formula and its
negation. The process may have to be continued.

As we observed before, only My, M3, M, can have common atoﬁuc
formulae with A, . Of these three, on account of the special structure
of 2.4.1, M; has no common part with 3/, . Hence, we need to consider,
to begin with, only M,, My, M, :

(i) (ii) (iii) (iv)
M112 G111 + G124 Gl +— G22; Gl11, H11 +— H12; G11, H11 +» H22

M123 G129 G623  GI2-G33, G2, HIZ-- HI3;, (12, H12 > H33
M225 G2 G25 G2+ G55 G22, H22 -+ H25;,  G22, H22 - H55

By the row for M123, (i) of M112 can be deleted because (i) contains
~(G12 (i.e., after +), while each clause in the row for M123 contains
G12. 1t can be seen then that every row in column (i) can be deleted
in the same way. Similarly, (ii) of the row for M112 can be deleted
because it contains ~@G22, while each clause in the row for M225 con-
tains G22; therefore, the whole column (ii) can be deleted eventually,
and we need only consider the columns (iii) and (iv). But then (iii) of
the row for M112 can also be deleted because it contains ~H12, and
all the remaining columns of the row for M123 contain H12. Finally,
we have only column (iv) left. Now, however ~H22 occurs in the row
for M112 and H22 occurs in the row for 1/225. Hence, the conjunction
of the three rows of column (iv) is a contradietion, and 2.4.1 has no model.
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2.5. The Inclusion of Equality

The decision procedure in 2.2 can be extended to deal with cases where
the equal sign occurs in the given formula:

2.5.1 () () (Ez) Mayz, with = occurring.

Additional considerations are needed to take care of the special
properties of =. Ifirst we bring Mxyz into a disjunction of conjunctions
of atomic formulae and their negations, in the usual manner. Then we
modify the resulting matrix to take care of the properties of =. (a)
Fach conjunction that contains an inequality of the form v # v, v being
x or y or z is deleted. (b) In each conjunction, a clause of the form
» = v is deleted. (¢) Within each conjunction, if v = v is a clause with
distinet variables u and », we add also, as new clauses (if not occurring
already), » = u and the result of replacing any number of occurrences
of u by v (or v by u) in each clause of the conjunction; this is repeated
for every equality until no new clause is generated. (d) Repeat the steps
(a) and (b) on the result obtained by step (e); in addition, any conjunc-
tion which contains both an atomic formula and its negation is deleted.

We now construet the truth table on the basis of the new matrix (in
a disjunctive normal form). Uniform rows, ordinary rows and per-
manence can be defined in a similar manner as before, except that a
uniform row has to satisfy the additional condition that z = yand y =
both get the truth value ¢ (not only that they just get a same value).
In this way, we can obtain a decision procedure for all formulae of the
form 2.5.1.

It is believed that the same type of consideration can be used to
extend all the cases considered in this paper to include also the equal
sign. In the next two sections, equality will be left out and attention
will be confined to formulae not containing the equals sign (nor, of
course, function symbols).

1. THE AF SATISFIABILITY CASE

We give an alternative treatment of this case which, it is conjectured,
is in general more efficient, than the method of Schiitte! as reformulated
hy Klaua.® The method will be explained with the special case when only
one dependent variable and only one dyadic predicate G occur:

3.1 (x) () (Ez) M xyz.

The main difference between this case and the case solved in 2.2
above is that Gxa and Gyy are permitted to occur in Mayz. As a result,
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for example, M123 may contain common atomic formula with any
Mabe in which a or b is one of 1, 2, 3.
As an example, we choose arbitrarily the following:

32 () ((E)[~Grxr & (Gry D ~Gyz) & Gez & (Gzy DO Gay)).
The matrix may be rewritten as:

3.3 Gaz + Grx,Guey,Gzy; Grz,Gry - Guz,Gyx;
Grz -+ Gax,Gyz,Gzy.

The truth table is:

3.4 Gex Gry Gyr Gyy Grz Gyz Gzx  Gzy Gze
f f t f
f t t f
f t f t

The problem is, as before, to decide whether there is a model that
satisfies M7, M, , ete., simultaneously. The conditions are rather similar
to those in 2.2 except that for any two rows R and S which, say, satisfy
Mabe and Mdef in a model, there must be two rows which satisfy Mefg
and Mfch in the model. There is also a related requirement for a row
satisfying M, because the number 1 is never used to replace a depend-
ent variable. The various conditions may be stated:

3.6 Arow R isuniformif R.; = R,y = R,. = Ry, , Re. = R, ,R.. = R., .
3.6 A row S is an heir of a row R if S is uniform and R.. = S, .

3.7 Two rows R and S form a parallel pair if R.. = S,,, R, = S,:,
Rye = Suy, Ruy = Sex, R = Sy, Rys = Sux, Rz = Sy, Ry = Suc

Two rows of a parallel pair are said to be mates of each other.

If R and S are to satisfy Mabc and Mbae, it is necessary that they form
a parallel pair. In general, for a row satisfying Mabe, there must also
be two parallel pairs of related rows satisfying Macd, Mcae, Mbcf,
Mcbg. When @ = b, the two parallel pairs become one. This, plus the
requirement that every row in a model must have an heir may be sum-
marized in the following condition.

3.8 A row R is normal if the following conditions are all satisfied:
3.8.1 It has a normal row as a mate;

3.8.2 It has an heir which is a normal row;
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3.8.3 There are two normal rows P and S such that R.s = Pa, Rz =
Pay, R.. = Py, R.. = Py, and R, = S:\'r: R, = Szua y = S
R.. = 8,,. Such rows P and S are said to be subordinates of R.

A uniform row is its own mate, although a self-mated row is not al-
ways a uniform row. For a uniform row, 3.8.1 is a redundant condition,
and P and S coincide in 3.8.3. The definition 3.8 of normality is clearly
recursive,.

