The Covariance Function of a Simple
Trunk Group, with Applications

to Traffic Measurement”

By V. E. BENES
(Manuseript received July 6, 1960)

Erlang’s classical model for telephone traffic in a loss system 1is con-
sidered: N trunks, calls arriving in a Poisson process and megaiie exrpo-
nential holding times; calls which cannot be served at once are dismissed
without retrials. Let N(t) be the number of trunks in use at {. An explicit
formula for the covariance R(-) of N(-) in terms of the characteristic
values of the transition matrix of the Markov process N(-) is oblained.
Also, R(-) is expressed purely in terms of constants and the “recovery”
funetion, i.e. the transition probability PriN(t) = N |N(0) = N}; R(+)
is accurately approvimated by R( 0)e™!, with r, the largest negative char-
acteristic value, itself well approximated (underestimated) by —E{N(-)}/
R(0). Exact and approximate formulas for sampling error in traffic meas-
urement are deduced from these resulls.

I. INTRODUCTION

A theoretical study of sampling fluctuations in telephone traffic meas-
urements is useful both in designing procedures for measuring traffic
loads and in interpreting field observations. Hayward' and Palm® have
given an approximate formula for the sampling error incurred when
observations of the numbers of calls in existence are made at fixed in-
tervals of time, Their formula has the disadvantage that it is derived
for a probabilistic model (of the traffic) in which there is an infinite
number of available trunks. Thus there is no limit to the number of
calls which can be in progress at one time, and no congestion. Two im-
portant parameters, the number N of trunks in the group, and the prob-
ability px of loss, are left out of account. For this reason the practical

* This work was completed in part while the author was visiting lecturer at
Dartmouth College, Fall-Winter, 1959-60.
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application of this model is usually restricted to large groups of trunks
which are lightly loaded.

In this paper we derive and study the covariance function of the sim-
plest stochastic model of a finite group of N trunks. The sampling error
in traffic measurements can be calculated exactly from the covariance.
We find formulas for the magnitudes of fluctuations of observed traffic
for both periodic and continuous observation. The exact formulas lead
to simple approximations similar to Hayward’s, which take account of
the number of trunks. Our results are summarized and discussed in
Section II.

We shall use A. K. Erlang’s classical probabilistic model for a group
of trunks, deseribed as follows:

i. Holding times of trunks are mutually independent, each with a
negative exponential distribution. Time is measured in units of mean
holding time.

ii. Epochs at which calls arrive form a Poisson process of intensity
a > 0, independently of the holding times. The offered load is then a
erlangs.

iii. There are N < e trunks; calls which find all N of these trunks
busy are “lost,” and are cleared from the system.

These assumptions determine a Markov stochastic process N (i),
— o < { < »,the number of trunks in use at time ¢. N(-) is a random
step-function fluctuating in unit steps between 0 and N. As is well known,
N(-) has stationary probabilities {p,, » = 0,1,---, N} given by the
(first) Erlang distribution

al’l
n!
pn =N k

> | (1)

=)

=

= equilibrium probability that n trunks are busy.

With this choice of absolute probabilities, N () is a strictly stationary
process, whose mean and variance are respectively

m = a(l - pN)s
0’2 = ’mq:— apN(N - ml).

The probability py of loss is shown in Fig. 1, the fractional occupancy
N 'my in Fig. 2, and the variance ¢ in Fig. 3.
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II. DISCUSSION, SUMMARY AND CONCLUSIONS

The covariance R({,s) between samples N(¢),N(s) of the stochastic
process N(-) is the average of the product of N(¢) and N(s), minus
the product of the averages:

R(ts) = E{N()N(s)} — E{N(D)}E{N(s)}.

Since N () is a stationary real process, we have R(f,s) = R( |t — s|).
The funetion R(-) is called the covariance function of the process N(-).
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Tt can be written as
R(t) = lim E{N(t + w)N(u)} — E{N(t + u)|E{N(u)}

u-»

N N N 2 (2)
= E=u MPp EﬂnPr{N(t) =n|N(0) =m} — (Eﬂ mp,,.) ,

where {p,} are the stationary (or equilibrium) probabilities given by
(1), and

Pr{N(t) = n|N(0) = m}

denotes the transition probability that n trunks are busy at time ¢ if m
were busy at time 0. The function R(-) expresses the average depend-
ence or correlation between samples of N(-) taken at times ¢ apart.

