Noncylindrical Helix Waveguide
By H. G. UNGER

(Manuseript received August 9, 1960)

Small uniform deformations of the cross section of helix waveguide perturb
the circular electric waves slightly. From these perturbalions the added
circular electric wave loss is found in a uniformly deformed helix wave-
guide. For a nonuniformly deformed heliz waveguide Mazwell’s equations
are converled inlo generalized telegraphist’s equations. By an approximate
solution for small deformations, mode conversion and circular electric wave
loss are found.

Random tmperfections with small correlalion distance cause an average
circular electric wave loss that is nearly independent of the wall impedance
which the heliz jacket presents to the waveguide interior. It is therefore nearly
the same as in metallic waveguide. Near 50 kme, the rms value of elliptical
diameter differences should not be more than 0.0015 inch in order that on
the average not more than 10 per cent of TEo loss in a perfect 2-inch inside
diameter copper pipe is added to the TEq loss in a helix waveguide of the
same inside diameter.

I. INTRODUCTION

Helix waveguide composed of closely wound insulated copper wire
covered with a jacket of dielectric material and surrounded by a (oaxul
metallie shield is a good transmission medium for circular electric waves.'
In long distance communication with these waves helix waveguide is
useful as a mode filter, for negotiating bends and particularly as a trans-
mission line proper. The different applications of helix waveguide require
different properties of jacket and shield. Corresponding design rules
have been worked out.?

The loss of circular electric waves in a metallic waveguide decreases
steadily with increasing frequency only if the guide is perfectly round.
The same is true for the helix waveguide. To maintain the low-loss
properties of the circular electric wave, the helix waveguide must be
manufactured to a high degree of roundness and uniformity.
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As long as the guide is eylindrieal, i.e., any deviation from roundness
is independent of distance along the guide, inereased circular electric
wave loss is the only effect of such deviation from roundness. But if at
the same time this deviation changes with length, the transmission char-
acteristics of the guide will be further degraded by mode conversion-
reconversion effects. At any change of cross-sectional shape of the guide,
power of the circular electric wave will be scattered into unwanted
modes, and vice versa. The amount of power scattered depends not only
on the magnitude of change but also on the rate of change with length
of these deviations from roundness.

Two cases, that of the uniform noncircular helix waveguide and that
of the nonuniform helix waveguide, will be analyzed separately. In the
first case, a perturbation of the normal modes of the round waveguide
will give a simple answer. In the second case, however, Maxwell’s equa-
tions will be converted into generalized telegraphist’s equations,’ and
the results appear to be much more involved.

This paper partly represents an extension of an analysis of non-
eylindrical metallic waveguide® to helix waveguide, and partly uses the
results of a mode-conversion analysis which was made more recently.’*

II. THE UNIFORM NONCIRCULAR HELIX WAVEGUIDE

The mathematical model with which helix and surrounding jacket
structure is represented in this analysis is an anisotropically conducting
sheath. The sheath conducts perfectly in circumferential direction and
has a surface impedance Z in longitudinal direction. A cylindrical co-
ordinate system (r,¢,2) will be used, in which r = 0 coincides with the
axis of the guide. At present the inner radius of the guide is a function of
@ only:

@ = adl + 8()]. W

The anisotropic sheath imposes the following boundary conditions at
r=a:

E9+Erd—5:0; (2}
de
—Z ( da)
Ez = ——— H,‘,-}"Hr* .
2 d. 3)
v+ (%) i N

de
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The deviation from the nominal radius a, is assumed to be small and

smooth:
ds

§ K1 and — K 1. (4)
de

Then the electromagnetic field can conveniently be represented as a

perturbation of the field in the round guide of radius ay :
E = EO + e,
()
H = Hy+ h.

Furthermore the fields at » = @ can be written in terms of the fields at
r = a:

oE
Ey(awp) = Eilao,¢) + aible) —D(;‘L‘P—). (6)
If the unperturbed field is of circular electric form with Eo. = Eo =

H,, = 0, then, upon substituting from (5) into the boundary condition
(2), the Taylor series (6) can be used. The perturbation field can then
be written in terms of the unperturbed field of the circular electric wave:

aEOw(aD)
e, = aoﬁ(qﬁ) T (7)
The boundary condition (3) imposes an additional requirement on the
perturbation field

e. = —Zhy(ao). (8)

Conditions (7) and (8) suffice to calculate the complete perturbation
field.