In the table 3.4, we observe that, because Gxx always takes the value
f, Gzz can only take the value f in order that the row has an heir. More-
over, since Grx always gets the value f and Gz always gets the value t,
in order that a row has a mate, Gyy must always take the value f and
Gyz always t. Hence, we need consider only the following eight rows
which result from filling the remaining gaps:

3.9 Gxx Guy Gyx Gyy Grz Gyz Gz Gzy Gz
o f f f f t t f f f
g f f t f t t f f f
B f t f f t t f f f
a f f t f t t t f f
b f t f f t t f t f
e f f f f t t t f f
d f t f f t t t f f
e f t f f t t t t f

Row e has no mate, beacuse of the columns 5 to 8. Rows ¢ and d have
no mate, because b, the only row satisfying the condition on Gzr and
G'zy, does not satisfy the condition on Gry and Gyz. Neither row a nor
row b has subordinates as required by 3.8.3. Hence, we have only the
remaining rows e, £, f2 to consider.

« is the only uniform row, (8, , 82) form a parallel pair, and g, is both
P and S in 3.8.3 for all the three rows «, 8, 8. . Hence, we have, for
example:

—(M225, &)
——(M33(10), «)
(M112, a)— 193, 82)—— (M135, B2)
(M123, ) [<M316 .
_I_(M237 Bs)
(M328, 81)

L(MQ]A, B1)
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In particular, (}£214,8,) can be continued in the same way as (M 123,
B2). Indeed, continuation in every branch can be made similarly. In
other words, a, 8;, 8 are all normal by 3.8. This, however, does not yet
secure a model for the formula 3.2. There are, for example, those in-
stances in which (1,5), (5,1), (3,4), (4,3), ete., replace (x,y) of Mxyz; they
also have common atomic formulae with the instances shown in the
above graph.

3.10 A formula 3.1 has a model if and only if (a) it has a nonempty table
of normal rows, (b) this table has a nonempty subtable 7’ such that:

3.10.1 For every pair (R,S) in 7’, there is a parallel pair (P,Q) in T’
such that P,, = R.., Q.. = S...

3.10.2 There is a uniform row R in 7" such that for every row Sin 17,
there is a parallel pair (P,Q) in 7’, for which P, = R.,, Q.. = S...

These are the additional requirements mentioned after 3.4. In the
example under consideration, the table consisting of all the three normal
rows «, 8, B2 satisfies the requirements on 7. Hence, 3.2 does have
models. One model for the predicate G is the relation < among positive
integers. That is, however, not the only model, because the model of G
does not have to be transitive. For example, (15 and G/51 can be (t,f) or
(f,t) or ().

It can be verified that the conditions in 3.10 are indeed necessary and
sufficient.

1v. THE Al A1 SATISFIABILITY CASE
4.1 A Generalized Game of Dominoes

The study of the decision problem of the present case has suggested a
related abstract mathematical problem which can easily be stated in
everyday language. The problem appears to be of interest even to those
who are not concerned with questions in mathematical logic.

Assume we are given a finite set of square plates of the same size with
edges colored, each in a different manner. Suppose further there are
infinitely many copies of each plate (plate type). We are not permitted
to rotate or reflect a plate. The question is to find an effective procedure
by which we can decide, for each given finite set of plates, whether we
can cover up the whole plane (or, equivalently, an infinite quadrant
thereof) with copies of the plates subject to the restriction that adjoining
edges must have the same color.

For example, suppose a set consists of the three plates:
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3 5 4
I‘A‘Q 213!3 3101
4 3 5

Then we can easily find an infinite solution by the following argument.
The following configuration satisfies the constraint on the edges:

A B C
¢ A B
B C A

Now the colors on the periphery of the above block are seen to be the
following:

3 5 4
1 1
3 3
2 2
3 5 4

In other words, the bottom edge repeats the top edge, and the right
edge repeats the left edge. Hence, if we repeat the 3 X 3 block in every
direction, we obtain a solution of the given set of three plates. In gen-
eral, we define a “cyclic rectangle.”

4.1.1 Given any finite set of plates, a cyclic rectangle of the plates is a
rectangle consisting of copies of some or all plates of the set such that:
(a) adjoining edges always have the same color; (b) the bottom edge of
the rectangle repeats the top edge; (c) the right edge repeats the left
edge.

Clearly, a sufficient condition for a set of plates to have a solution is
that there exists a cyclic rectangle of the plates.

What appears to be a reasonable conjecture, which has resisted proof
or disproof so far, is:

4.1.2 The fundamental conjecture: A finite set of plates is solvable (has at
least one solution) if and only if there exists a cyclic rectangle of the
plates; or, in other words, a finite set of plates is solvable if and only if
it has at least one periodic solution.

It is easy to prove the following:

413 If 4.1.2 is true, we can decide effectively whether any given finite
set of plates is solvable.

Thus, we proceed to build all possible rectangles from copies of the
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plates of different sizes, using smaller ones first. If 4.1.2 is true, the
process will always terminate in one of two ways: either at some stage
we arrive at a cyclic rectangle and, therefore, the original set is solvable;
or else we arrive at a size such that there is no rectangle of that size in
which adjoining edges always have the same colors. The latter alterna-
tive is in fact a necessary and sufficient condition under which the
original set is not solvable. However, if 4.1.2 is not true, it would be
possible that a set has a solution, but we can never see this fact by the
latter criterion at any finite stage: there would always be the possibility
that for the next size there exist no rectangles with same-colored ad-
joining edges.

There is a naturally uneasy feeling about the effectiveness of such a
procedure. The argument is essentially the familiar one that if a set and
its complement are both recursively enumerable, then the set is recursive.
It shows that the procedure always terminates (provided 4.1.2 is true)
but gives no indication in advance as to how long it might take in each
case.

If 4.1.2 is proved, it seems likely that it would be proved in a stronger
form by exhibiting some simple recursive function f with the following
property. I'or any set of plates with m distinet colors and n distinet
plates, if the set is solvable, there is a cyclic square of the size &k X £k,
where &k = f(m,n). If that happens, or even if we have not exhibited such
a function f but 4.1.2 can be proved by fairly elementary arguments, we
would have some estimate in advance of how long the procedure takes in
each case.