The principal practical use of the covariance function R(-) in the
theory of telephone traffic is in computing theoretical estimates of sam-
pling error incurred in traffic load measurements. Two methods of meas-
uring traffic, the switch-count and the time-average, are considered in
this paper. In the switch-count, n observations {1, - -, za, z; = N( i),
j = 1,---,n} of the random process are made at intervals 7 apart; the
average

IS NG =~ = n7'S,
n j=1 n j=1

is then used as an estimate of the carried load m; = @ — apw . This
method is important economically because it is cheaper to sean trunk
groups periodically than to observe them continuously. The number r
is the scan inferval, and the number S, = 2 + -+ + . is called the
(total) number of paths in service, in n observations. Table I lists actual
mean holding times, scan intervals used and resulting values of 7 for

TasLe I — HoLping TiMEs, ScAN INTERVALS AND VALUES OF 7

Scan Interval Ratio r of Scan
. Interval to Holding

T 1 it :

Type of Call Hnld)irr?éc%ime (seconds) Time
(seconds)
U.S.A. Europe US.A Europe
Local Call 100-200 100 36 1tod | $to}
Long Distance Call 200-600 100 36 ttod | ¢ tods
Originating Register Holding| 10-15 10 or 100 36 1to3 | 4to2
Time or
10 to 7

No. 5 Marker Holding Time | 0.25-1.0 10 — — —
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various types of call. The variance of n~'S, is expressible in terms of
the covariance R(-) as

Var{n'S,} = n* i (n — |jDR(j7). (3a)

j=—n

In the téme-average, the continuously recorded sample average
M(T) = T forN(t) d,
is used to estimate the carried load. The variance of this estimate is
Var(M(T)) = 27 jﬂT (T — OR() du. (3b)

Thus the mean square error of both these methods of traffic measure-
ment can be calculated theoretically if the covariance R(-) is known.

In formula (2) the covariance function is expressed in terms of the
stationary probabilities {p,} given by the Erlang distribution, and the
transition probabilities

Pmn(t) = Pr{N(¢) = n[N(0) = m].
In the theory of telephone traffic, the particular transition probability
pan(t) = Pr{N(t) = N|N(0) = N}

has been singled out (in Refs. 3 and 4, for example) as a suitable “re-
covery’ or “relaxation” function that is characteristic of the dynamic
behavior of the Markov process N(-) in point of the undesirable “all
trunks busy’” condition. _

We shall show that a much more cogent reason than this can be ad-
duced to support the importance of the recovery function to traffic
theory: the covariance function R(-) can be expressed entirely in terms
of the recovery function and the offered load a. In other words, a single
one of the (N + 1)* transition probabilities appearing in formula (2)
suffices for determining the covariance function, and this one is the
recovery function pyy(-). This fact is a theoretical justification of the
intuitive view that the recovery function is important, for now the vari-
ances of n 'S, and of M(T) are expressible using only the recovery
function.

We next give a summary of the contents of the remaining sections;
this is followed by an account of specific results and conclusions.

An exact formula for the covariance R(-) is stated and discussed in
Section III, and derived in Section VII. The formula readily yields a
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rigorous upper bound which appears to give a close approximation to
R(-) itself. In Section IV the recovery function pyx(-) is given, and it
is shown how the covariance may be expressed in terms of the recovery
function by a convolution integral. The variance of n 'S, is studied in
Section V: an exact formula, and an approximating upper bound [based
on the upper bound for R(-)], are both obtained. The variance of the
time-average M (T) is considered in Section VI; again, an exact formula
and an approximating upper bound are found.

The covariance function R(-) is bounded from above and closely
approximated by a single exponential function

R(t) = et o = R(0), r < 0.
Here
@ = R(0)

= equilibrium variance of N(-)
= (load carried) — (load lost) (average number of idle trunks),

and the reciprocal time constant », in the exponent is the dominant*
characteristic value of the ‘“rate” or “transition” matrix of the differ-
ential equations satisfied by the transition probabilities. Alternately,
7y is the root of least magnitude of a Poisson-Charlier polynomial. The
root r; is shown as a function of offered traffic @ for N = 1,---, 8§ in Fig.
4, and is tabulated in Table II.