A circular electric wave that earries unit power in positive z direction
has an electrie field:

where
ko = xot0, Ja(ko) = 0
and

B2 = wlpe — Xo™

Here, g and e are permeability and permittivity of the waveguide interior;
w is the angular frequency.
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The perturbation & of the nominal radius is a periodic function of .
A Fourier expansion is therefore in order:

5(p) = 2_ 8, cos pe. (10)

Terms with sin pe have been omitted from (10). They would only add
identical perturbations with different polarization. Substituting from (9)
and (10) into (7):

eplay) = 2uu xo¢ P Y 8, cos pe. (11)
7B P

The expression suggests an expansion of the perturbation fields into

terms which individually satisfy Maxwell’s equations and have the ¢

and z dependence of the terms in (11). Such a field is obtained from wave

functions

Ty = 22 agd p(xor) sin pee %,
»
) (12)
T = 22 agd o(xor) cos pee
P
and the following formulae:
_ _ B dTy _ 0T
r we I rde
_ _ B dTy , T
%= T e rdeo + aor ’
X 2
= X0
€: = jwe T(p) ) (13)
B — Ty _ Bo 0Ty
T rdg wu  Or
_ _0Tq  Bo 9Ty
hy = ——4= — ——+,
ar wu rde
X 2
(]
he = == Tp.

Joou
Equating e,(as) from (13) with e,(ao) from (11) and comparing in this
equation the coefficients of cos pe, a relation between a, , a(,) and 8, is
obtained:

/ 2 wu
“%%Jp(kn)a(m + Jp(k(])ﬂ:[p] = ;—r%é‘u. (14)
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Another relation between ag, and ap, is obtained by substituting for
e, and h, from (13) into (8):

.lu_ Jp(ll'ﬂ)alp) =2Z [XDJ::U\'U)E{J:) - c%ag-fp(kn)a[p]]. (15)

Jwe 0

Equations (14) and (15) can be solved for a(, and ag; . For example:
Ay =

280 2o, p (16)
wouJy(k) ko' Jo(ke) _ o I:J;z(ko) P 3_:]
Jweao J 5 (ko) I (ko) ko  wlue

With a(, and ag, the perturbation fields of circular electric waves are
known as functions of the 8,’s. Thus the quasi-circular electric waves
in any slightly deformed round waveguide can be written in terms of the
normal wave and perturbation fields.

The propagation constant remains unchanged and equal to j8o in this
first-order approximation. Now it is just the effect of a deformation on
the propagation constant and especially on its real part, the attenua-
tion constant, which is most important. Ordinarily a higher order of
approximation would be necessary to determine this attenuation. But
here, as in all electromagnetic problems where the dissipated energy is
small compared to the stored or propagated energy, the losses may be
caleulated from a lower order of approximation.” The attenuation con-
stant is the ratio of power P, dissipated per unit length to the power
carried by the wave:

_Pa
2P"

a

Power is dissipated by the perturbation field through the anisotropic
shield into the wall impedance Z:

Re (12) j; e6.* ds |—a .

This integral along the actual inner radius of the guide is to first order
equal to the integral along the nominal radius ao :

_Re(Z) [*

21z

Pi =

(S

Pa e.e.*ay de. (17)

In (9) the power flow of the circular electric wave was assumed to be
unity. Substituting for e, from (13) into (17) and using (16), it is found
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that each Fourier component of the mechanical deformation contributes
a, to the total loss a:

a=zap,
P

Jp(kﬂ)]2
Pop 57
l: J,,(ko) (18)

3 9 4 2
7 meagl: Bo y Jp (ko) _ Jp(kﬂ)]
‘ 1 + J wz,ue Feo? J'p(ku) J;)(ku)

where

@, = } Re (Z)%

ko
This expression for the added circular electric wave attenuation in a
deformed helix waveguide agrees with some obvious facts: Any deforma-
tion of a purely reactive wall does not cause any circular electric wave
attenuation. 8, and 8, represent changes in diameter and transverse dis-
placement, respectively, of an otherwise round guide. The circular
electric wave configuration is not changed by them. Consequently ay =
ay = 0

Equation (18) is valid for but one special case. The absolute value in
the denominator is zero whenever the characteristic equation (61) (of
Appendix A) for helix waveguide modes of pth azimuthal order is satis-
fied by &y. Whenever a mode of pth azimuthal order has the same
propagation constant as the circular electric wave, &, , however small
it may be, causes a substantial change of the normal circular electric
mode that can no longer be described by the perturbation expression of
(18).