As it is, we can make the testing procedure quite systematic even
though we do not know whether 4.1.2 is true. The procedure would be a
decision procedure and presumably quite an efficient one, if 4.1.2 is true.
If 4.1.2 should turn out to be false, then the procedure would only be a
semidecision procedure. In fact, it is possible to show that the procedure
does work in several classes of cases, e.g., when a set has unique solution
apart, from translations, or whenever either horizontally or vertically no
color ean be followed by different colors. But we shall not delay over
such partial results.

If 4.1.2 should be false, then there would be two possibilities: either
the set of all solvable finite sets of plates is not recursive, or it is recursive
but requires a more complex decision procedure.

The problem can clearly be generalized to higher dimensions: for
example, to cubes with colored surfaces instead of squares with colored
edges.

We return now to the 4,F;4, satisfiability case.
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4.2 Preliminary Definitions and an Example
The general form of the case is:
4.2.1 (x) (Ey) (2) Mzyz,

where M is a quantifier-free matrix containing neither function symbols
nor the equality sign. From the fundamental theorem, it follows that
4.2.1 is satisfiable (solvable) if and only if each finite subset of the infinite
set of matrices Mii’j (i,j = 1, 2, ---) is solvable (not contradictory).
Since the second number is always the successor of the first, we shall
write Mij for My,

We illustrate the general case by considering the special case where
Mazyz contains only a single dyadic predicate G. The negation of Example
(4) given in the introduction of Part I' will be the concrete example:

4.2.2 (z) (Ey)(2)[~Grx & Gzy & (Gyz D Gaz)).
In the alternative notation, the matrix is

4.2.3 Guy,Grz + Gur; Gy -+ Gyz,Gre.

The truth table is:

4.2.4 Gex Gry Gur Gyy Grz Gex Gyz Gzy Gz
f t t t
f t t f
f t f f

Since there are five blank columns, there are altogether 3 X 2° or 96
rows. The problem now is to decide whether we can choose one row for
each matrix Mij(i,j = 1, 2, +--) such that, taken together, all the
matrices come out true. This really involves both the problem of finding
the pieces and the problem of putting them together. Thus, if j is dis-
tinet from 7 and 4/, any row can satisfy M7j alone, if we substitute 7,
i’, j for z, y, z in the truth table; but a row can satisfy M1j when j is ¢
or 7’ only in case certain related columns get the same truth values. This
is the problem of finding the pieces. When there are such pieces, there is
the harder problem of putting them together. For example, if there are
rows satisfying M11 and M12 separately, there may yet be no pair of
rows which satisfy M11 and M12 simultaneously because the common
atomic formulae in both matrices must get identical values.

Since the putting-together part is quite complex, it seems natural to
combine small pieces into blocks first. For this purpose, we consider row
pairs and row quadruples (i.e., pairs of pairs).
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p4.1 Two rows P,@) in the truth table T form a basic row pair (P,Q)
if, for some 7, they can simultaneously satisfy M’ and M7 respec-
tively. More explicitly, the conditions are:

i Py =Py =P, =P,, Py =P, Py =P,

ii. Qz.r = Q:rz = Q:z = sz ) Q:y = sz, Qyz = Qy; H

ii. P, = Qrz,qu = Qty:Pb'z = QHZ!PUH = Qw-

In the table 4.2.4, it is easy to verify that there are only two basic
row pairs (a,8) and (v,d):

4.2.5 Gex Gry Gye Gyy Grz Gz Gyz Gzy Gz
«@ f t f f t f f f f
i) f t f f f f f t f
v f t. f t t f t t ot
b f t f t f f f t f

Obviously basic row pairs are necessary for building a model of 4.2.1.
In fact, given any formula 4.2.1, if its truth table 7' contains no basic
row pairs, then it has no model and, indeed, the conjunction of M11 and
M12 is a contradiction.

We shall eonsider pairs of row pairs, called row quadruples, which are
useful in chaining row pairs together.

p4.2. Given any two row quadruples (A,B; C,D) and (P,Q; R,S), if
C = P, D = @, then the former is a predecessor of the latter and the
latter is a successor of the former.

p4.3. Four rows P, @, R, S form a basic row quadruple (P,Q; R,S) if,
for some 1, they satisfy simultaneously Miz’, Miz, Mi'?", M7'i’, respec-
tively, or, more explicitly, if:

i. (P,@) and (R,S) are basic row pairs;

ii. Py, = R::;

iii. (P,Q; R,8S) has a successor which is a basic row quadruple.

In the table 4.2.4, there is only one basic row quadruple, viz., («,83;
a,3). The quadruple (a,8; v,8) satisfies i and ii, but not iii. It is easy to
see that, given any formula 4.2.1, if its truth table T' contains no basic
row quadruples, then it has no solution and, indeed, the conjunction of
M12, M11, M23, M22, M34, M33 is a contradiction.

Clearly, if a row R satisfies M7’ in a model, then there must be one
row S which satisfies M7i, one basic row quadruple (4,B; C,D) which
satisfies Mqz’, M7, M1'v”, M7'7', and one basic quadruple which satisfies
Mji’, Mjj, Mj'3”, Mj'j’. In particular, when j is ¢, we get the basic row
pairs which oceur in some basic quadruple.
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p4.4 Two rows R,S form an ordinary row pair (R,S) if
i, Rz = Ss., Re. = 8.y, Rez = Sy, Ri: = S5

ii. There is a basic quadruple (4,B; C,D) such that A.. = R..,
Asy = Rey, Aye = Rz, Ay = Ry 5

iii. There is a basic quadruple (P,Q; K,L) such that P.. = S..,
Py =84, Py = Sz, Py = Syy -