A lower bound for r, , depending only on the mean and variance of N(-),
is derived in Seetion VIII by making use of the fact that the matrix of
the differential equations for the transition probabilities is symmetriza-
ble. For low values of offered traffic per trunk, i.e., a/N < 1, this bound
can be used to approximate r, . In any case, the bound is a convenient
starting place for the use of Newton’s method. The bound is the ratio
—my/a", which satisfies the inequality

m
ey é r < —1,
at

= equilibrium mean of N(-)
= load carried = a(l — pn),
o = equilibrium variance of N(-)
= (load carried) — (load lost)(average number of idle trunks).

E
1

The approximation r; = —m,/¢" is illustrated in Fig. 5.

* Le., that of least magnitude (among the nonzero characteristic values).
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TABLE II — NEGATIVE OF DOMINANT CHARACTERISTIC VALUE 7y

N =4 N=35 N=6 N=17 N=38

&

1.043967 1.011448 1.002421 1.000421 1.000062
1.249464 1.112166 1.045044 1.015806 1.004800
1.582363 1.326321 1.1722567 1.084025 1.037229
2.000000 1.629624 1.383389 1.222707 1.121762
2.477548 2.000000 1.663799 1.427870 1.265214
3.000000 2.422137 2.000000 1.689991 1.463798
3.557618 2.885474 2.381627 2.000000 1.710891
4.143703 3.382497 2.800900 2.350437 2.000000
4.753426 3.907677 3.251918 2.735363 2.325514
5.383178 4.456828 3.730121 3.150052 2.682770
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By the “infinite trunk’”” model we shall henceforth mean the stochas-
tic model for telephone traffic determined by all the same assumptions
that we made in the Introduection, except that N = ; i.e., an unlimited
number of trunks is postulated. Riordan® and Benes® have considered
this model; Hayward' based his sampling error formula on it.

It is widely believed that the “infinite trunk” model is applicable to
large groups of lightly loaded trunks. Such a belief is gratuitous until
comparisons with a model having a finite number of trunks are made.
Studying the covariance function of the simple finite trunk group en-
ables us to make some of the needed comparisons; e.g., the variances of
n 'S, and M (T) in the two models are of particular interest. Knowledge
of the covariance R( -), however, is also relevant to the other three cases
to which engineers are loath to apply the “infinite trunk” model, viz.:

i. large groups of heavily loaded trunks,
ii. small groups of lightly loaded trunks,
iii. small groups of heavily loaded trunks.
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The variance of n 'S, is bounded from above and approximated by
the formula

—2nk
Var{n~'8,} < n”'o’ {ctnh A - 1_‘5'-:-;; esch® )\} , (4)

where 7 is the number of observations, and
A = —— = —1 (sean interval) (dominant characteristic value).

. . . .
The exact formula for the variance of n S, in the “infinite trunk” model
is
1 _— c‘?lf

-1
tnh 37 — ————
na{cn 3T o

esch® 2 r} . (5)
The upper bound (4) for the finite group is compared with the exact
formula (5) for the “infinite trunk” model in Fig. 6, which shows each
formula as a function of the scan interval = for various n, for a = 20
erlangs offered to 20 trunks. The curves suggest that the upper bound
for Var{n™'S,} for N < = is consistently less than the corresponding
variance in the “infinite trunk” model. As might be expected, increasing
the scan interval = improves aceuracy for the same number of observa-
tions. This is because the covariance function is positive, and monotone
in|t].
The variance of M (7) is bounded from above and approximated by

et — 1 — T
where T is the length of the time-interval of continuous observation,
and ¢° and r; are, as before, the variance of N(-) and the dominant
characteristic value, respectively. The exact formula for the variance
of M(T) in the “infinite trunk’ model is

et —1+T

T '
Since r; < —1, and ¢° is always less than a if N < «, the “infinite
trunk” model overestimates the variance of M (7') if applied to a finite
group. This conclusion is illustrated in Fig. 7, which shows the formulas
(6) and (7) for a load of 20 erlangs offered to 20 trunks. For an observa-
tion time of 10 mean holding times the “infinite trunk’” formula (7)
applied here would overestimate the variance by about 500 per cent.
This is about as extreme a case as would occur in practice. Fig. 7 also

Var{M(T)} £ 24° (6)

2a

&

(7)
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Fig. 6 — Comparison of variance of S,/n for finite and infinite trunk models.

depicts a “mixed” formula obtained by replacing a by o in the “infinite
trunk” formula (6); for 10 mean holding times the “mixed” formula
only overestimates the variance by about 100 per cent. Thus most of
the discrepancy is due to the difference between o * and a.