In the table 4.2.4, since the only basic quadruple is (,8; «,8), it is
relatively simple to find all the rows which do oceur in ordinary row
pairs. Since every row which is to satisfy some Mij in any solution must
oceur as one row in some ordinary row pair, we tabulate all such rows
together and, from now on, confine our attention to them. It happens in
this example that all these rows have in common five columns:

Grx Guy Gyx Gyy Gzz
f t f f f

Therefore, we only have to list the remaining columns:

4.2.6 Gz Gzx Gyz Gzy ordinary
pairs

a t [ f f (a,8)
B f f t 1 (8,2)
8y t t t t (81, 61)
da f { f f (8, 82)
83 t f t t (84, 83)
8y t f t f (84, ds)
85 f 6 f t (85 , 84)
3 t f t t (36 , &1)
8 t t f t (8; , 65)

In faet, if only the four columns have to be considered, there are 12
rows in the original table 4.2.4, and the two rows (R,S) in each ordinary
row pair satisfy the condition: R.. = S.,, R.. = 8,.. Hence, it is easy
to get the above table. Briefly, the relevant information for the example
is the nine ordinary pairs given above and the basic quadruple («,8; @,8).

Thus far we have been concerned only with rather elementary proper-
ties of the rows in the truth table. The more involved part is to design a
scheme of extending recursively the construction of models. In order to
explain how this is done, we introduce a chart.
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4.2.7 Chart for (z)(Ey)(z) Mxyz:
Basic Pairs Cyclic Pairs Common Row Pairs
(Mii!, Mdz)  (Mi”, Mi') (Mi(i" + k), M(i* + k)i)
(12, 11) — (13, 21) — (14,31) —> (15, 41) — (16,51) —

1 Z 1 Z Lo
(23, 22) (24, 32) = (25, 42) (26, 52) —

r

(45144 L’ (46l54) 4"

7
(56{55) 4’ l

In the chart, the ordinary row pairs satisfying (375’, Mji) are divided
into three classes: basic when 7 = j, cyclic when 7" = j, common other-
wise. The general plan of the procedure is as follows. The existence of
basic row quadruples assures that we can find a model for all the matrices
M12, M11, M23, M22, etc. in the first column. Similarly, we can define
eyclic quadruples to give an effective condition for the existence of a
model for all matrices appearing in the second column of the chart, and
so on. But in order that these models can be combined to give a model
for all the matrices and therewith for a given formula 4.2.1, each column
must be related to the column on its left in a suitable manner. This
situation with two infinite dimensions seems to be the chief cause of the
complexity of the 4,4, case.

In the chart of 4.2.7, each row pair (R,S) that is not basic is subor-
dinate to a quadruple (4,B; C,D) made up of the two row pairs (4,B),
(C,D) on its left with arrows leading to it. The quadruple is said to be
superior to the pair (R,S).

p4.5 An ordinary row pair (R,S) is a subordinate of a quadruple
(A4,B; C,D) if

L Bez = Azzy, Ry = Auy, Ryz = Ay, By = Ay, Ry = Ca,
Rzu = Cz: ) Rzz = sz;

il. 8;e = Dozy 8oy = Doy, Syz = Dy y Sae = Auzy Sz = A
A quadruple (R,S; P,Q) is subordinate to a row sextuple (4,B; C,D;
K,L) if (R,8) is subordinate to (4,B; C',D), and (P,Q) to (C,D; K,L).

4.6 Two rows RB,S form a cyclic row pair (R,S) if
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i. (R,S) is an ordinary row pair;

ii. Reyy = Sezy Rye = Saey, Ry = Sex, By = Sgy, By = Siz.

Obviously, given 4.1, if its table contains no two rows forming a cyclic
pair, then the conjunction, briefly Cs, of M12, M11, M23, M22, M13,
M?21 is a contradiction.

In the table 4.2.6, there are, among the nine ordinary row pairs, only
one that is cyclic, (84, 8). Since there are only one basic quadruple,
each has only one superior. This is of course not always the case, it is
only due to special features of the example 4.2.2.

In order to find out whether there is any succession of eyclic pairs
which will satisfy all rows of the column for eyclic pairs in the chart, we
study eyclic quadruples.

ps.7 Four rows P,Q,R,S form a eyclic quadruple (P,@; R,S) if
i. (P,Q) and (R,S) are cyclic row pairs;

i, Qez = Rez, Quy = Ry, Qe = Byz, Qu = Ry ;

iii. There is a basic sextuple (4,B; C,D; K,L); which is respectively
superior to (P,@; R,S);

iv. (P,Q; R,S) has a successor which is also a cyclic quadruple.

Obviously, given a formula 4.2.1, if its table contains no rows that
form a cyelic quadruple, then the conjunction of Cg, M34, M33, M24,
M32 is a contradiction,

The existence of a eyclic quadruple certainly assures that we can
satisfy all the rows of the second column of the chart simultaneously. It
assures a bit more: the two pairs (P,Q), (R,S) of a cyclic quadruple are
always compatible with any three pairs (4,B), (C,D), (K,L) which form
two basie quadruples, respectively superior to them. This is, however,
insufficient to secure that all the rows in the first two columns of the
chart can be simultaneously satisfied, because it is possible that no
eyclic quadruple beginning with (R,S) is subordinate to any quadruple
beginning with (K,L). In other words, the blocks might not fit together.

As it happens, this problem does not arise with the example 4.2.2. Since
there is only one cyclic pair (8, &), there can be at most one cyclic
quadruple, viz, (8, & ; 85, 8). It can be verified by D4.7 that this is
indeed a cyclic row quadruple. Since there is only one basic quadruple
(a,3; a,8), we see immediately that by using (e,8) for (Mid', Mi7)
(i =1,2 ---) and (&, &) for (Mw” Mi")(i = 1,2, ---), all these
matrices (of the first two columns of the chart) are simultaneously satis-
fied. Moreover, this is the only possible model for the two initial infinite
columns of matrices.

We shall first define common row quadruples, settle 4.2.2, and then
come back to the more general question.
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p4.8 Two ordinary row pairs (£,S), (P,@) form a common quadruple
(R,S; P,Q) of order & [i.e., in the (2 + k)th column of the chart] if

i. When & = 1, there is a eyclic row sextuple which is superior to
(R,S; P,Q); or when & = n + 1, for some positive integer n, there is a
common row sextuple of order n which is superior to (R,S; P,Q).

ii. (R,S; P,Q) has a successor which is a common quadruple of order k.

By this definition, we can successively find the common row quad-
ruples of orders 1, 2, ete. In the actual procedure, we examine each time
to determine whether we have already enough information to decide the
original formula. Only when this is not the case do we find the common
quadruples of the next order.

In the case of 4.2.2, since (5, 8 ; 0, 8) is the only cyclic quadruple,
it is easy to verify, by 4.2.6 and D4.5 that (8, & ; 85, &) is the only
common quadruple of order 1. Thus, by D4.5, if (R,S) is subordinate to
the eyclic quadruple (8, 6 ; 81, 86), Rye = (84)ze = &, By = (8u)se = f,
and S;; = (8).: = f, 8.z = (8)z. = t. By 4.2.6, (R,S) must be (8, 8).

From this, it follows that, for every =, there is exactly one common
quadruple of order n, viz. (85, 6 ; ;, 6;). This is an immediate conse-
quence of D4.8 and the above transition from the cyelic column to the
first common column in the chart. Hence, we have obtained a model for

relation < among positive integers.

This completes the solution of the example 4.2.2, which, however, is
not a sufficient illustration of the general case. We have to discuss a
procedure by considering more complex situations.

4.3 The Procedure

One possible procedure is to add one infinite column at a time. Thus,
it is possible to represent all possible solutions of each column by a
graph, and to represent the solutions satisfying all the initial #’ columns
by a finite set of graphs if it is possible so to represent all solutions satis-
fying the initial n columns. Since the common columns enjoy a measure
of uniformity, simultaneous solutions for all the columns would be as-
sured if suitable repetitions occur. An exact explanation of such a pro-
cedure would be quite lengthy. In any case, a successful choice of pat-
terns of repetition has not been found to assure that for every solvable
table, such repetition always occurs.

Instead of elaborating the above procedure, we transform the problem
to something similar to the abstract question of 4.1. Thus, given any
formula of the form 4.2.1, we can, as in 4.2, construet its truth table and
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find all the common row pairs in the table. Among the common row
pairs, some are also eyclic row pairs and some are also basic row pairs.

If now we take the common row pairs a, b, ¢, d, etc., as elementary
units which are to fill up the infinite quadrant as shown in the chart
given under 4.2.7, then the following scheme appears to be feasible. Sup-
pose the points in the infinite quadrant are to be filled by ai;, 7,7 =
1,8, -+, then we may consider instead all the 2 X 2 matrices:

i Qi .
, forall 7,j = 1,2,- -~
Airj  Qirjr

In other words, given the common row pairs, we can form all possible
2 X 2 matrices of them which satisfy the relations of subordination.
These 2 X 2 matrices are then the basic pieces from which we are to
obtain an infinite solution subject to the conditions: (a) consecutive
rows or columns from two matrices are the same; (b) only basic and
eyclic row pairs are permitted in the first two columns.

It ean be verified that the problem of finding a model for the original
formula is equivalent to that of finding a way to fill up the infinite
quadrant by such derived 2 X 2 blocks of row pairs.

The abstract problem is: given any finite set of 2 X 2 matrices of the

form
a c)
b d)’

to decide whether it is possible to fill up the infinite quadrant with copies
of these pieces. This is not quite the same as the problem of colored
plates described in 4.1, because here what is done amounts to coloring
the corners, or imposing connections between neighboring sides within a
same square.

Any set of such 2 X 2 matrices can also be construed as a set of colored
plates. Conversely, given any set of colored plates, we can also find in a
systematic manner a corresponding set of such matrices such that the
solvability problems for them are equivalent. For example, we may
replace a colored plate hy a block of nine 2 X 2 matrices so that the
restriction on neighboring sides no longer operates.

Tt is possible to use a procedure similar to the one described roughly
in 4.1. Some change is needed to take care of the additional conditions
on the first two columns. Thus, a sufficient condition is to get a eyelic
rectangle m X n on which we can attach a frill of two columns on the
left to obtain a rectangle m X (2 + n) such that: (a) the tops of the
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first two columns are the same as the bottoms; (b) the additional re-
quirements of being basic or cyclic are satisfied by the frills.

4.4 Further Problems

The discussions so far seem to have barely scratched the surface of a
group of rather difficult problems, among which the basic one is probably
that of measuring the complexity of formulae in the predicate calculus.

One may measure the complexity of a formula in many different ways.
The “simplest’’ model of a formula may be taken as a semantic measure.
The quantifier prefix or graph of a formula may be taken as a syntactic
measure. In addition, for formulae with a same prefix, we may also
classify the possible matrices by the truth tables. Our knowledge on
using these criteria to give detailed classifications seems very limited.
One example of the ignorance is the following open problem (Ref. 2, p.
177): whether there is any class of formulae which is neither decidable,
nor a reduction class. It appears reasonable to conjecture that there
must be such classes, although the first examples which one will get are
likely to be artificial ones.

Some of the reduction classes are, formally speaking, surprisingly
simple. For example, from the Surdnyi normal form given above as case
VIII, it follows that, for satisfiability, one reduction class is:

4.4.1 Formulae with prefix (z)(y)(Ez)(w)Mzyzw, where M contains
neither function symbols, nor =, nor predicate letters which are not
dyadic,

Since each matrix M is effectively determined by a truth table on the
atomic formulae in M, the class may be viewed as a union of a simple
sequence of finite classes C, , Cs , ete., where C, is the subclass of formulae
each containing exactly n predicates (or, equivalently, the first n pred-
icates in some enumeration). There is a sense in which the decision
problem for each finite set of formulae is solvable, and yet usually we as a
matter of fact only solve the problem as a corollary to a solution for some
infinite class.