()m conclusions are set down in the following list:

. The average dynamic behavior of the process N(-), as deseribed
hy thP covariance function R(-), can be adequately (letelmined from
the dominant characteristic value 1 dnd the variance o of N(-).

2. The same parameters, 7 and o, suffice to give simple approximat-
ing upper hounds for the sampling error incurred in both periodic and
continuous observation of N(-). These bounds depend on the size N of
the trunk group.
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3. In terms of r and ¢” it is possible to check the applicability, for
theoretical estimates of sampling error, of the “infinite trunk” model

which assumes N = .

4, The “infinite trunk’” model, applied to finite trunk groups, con-
sistently and often grossly overestimates the sampling error. The over-
estimation occurs largely because ¢° is always less, and for heavy traffic
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is much less, than a, the (Poisson) variance of N(-) in the “infinite
trunk’ model.

5. In terms of r, and ¢° it is possible to design sampling procedures for
traffic measurement that depend explicitly on the number N of trunks
in the group. By these methods, a given accuracy can be obtained with
less observation, and thus at lower cost, than the “infinite trunk’ model
would require.

6. Hence for finite groups of trunks traffic sampling procedures which
are based on the “infinite trunk’ model tend to be wasteful, particularly
for heavy traffic. The parameters r; and ¢° provide a systematic way of
tailoring the measurement procedure to the number of trunks in the
group.

III. THE COVARIANCE FUNCTION

To state the formula for B(-) we need the “sigma’ functions* de-
fined (see Riordan’) as

ao(m) =f’;!,
(k-1 a*’
am =2 (") =g

with m (but not k) a nonnegative integer. These functions are connected
with the Poisson-Charlier polynomials

pa(x) = a"*(n!)* ; (—1)"‘j(?)j!“_j(§)

by the relation
ar(m) = (—a')"(m!) pu(—Fk).
(See Ref. 10, p. 33.)

For fixed N and a, let r, , 72, - -+, rx be (in order of increasing magni-
tude) the N zeros in the variable s of the polynomial ¢,11(N). In Sec-
tion VII the covariance is shown to be given by (the exact formula)

N
R(t) = —a’ — = I — (=)™ 8
( ) ap-".i:zlrj(l +Tj)2 ‘I#IJ[ (TJ T) ] ( )
where py is the probability of loss. It has been shownf that the zeros
r; are all real, negative, and distinct; all are less than —1, and consecu-

et

* The ¢ notation is copied from unpublished work of H. Nyquist. The functions
themselves were introduced into traffic theory by Palm.®

t The earliest reference appear to be Haantjes! in 1938, See also Ledermann
and Reuter.!?
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tive pairs are separated by at least unity. Fig. 8 shows these roots for
N =1, 2, 3 as functions of a.
Now r; is always negative, and the terms of the product satisfy

1

Ty — ryg

1 - > 0; (9)

hence the sum in (8) has all terms negative, so that
R(t) =z 0, all ¢.

The correlation between successive samples is thus always positive. It
is obvious from (8) that

N
—ad 1 rpi—1l—=r_ a2_
apﬁﬁzlrj(l + Tj)zg Tj —r o R(O)- (10)

16 — —— T
——— NEGATIVE OF ROOT OF g, (1)
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Fig. 8 — Roots of the first three ¢-functions.
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Since 7, is the root closest to zero, the value of (8) is only increased
if the »; in the exponents of (8) are replaced by », . Using (9) and (10),
we conclude that

0 < o' = R(1) = &(t), (11)
where
s e e — ryp— 1 —mr
(O = e
and

47" — 30 _,
_—

N
£(1) S a'pye ' 20 (4 1) = d'py
J=2 24:

< (0.3933)a’pye .
The approximation R(t) = ¢°¢"*' is illustrated in Figs. 9 and 10. It ap-
pears to be fairly accurate, especially for light loads.
The upper bound o’¢™’ for R(t) should be compared with the rigorous
formula (see Riordan® and Benes')

R(t) = ae”!,

which holds for the “infinite trunk” model. In this model the equilibrium
distribution of occupancy is Poisson, so that

R(0) = ¢" = Var{N({)} = E{N(1)} = a,

and the “time constant” of the exponential is unity, since time is meas-
ured in units of mean holding time.

The difference between the “infinite trunk” model and the “finite
trunk” model in point of the covariance can be understood by con-
sidering the effect of congestion, which is present in the latter. Conges-
tion affects the upper bound formula most directly through the value
of the variance ¢". It is obvious intuitively, and borne out in Fig. 3,
that as @ increases ¢ must eventually decrease to zero. This behavior is
not mimicked by the “infinite trunk” model, for which ¢ = a.

The finitude of N, i.e., congestion, affects the bound o™ in two ways:
(a) the “time constant” is not unity but the smaller number — (r)7
so that the rate at which dependence between samples of N(:) de-
creases (as a function of the interval between samples) is larger than
in the “infinite trunk’” model; this “time constant” decreases as the
traffic ¢ increases, because, as illustrated by Fig. 4,  is a monotone



132 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961

0.80

;L N = 5 TRUNKS
0.75 a = 10ERLANGS

—R®
——e-gzelt

\
055\

|
050

045

)
=

£ 040
(14

——'::
p
=L =T
-
-

0.35

030

0.25 )

0,20 n
\\

0.15 w

0.0 AR

0.05 =

0

0 o1 0.2 0.3 0.4 05 08 0.7 0.8 0.9 10
t
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decreasing function of a; (b) the value of R(0) (=¢") is not a but the
generally much smaller number

¢t po 1 ane (2]

=all —py(1 + N — a + apy)l.

The last form shows that ¢* < a for all @ and N. In fact, it is obvious
intuitively that

d'2=m1—ﬂpN(N—m1) < m < a.

A simple approximation for the dominant root r; can sometimes be
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used to make the approximation R(¢) = o"¢"*" more useful. It is shown
in Section VIII that

my carried load _

T2 = 7 load variance — 'V’

i.e., —my/d" is a rigorous lower bound to r; . Fig. 5 suggests this bound
gives a fairly good approximation to 7 if ¢/N < 1. Hence a simple
approximate formula for R(-), valid for /N < 1, is given by

R(1) = el

carried }oad e (12)
load variance

=~ (load variance) eXD{—

We know that R(t) = o¢'" and that —m./¢° < 7 ; hence replacing
r, by —my/d” tends to correct the error in the upper bound formula.
The formula (12) is illustrated in Fig. 11.
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IV. THE COVARIANCE IN TERMS OF THE RECOVERY FUNCTION

It has been shown® that the Laplace transform of pyw(-) is

GE(N)

S0s41 ( ‘V) '

By expansion in partial fractions we find that

.'PNN(“-) = Dv — ZEET_ H (1 - T+T) (13)

=1 Tj i#j 3

The sum assumes only negative values, and so py~(-) decreases mono-
tonically to the loss probability py . The recovery function is illustrated
in Fig. 12.

1.0
N = 5 TRUNKS
\ a =10 ERLANGS
0.9 N
0.8}
Pr-{N (t)=N|N(0) =N}
'
\\
0.7
~]
‘-.,.__-
— —
T —
-—l-v—._-
0.6 -
EQUILIBRIUM VALUE = Pr‘{t.oss}: 0.563
0.5
0.4
0.3
0 0.04 0.08 0.2 0.16 0.20 0.24 0.28 0.32

Fig. 12 — Recovery function for N = 5 trunks, a = 10 erlangs.
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We now observe that for eachj =1, --- | N,

t rit —1 —1
¢ — —wtre g €T — € te _
J @ RN = VR (14)

By comparison of formulas (8) and (13), and use of (14), one finds that

]
R(t) = a”pyfn (t — we “lpyx(u) — pyldu + o’ + Cte™!, (15)

where

= —apy Y — H(l_ : )
ri(r; + 1) i —rif’

i=1 i]

This formula expresses R( - ) in terms of py~(-) by a simple convolution.
To evaluate C' explicitly we note that

= —q° ’-TB+1(N — 1) 0 ]
¢ Py [(1 + 8)eoa(N) 1+ s oo’

where a_; is the first coefficient in the power series expansion of the left-
hand term in the bracket. One finds

o = ao(N —1) N
- ao(N) a’
p— 2 N —_—
C = apN(E 14 py)
= GPN(N — my)

(load lost) (average number of idle trunks).