To obtain a semidecision procedure for the class VIII or 4.4.1, we
need more complicated arrangements of triples or quadruples of positive
integers than the case A,F.4,. Take, for example, the class in case
VIII. We have to consider not only the triples (a,b,c) with b = a’, but
all the triples for the first half of the formula, and among them those
for the A,F, case are used simultaneously for the second half of the
formula.

An example is:
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142 ()W) @) (~Gry v ~Gyz v Gaz) & (2)(y)(Bu)(~Grx & Gyu).

If we use the Skolem function g of the A.E, case, we can rewrite the
above as

4.4.3 (~Gry v ~Gyz v Grz) & (~Gex & Gygry).

In general, we are concerned with deciding the satisfiability of formu-
lae of the form

4.4.4 Muzxyz & Nzygry.

As (z,y,2) runs through all triples of positive integers, we get an infinite
sequence from 4.4.4, and a semidecision procedure is to decide, for
certain cases, whether such an infinite sequence can be simultaneously
satisfied.

For example, we may throw together all permutations of a given
triple, and confine ourselves to the triples (a,b,c) with a = b = ¢, as-
signing each of them a lattice point:

fleye) = (@ — L,z —x,2—1y),
ey = @+ 1L,z +yx+y+ 2.
The correlation uses all lattice points (x,y,2) of nonnegative integers.
For instance, (1,3,5) gets the point (0,2,2).

We might try to create different types of cubes each with eight ver-
tices from (3,7,k) to (i',j',k’) and piece them together. But it is not easy
to see how to find a procedure analogous to that described in 4.1 which
would at the same time take into consideration the second half of the
formula.

V. A PROOF PROCEDURE FOR THE PREDICATE CALCULUS
51 The Quantifier-Free Logic I

Given the definition of formulae in 1.2, we can define sequents, ante-
cedents, consequents, as in Ref. 13, p. 5. The sequents in F' are those
containing no quantifiers and the rules for F are exactly the same as
those for P, (Ref. 13, p. 8), except for containing not only variables but
also functional expressions as terms.

Example 1.1 # 2",z =z +1—=>1=z+1

By the rules P2a and P2b (Ref. 13, p. 5), this is a theorem if the
following is:

l=z+4+ 12" =z+1—>1=2a"
This is a theorem by P7 and P8 (Ref. 13, p. 8).
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EBrample 2. x + v ' = @+ ),y =+ yy =vV2Dy=00v=
r+y—y Fr+y

By P2a, P2b, and P5b, this is a theorem if the following two sequents
are:

z 4+ u;

Lez4+y =@+, y=vv=a+yy=x+y—y
ety =@+, v=xt+yy=at+y—-y=vy=2x2+y.

1. is a theorem by 7 and P8 since we can replace y and « + y by ».

ii. is also a theorem because we can replace v* by (x + y)’ and then
¥ by x + ¥’ in the first clause of the consequent and the result is a
theorem by P1.

These rules in fact yield a decision procedure for all quantifier-free
sequents. In order to see this, we use a more efficient method to speed
up applications of P7 and 8.

Given an atomic sequent which contains equality but is not yet a
theorem by P1 or P7. List every pair (a,b) if @ = b occurs in the ante-
cedent. Extend repeatedly the set of pairs by symmetry and transitivity.
Join each pair by the equals sign and add all of them to the antecedent.
Now compare each clause in the antecedent with each clause in the
consequent to see whether there is a pair of clauses which can be ob-
tained from each other by substituting equals for equals; moreover,
examine each equality in the consequent to see whether it can turn into
a = « by substituting equals for equals. If either case occurs, the
sequent is a theorem. If neither is the case, then we can find an interpre-
tation of the functions and predicates so that the antecedents are all
true but the consequents are all false.

5.2 The Rules for Quantifiers.

In the present formulation of the predicate calculus, one emphasis is
on separating out reversible rules of proof which serve to supply decision
procedures as well, because they have the property that not only the
premises imply the conclusion but also conversely.

The rules governing quantifiers were given in Part I.2*

*“S4, When the input problem contains quantifiers, the following preliminary
simplifications are made: (i) All free variables are replaced by numbers, distinet
numbers for distinet variables. (ii) Vacuous quantifiers, i.e., quantifiers whose
variables do not occur in their scopes, are deleted. (iii) Different quantifiers are
to get distinct variables; for example, if (x) occurs twice, one of its occurrences is
replaced by (z), z being a new variable. This last step of modification is specially
useful when occurrences of a same quantifier are eliminated more than once at
different stages.
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The justification of the reduction to subproblems (Part I, T2.1) is
obvious because all truth-functional rules are reversible and (z)(Gz &
Hz) is a theorem if and only if (x)Gx and (x)Hz both are.

Usually T2.2 (Part I) is true, but restrictions are necessary, as the
following example would show:

() (Ey)[(2)Gyz & Hzy].

Although z does not occur in the scope of (z), there is no way to bring
(2) out of the scope of (x) because the variable y ties up the two clauses
in the formula. There are several possible alternatives: one may make
exact the restrictions needed, or record the scope of each quantifier in
the usual manner, or use the easy simplification that when a quantifier
governs a formula with two halves joined by a logical connective but the
variable of the quantifier occurs only in one of the two halves, the
scope is just that half.

The test of connectedness of variables and functors (Part I, T2.3) is
meant as a device to simplify the interconnections between quantifiers.
In particular, the test gives a method for ascertaining that certain ap-
parently complex sequents fall under the AE provability case. In order,
however, actually to bring such a set of sequents into the AK form, we
need in general transformations similar to those used in reducing a
sequent to the miniscope form. Since the process can be tedious, one may
prefer an alternative method of not carrying out the transformation but
merely determining a bound & such that either the original sequent is a
theorem or has a counter-model with no more than % objects. If this
alternative is chosen, a method for ealculating the bound & has to be
devised.