V. THE VARIANCE OF THE NUMBER OF PATHS IN SERVICE

We assume that n observations {x;,7 = 1,---, n} of N(-) are made
during an interval of equilibrium, so that

Covizi,z;} = R(|1 — j| 1),
where 7 is the scan interval. Then with
Sp=a+a+ - + 2

= number of paths found in service,
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we find that

Var{S,] = {; ; .m,} -E {E :1:}

= . ZCovw,, 2 (16)

i=1 j=

-

> (n — |5 DRG.

j=—n

To give an exact formula for Var{S,] we note that

o0
> ¢ ™" = ¢tnh u,

m=—o
g d oo
— —3 2
S olm|e®mt = — 230 "™ = tesch’u
M=—0 du m=1

and

i (m — n)e™™ = e i |m | o 2imlu
m=—00

m=n
—2 2
= 1¢7°™ cseh’ w.
Then also

@

i (ﬂ _ |j ' )U—EL;\u =7 i e—2ImLu _ Z ‘m 1 efeimlu

j=—n m=—oa m=—00
+2> (m—mn)e™ (17)
—2nu
= n ctnh v — (—1%—) esch® w.*

Since the covariance R(-) is a symmetric function given by (8), it can
be seen that

Var{n 'S.} =

N [ctnh(—%) — % cschﬂ(—%)]
1 2 E (18)

—n a
P ri(1 4+ r;)?

1
. 1 - .
11;1( T‘j""-"i)

e Use of this identity was suggested by unpublished work of J. W. Tukey to
which the author had access.
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This formula is exact, given the assumptions. It is easily shown from
formula (17) that the exact formula for the variance of n 'S, in the
“infinite trunk” model is

1 —e
T csch’ %‘r},

n"'a {ctnh 3T -
illustrated in Fig. 6."

Returning to the case of finitely many trunks, we can obtain ap-
proximating upper bounds to formula (18) for Var{n™'8,} by using the
results of Section IIT on the covariance function. It can be seen from
the arguments leading to (17) that replacing the roots r; by r; in the
hyperbolic functions in (18) inereases the values of the expressions in
square brackets; this replacement is equivalent to using the upper
bound

2 rit
oe’

for R(t¢) in formula (16). Hence

—2nk
Var{n™'8,} = n'" {ctnh A — L_z—n— csch” x}, (19)
where
A= —1;‘-1 = —1(secan interval)(dominant characteristic value).

Since o”¢™" is close to R(f), we may expect that the overestimate (19)

gives a good approximation to the actual variance. This approximation
is conveniently plotted as a function of A for various n in Fig. 13.

VI. THE VARIANCE OF TIME AVERAGES

It follows from formulas (3b) and (8) that

Var{fT N(t) dt} =+ ol + ole™) (20)

0

as T — =, where

1
0.2 Nt’I;;[j(l_?‘j""'r‘)
cokZapNZ

= (4 )




COVARIANCE FUNCTION OF SIMPLE TRUNK GROUP 139
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|
n=1%0 1-g—2NA 2
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Fig. 13 — Upper bound to Var|S,}/ne®.

is a negative constant, and

© N II (1 - - i )
€ = f R(M) du = Qa,gph, E i) T Ti .
0

=+ )?

Note that e, and ¢ differ only in the power of r; that occurs in the
denominators. The third term of (20) is positive; is given by

N riT
e E )

(L )R i = Ti

equals —co at T = 0; and is of smaller order than ¢~ because r; < —1.
To evaluate ¢, explicitly, we note that

— _ 0.2 O’s+1(N—1) _1 —Py_ O G
6= zap”[s_——‘(l+s)2a.u(N) — [+ (1+s)2],=u’ (21)
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where a_;, a_, are respectively the first and second coefficients in the
power series expansion of the leftmost term in the bracket of (21); these
are given by
g, ="V -1 _N
- ao(N) a’
W oV = 1)]
T dr 20aa(N) e
N 1=

a apy

To find ¢; we must compute

i [ =1 1ope] 4 etV = 1) ]
8(1 + 8)20'3+1(N) 8 dx (1 + 3:)20'3+](N) .t=ﬂ'

This equals

80

d [ I(N - 1)
2(1 — py) — dm-jm)‘—*:lr_n:

or
(1 — py) 2—iloga 1(N—1)+ilogcr (N)
dx o+ dx =

=0

Now the generating function of the ¢-functions is
®(s2) = ) 2"ay(n) = (1 — 2)7"e"”
n=(
so that
i = 2"
—— @ = R
5, 2(s7) = ®(s2) > o

n=1
0’,(0) + 0’,(1) 4 .. + G's(ﬂ - 1)

n n—1 1 ’

{
ég a,(n) =
_d _ a1(7)
Sn = a;lf)g O’;+1(ﬂ)]£=0 - = .(n__j)—o-l(nj'
It follows that
2a’pxla—s + a—y + (1 — px)(2 — Ev + &)
= 20" + 2a’pw(1 — py)(1 — fx1 + £v) + 2aNpy.

The constant ¢, can be evaluated in a similar fashion.

C1
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From the bounds (11) for R(-) we conclude that

(CTlT -1 - T[T

0< 2’
T”ﬁz

) — Var{M(T)}

2 B_T -1 + T

< (0.3933)a’py — =)

and since R(1) = o'¢"', we may expect that the overestimate

. 26”1. -1 - ?‘1T

20 — g (22)
is a good approximation to the variance of M (T'). This approximation
has the same form as the exaet formula (7) for the “infinite trunk”
model, because in both cases a single exponential is used for R(-) in
formula (8). The overestimate (22) is depicted graphically in Fig. 14.
It was convenient to plot the ratio
Var{M(T)}

a?

as a function of the single parameter

u = nT = —(dominant characteristic value) (observation time).
1.0
0.9 N
b NG
0.7 AN
AN .
o6 VAR f N(D)dt
\ o P e+
0.5 oT? u®
\\( ) /
0.4 l..\
0.3 I
\\
0.2
GOES DOWN
0.1 as 2 &L
‘u,—u- H
o] I | 1
0 1 2 3 4 5 € 7 8

f=—D,T==(DOMINANT CHARACTERISTIC VALUE)(OBSERVATION TIME)
~ (CARRIED LOAD)(OBSERVATION TIME)

o2

Fig. 14 — Approximation to Var/iT{N (t)dt}/(«T)>.
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A simpler form of (22), valid for a/N < 1, results when we replace r;
by its lower bound

my _ carried load
o’ load variance =

This replacement decreases the value obtained, i.e., moves the approx-
imation in the direction of Var{M (T)}.
VII. DERIVATION OF THE COVARIANCE
The transition probabilities
pm"(t) = I’I‘[N(t) =n I N(O) = m}

of N(-) satisfy the Kolmogorov equations

pmn(o) = Omn ,

a =a - N

dt Pmn Pm(n-1) Pmn

d (23)
(ﬁ prrm = (ﬂ + l)pm(n+].) + CI:':’m(n--l) - (G‘I‘H)Pmu, 0 <n < N,

d

35 Pmo = Pm1 — APmo .

Multiplying the nth equation by n, and summing on the index n, we
find

@ BIN() [N(0) = m) = —E{N@) | N(©0) = m] +all = puy(D)],
whence

EINW [NO) = m) = ma +a [ el ~ po(u) du.
By formula (2), the covariance is then

N

> mpE{N(t) | N(0) = m} — m®

m=0

R(t)

t N
=me +am(l —e') —m’ —a f e T 30 mpupan(u) du,
m=0

0
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where
N .
T
mi = Z npn
n=0

for i = 1, 2 and {p,] are the stationary probabilities given by (1). In
particular,

my = a(l — pw), (24)

7= (my— m) = [m — apy(N — m)]" (25)
The Laplace transform of
Pr{N(-) = N|N(0) = m}
has been determined’ to be
aN*'"mIo',(m)

Nlsa, 1 (N) °
Therefore that of R(-) is

2

* — uﬁli _ ma amy —Til_
RAGs) = [ RO @ e e

(26
o a i m a“ "mle,(m) )
S(l + S)U"+1(N) m=1 P N!
By (1), the last term of (26) is
N
apy ma,(m).

_3(1 + S)ﬂ'..{.lf?) m=1

It has been shown’ that the “sigma’’ functions satisfy the recurrences

a,(m) = g,pu(m) — gou(m — 1), (27)
mo,(m) = ac,(m — 1) 4+ se,a(m — 1), (28)
so that
N N—1 N—1
mgi ma,(m) = akg a.(k) + Sk;] ae1(k)
= a0’3+1(N - 1) + SU,+2(N - 1),
and

a,+2(N - 1) _ N GO'..+1(N - 1)

Tar1(N) s+ 1(s 4+ 1oua(N)’
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The foregoing identities yield the following simplified formula for R*(s):

amy  aNpy
R*(s)_1+s+s(1—|—sj 1+ s
_ G2PN l: U’d+1(N —_ 1) :,__ ﬂz
14+ sLs(1 4+ 8)osa(N) s

(29)

Trom (27) we find that the partial fraction expansion
a1(N — - o, (N)N!