In any case, when we have a finite set of atomic sequents and a set of
governing relations among the variables and functors, we should further
simplify the matrix, i.e., the set of atomic sequents by the familiar
methods of dropping repetitions and immediate consequences.

“S5. After the above preliminary simplifications, each problem is reduced to as
many subproblems as possible in the following manner: (1) Eliminate in the usual
manner every truth-functional connective which is not governed by any quanti-
fiers. (ii) Drop every initial positive quantifier (i.e., universal in the consequent
or existential in the antecedent that is not in the scope of any other quantifier)
and treat its variable as free, i.e., replace all its occurrences by those of a new
number. (i) and (ii) are repeated for as long as possible. As a final result of this
step, each problem is reduced to a finite set of subproblems such that the problem
is a theorem if and only if all the subproblems are.

“T2.1 The original problem is a theorem if and only if all its subproblems (in
the above sense) are.

“T22 We can separate out § and its scope from those quantifiers whose varia-
bles do not oceur in the scope of Q.

“T2.3 If two symbols, each a functor or a variable, are not connected in the
final matrix, we can always so transform the original sequent as to separate the
two quantifiers which give way to them.”



36 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961

If there are two subsets of the set of atomic sequents which contain
neither common variables nor common functors, then they can be
separated.

Moreover, each atomic formula that contains neither variables nor
functors can be eliminated by the familiar method of replacing F(p) by
F(t) & F(f). In other words, it can simply be dropped on the ground of
the following consideration. F.g., take

Gur,G'11 — Gok.
This is equivalent to the conjunction of:

Guv,t — Gvk;
Guv,f — Guvk.

But the second sequent is always true and can be dropped; the t in the
first sequent can be dropped, so that we have

Gur — Gvk.

After all the above steps, we arrive at a finite set of finite sets of
atomic sequents which, taken together, are equivalent to the original
problem. We may consider each finite set of atomic sequents separately
and proceed according to the governing relations hetween their vari-
ables and functors.

We can view the set as a formula in the prenex form with a matrix
in a conjunctive normal form. Or, if we prefer, we may replace — by -+
and construe the variables as universal quantifiers, the functors as
existential quantifiers. Then we get a negation of the formula in prenex
form with a matrix in the disjunctive normal form.

In either case, the remaining problem is to be handled by considera-
tions such as those explained in Sections IT through IV.

There is an easily mechanizable procedure by which we can, in theory,
not only prove all provable formulae, but also refute all formulae which
have finite countermodels. All we have to do is test, besides the sequence
M,, My, M,, ete., whether a formula is satisfiable in a domain with
one object, or two objects, or ete. For example, given

(x) (y)(Bz) Mxyz, (1)

if some of M112, M123, --- is contradictory, then the negation of (1)
is a theorem; if relative to some finite domain, (1) can be satisfied, then
the negation of (1) is not a theorem. For example, (1) is satisfiable in a
domain with one object if and only if M111 issatisfiable; with two objects,



PROVING THEOREMS BY PATTERN RECOGNITION — II 37

if and only if
() () (Mxyl v Mzy2)
or
()[(Mz11 v Mz12) & (Mx21 v Mx22)]
or

[(M111 v M112) & (M121 v M122)]
& [(M211 v M212) & (M221 v M222)]

is satisfiable.

VI. REMARKS ON MATHEMATICAL DISCIPLINES

Besides the contrast between proving and calculating, there is a con-
trast between symbol manipulation and number manipulation. There
are problems such as proving trigonometric identities, factorization,
differentiation and integration, which all appear to be mechanizable.
In numerical caleulations, it appears likely that the process of choosing
one or another method of calculation can also be mechanized in many
cases.

There is the problem of applying the methods considered so far to
deal with concrete examples.

One example referred to in Part I' (p. 231) is Hintikka’s derivation
of a contradiction from his own formal system.! Here, intuitive under-
standing is required to select from the set of all axioms suitable members
which are sufficient to produce contradictions. Experience, however,
shows that, even after a reasonable selection is made, to actually give an
exact derivation of a contradiction remains quite a dreary affair. In
such a case, the sort of procedure discussed in this paper can be useful.

In fact, Hintikka uses five axioms to derive a contradiction. Write
briefly:

Hayz for z#a&kz#y&zcydyca
The conjunction of the axioms is:

(Ex)(Ey)(z = y) &
(Ea)(Eb)(Ee)(Ed)(y) {ly # a D (y € a = (Ez)Hayz)] &
[y #bD (y € b= ~(E2)Hbyz)] & (2)
y=cDece=y=avy="0hl&
ly=dD>yecd=y=o)]}
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The assertion is that (2) leads to a contradiction. In other words, (2)
has no model, and its negation is a theorem of the predicate calculus.
To decide whether this assertion is true, we only have to test (2) by
essentially the method of Section 111 because (2) can be transformed into
a formula with £A4,F prefix. Such a method yields also a proof or a refu-
tation of the assertion that (2) gives a contradietion.

In a different direction, we may consider some simple examples in the
arithmetic of positive integers.

First, we consider the example, 2’ # x. We wish, in other words, to
prove, with the help of induction, that this is a consequence of the
axioms:

a' #Z 1,
2 FEy - #E oy

As a general principle, we try to use induction. Since there is only one
variable, we reduce the problem to:

(@2 = 1, @@ =y Da

Il

y) = 1" = 1, (3)

@z’ #= 1, @)W =y De =y, #z—a" =2 €}

These can be dealt with by the program described in Part I, except
that, to avoid confusion, we use now a, b, ¢, etc., instead of numerals to
replace the positive variables. We have:

'=1Lu=v—-2 =1,
1/=1-2"=1,4" =7,

w=uva" =a -2 =1ad = q,
a"=a —2'=1d =a

These sequents are all true by substitution: 1 for x in the first two; a’ for

% and a for v in the last two.