ﬂ’s+1(N) J—Zl (S — 75) H (TJ — 1)

— - n)"HT’ L
J=1 Ty — 1
is valid, where {r;} are the zeros of o, 1 (N).
By a similar argument, since py = ao(N)/a1(N),
au(N—=1) 1 —py N

s(1 4+ 8)oaa(N) B s a(l + s)

+Z(S— )_11 1 H?‘j—'l‘—?','.

i1 4 riad ri— 1

Hence formula (29) can be inverted to give, for ¢t = 0,

R(t) = mee' 4+ amy[l — ¢ '] — aNpyte™ — m’
t

—_ aszf Gt l:l _ _ —e_“ n E
0

i=1 7‘1(1 + ;)
-HT————-——j —1- T'] du
i ’

igEj T —

(30)

N it
¢’ rp—1—r

2 2 —t 2
=ge¢ + apyKe — apy _
=4 r—r

where

2 2 T .

o = mg — my = equilibrium variance,
and

21 1 rp—1—r

K — —_—
(L) -
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To evaluate K explicitly we observe that
1N — 1) a_y a_s r
B R i
(1 4+ 5)%cea(N) 14+ s (14 s) |0 (1)

where a_,, a_; are respectively the first and second coefficients in the
power series expansion of the leftmost term in the bracket of (31). Thus

K=G_1+a_2—1+pN.

Now
05+1(N — 1) _ -2 O'tl(N - 1) -1
Uk o)~ T Ty TS

1 d oo N — l)] Y (s—r) 'yyri—1—1
I:E ozp1(N) r=—1 + J=Zl (1 4+ r;)? II;IJ rp—ri

Trom the recurrence (28) for the ¢-functions we find that
80'.+1(N - 1) G'a(N - 1)

- N —-0-
o (V) T 0;
differentiating with respect to s and setting s = 0, we obtain
g = doaN D _ 1(_n(N - 1)) _ 1y
T T dsT a(N) =1 a ao(N) apy
Clearly,
_oN—-1) N
- aw(N) - a’
and so
K=-1-t g Ny,
apy a

)

GEPNIC = —0a.

Thus the formula (30) for the covariance function R(-) simplifies to

Y N r.f L 1 _ .
R(t) = —a'py > — 1" i (32)

=L+ )P iE =

VIII. APPROXIMATION TO THE DOMINANT CHARACTERISTIC VALUE

The differential equations (23) can be written in the form

d
d’tp(t) = QP(t)’
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where P(¢) is the matrix of transition probabilities {p..(¢{)} and @ is
the matrix of the “transition rates’:

—a 1 0 0 ---0
a (—a —1) 2 0 0
0 a (—a—2) 3

Q= 0
N -1 0
a(—a—-—N+1) N
0 0 0 a —N
J
The characteristic values of Q are 0, r;, r2, -+, ry . We define
1 yoa
Hn = — = nla™" TR nzolls"'aN:
Pn j=0 JI

and we introduce an inner product for the space L.(u) of (N + 1)-
tuples of complex numbers by the definition

N
(2,y) = ZO Tnnbtn -

The matrix ¢ represents a symmetric operator on La(u), i.c.,
(Qry) = (2,Qy),  2,y€Ls(p).

It is easily seen that

D —=2p=1, (33)

Qp =0, for p=(po,pr, 0w, (34)
Qijpi = Qjiny, t,j = 01,---,N. (35)
The last identity implies that
(@) = 5 3 G — ) 2 (s = s,
(Qx) =0,

so (as we already know) all characteristic values of @ are nonpositive,
being of the form (Qx,x) for some 2 € Ly(p).
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I'rom the extremal properties of the characteristic values of symmetric
operators (e.g., Zaanen," p. 383, Theorem 3) we conclude that

rn = max(Qz,x),

the maximum being over all € L,(u) which are not identically zero,
and satisfy (xx) = 1, (z,p) = 0, p being the vector of stationary
probabilities, as in (34).

We can now estimate r; from below by choosing an appropriate
vector x. We choose

2, = x =M™ n—01,--,N,
Tlin

where m; and ¢ are the mean and standard deviation of N(-) in equi-
librium, given by formulas (24) and (25) respectively. Clearly, (z,2) =
1 and (a,p) = 0, and

N—1 _ _ 2
(Qea) = —a EEO P, (n my  n+1 ml)

a T
_ _0(1 — D)
P
my
= —— =
2= !

(See Kramer.")
This approximation is illustrated in Fig. 5.
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