As a somewhat more complex example, we take the commutativity of
addition. In order to prove x + y = y 4+ 2, we may use induction
either on x or on 3. We arbitrarily take the earliest variable:

I+y=y+1, (5)
r+y=y+ar—-z' +y=y+ 2. (6)

To prove 1 + y = y + 1, we make induction on y:
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1+1
14+ a

I

’

1 +1
a+1—>14+a =a + 1.

The first is a theorem by the property of equality. To prove the
second, we use another general principle, viz., when a defined symbol
occurs, we make use of the definition. In this particular case, we make
use of the recursive definition of addition, and try to prove

v+ l=vw,u+v=@w+v),1+a=a+1—1+a =a"+ 1.

In order to derive the consequent from the antecedent, we start from
1 + o’ and @’ + 1, use the equalities in the antecedent to transform
them, and attempt to find a chain to join them. Thus, we may try to
make all possible applications of the three equalities in the antecedent:

(A +a)+1—(@+1)+1
1+ a'—1+ a)'“—(a + 1)'—(a')—a' + 1
1+ (a4 )—1+ (1 +a)
@+ 1@+ 1)+ 1—(+a)+1
(a)'—(a+ 1)'—(1 + a)’ 1+d

In general, we may begin two trees simultaneously from both sides of
the equality, do not write down any term which has already occurred in
the same tree, and stop when a common term appears on both trees.
When we get to the more complicated situations, we have to investigate
two additional things. First, it would take too long to search through
trees, so that it is desirable to organize available informations in forms
which are more quickly accessible. Second, we may exhaust two trees
and still fail to get a common term. Then we need to prove some lemma
which would join up the two trees.

For example, the above graphs give us a proof of (5). To prove the
other induction hypothesis, viz. (6), we may try to do the same with:

utl=vw,vt+v=wW@+vV,a+b=bF+a—a +b=>b+a,
a+b—->(@a+1)+Db

b+ a'\——(b -+ a)'t—-(ﬂ. + b)Y——a+ ¥V a+ b+ 1)
b+ (a+1) (b+a)+1——(a+b) +1

In this way, we have exhausted the applicable cases of the equalities in
the antecedent. Since we have proved the first induction hypothesis (5),
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we can add it to the antecedent. Then we get some further extensions:

(@+1) + b——(1 4 a) + b,
b+ (@+ )—b+ (1 + a),
a+ (b+ 1)—a+ (1 +b).

At this stage, we would ask whether any other given theorem can be
used to join up the two trees for a’ 4 b and b 4+ &/, or, if not, what a
reasonable lemma would be. If the associative law has been proved, we
may observe that the missing link is supplied by:

@+ 1) +b=a+ 1+ (7)

Otherwise we should try to make a “reasonable” selection of some
suitable lemma and prove it. If, for example, we have chosen (7), we
would try to establish it by induction on @ or on b.

It is possible that the quantifier-free theory of positive integers, in-
cluding arbitrary simple recursive definitions, can be handled mechan-
ically with relative ease, and yield fairly interesting results. The re-
striction to quantifier-free methods means that we are concerned only
with quantifier-free theorems to be proved without using quantifiers in,
e.g., applying the principle of mathematical induction. It is clear from
works in the literature that this restricted domain of number theory is
rather rich in content. It goes beyond logic in an essential way because
of the availability of (quantifier-free) mathematical induetion.

With regard to the general questions of using machines to assist
mathematical research, there is a fundamental contrast between problem
and method. While it seems natural to choose first the objective (e.g.,
number theory or geometry) and then look for methods, it is likely that
a more effective approach is to let the methods lead the way. For ex-
ample, since the known interesting decidable classes of formulae of the
predicate calculus either do not contain function symbols or do not
contain quantifiers, we are led to the simple examples above: quantifier-
free number theory or function-free set theory.

REFERENCES

1. Wang, H., Proving Theorems by Pattern Recognition — I, Comm. Assoc.
Comp. Mach., 3, 1960, p. 220.

2. Surdnyi, J., Reduktionstheorie des Enlscheidungsproblems, Budapest, 1959.

3. Ackermann, W., Solvable Cases of the Decision Problem, North-Holland, Am-
sterdam, 1954.

4. Skolem, T., Uber die mathematische Logik, Norsk Matematisk Tidsskrift,
10, 1928, p. 125.



13.
. Hintikka, K. J. J., Vicious Circle Principle and the Paradoxes, J. Symb. Log.,

PROVING THEOREMS BY PATTERN RECOGNITION — II 41

_ Herbrand, J., Sur le probléme fondemental de la logique mathématique,

Sprawozdania z posiedzen Towarzystwa Naukowego Warszawskiego, Wydz.
111, 24, 1931, p. 12.

. Church, A., Inlroduction to Mathematical Logic, Vol. I, Princeton Univ. Press,

Princeton, N. J., 1956.

. Church, A., Special Cases of the Decision Problem, Revue philosophique de

Louvain, 49, 1951, p. 203; 60, 1952, p. 270.

. Klaua, D., Systematische Behandlung der losbaren Fille des Entscheidungs-

problems fiir den Priidikatenkalkiil der ersten Stufe, Zeitschrift fiir mathe-
matische Logik und Grundlagen der Mathematik, 1, 1955, p. 264,

. Dreben, B., On the Completeness of Quantification Theory, Proc. Nat. Acad.
10.
11.
12.

Seci. U.S.A., 38, 1952, p. 1047.

Dreben, B., Systematic Treatment of the Decision Problem, Summer Insti-
tute of Symbolic Logic, Cornell Univ., 1957, p. 363.

Schiitte, K., Untersuchungen zum Entscheidungsproblem der mathemati-
schen Logik, Mathematische Annalen, 109, 1934, p. 572.

Ackermann, W., Beitrige zum Entscheidungsproblem der mathematischen
Logik, Mathematische Annalen, 112, 1936, p. 419.

Wang, H., Toward Mechanical Mathematics, IBM J. Res. Dev., 4, 1960, p. 2.

22, 1957, p. 245.