The propagation constant of any of the asymmetric modes, to be equal
to jBo , requires a purely reactive wall impedance. Because of finite loss,
practical wall impedance values will always be at least slightly resistive;
(18) will therefore be valid for all practical cases.

For some typical cross-sectional deviations, (18) can be simplified:

8, represents an elliptical deformation:

Bo Fo'8a"

_ 1 Po .

cato = § Re () wp .27 %’ (19)
L+j—

wdo
83 represents a trifoil deformation:
Ba knga:tz
ay = 2 Re (Z) —
R g b _ 1 4 3 wea (1—k—"2——6 )2;(20)
12 J 340 9" W pead
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8, represents a quadrufoil deformation:

aylly =

FRe (2) 2 "“ koo ; (20
- ’u] welly ﬁ02 _ ""02 — 12 t
"1 24 — L 2 Jr 8% Feo® [éhugye (24 - ’1‘02)]]

etc., for any multifoil deformation.

III. NONUNIFORM HELIX WAVEGUIDE

Here the relative deformation & of the guide radius will not only be a
funection of ¢ but it will also change with z. In Appendix A Maxwell’s
equations are converted into generalized telegraphist’s for this strueture.

The deformation § is first assumed to be independent of z. The fields
in the deformed but cylindrical waveguide are represented in terms of
normal modes of the perfectly round helix waveguide. This series
representation for the field components is then substituted into Max-
well’s equations. With the boundary conditions (2) and (3) and an
orthogonality relation between normal modes of the helix waveguide, a
set, of simultaneous first-order differential equations is obtained, which
determines the z-dependence of the coefficients of this series expansion.
If the coefficients are chosen so that they represent amplitudes A and B
of forward and backward traveling waves of the round guide modes,
then the system of equations for the A’s and B’s can be written as

% + jhmAm = _J Z C””’(A” + B"),
n (22)
dci”' — jhuBn = +i 2 eam(A, + B.).

If the perturbation é of the nominal radius is expanded into a Fourier
series (10), then the coupling coefficients are determined by the co-
efficients of this Fourier expansion:

\/‘.rr N, /Tipn A[,,"Ap,t I (k)

p#= 0 Clompn = /‘/ )

hgm ]Laﬂ J;, (’i'pu)r "

(23)
kl_'lmkl]n

P = 0: Clomlln] = ——3 ,——
ap '\/hOthH

The metallic waveguide is the limiting case of the helix waveguide with
zero wall impedance. The normal modes of the helix waveguide de-
generate into TE,, and TM,, . The separation constant: k,, = x,.ao is

Go.
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the root of J ;,(k,,,.) = 0 for TE,, modes and the root of J,(k,.) = 0 for
TM,, modes. The coupling coefficients (23) reduce to ¢ = 0 for inter-
action between TE,, and TM,, modes. For interaction between TEy,,
and TE,, modes the coupling coefficients are:

— kﬂmkl’" kp"
Clomi[pn] = anz’\/QhOmhpn \/kp"z - p2

In a nonuniform helix waveguide the coupling coefficients ¢ in (22)
are functions of z. Then (22) is a system of first-order linear differential
equations with varying coefficients. For small deformations and con-
sequently small coupling coefficients, solutions of (22) can be found by
successive approximations. To simplify the representation, the B’s of
(22) are included in the A’s. There are then always pairs of A’s associated
with propagation constants jh,, and —jh, and coupling coefficients jc,.
and —jc.m . Thus the two equations of (22) can be replaced by the first
alone. The transformation

5y (24)

Ap = e g, (25)
eliminates a common propagation factor:
dldi;‘ = =J Z Cnm e_j(hn-h’n)zEn . (26)

The only initial conditions of practical interest are
E0) = 1,
E. (0 =0 forn # 1,

A TEo, wave of unit amplitude islaunched into a nonuniformly deformed
helix waveguide. A first-order solution of (26) under these initial condi-
tions is:

El(Z) 1,

z A (27)
E.(2) = —_]f crpe Y PTR g
0

The first-order solution is substituted into (26) for a second-order solu-
tion:

E(z) =1 — Z[ cn1e_j("”_h‘)’f eme M dt ds,  (28)
n 0 0

and so on.
As a typical example, a TEy, wave will be launched into a waveguide
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that has a constant deformation 8 between z = 0 --- [ and is round
everywhere else. The waveguide is thus uniform except for two dis-
continuities at z = 0 and z = {. The wave amplitudes at any point z > [
are, from (27) and (28),

2

Ei(z) =1 —-jz,,:(—h.,cThhT)E[(h: — ha)l + (M7 — 1)), (29)

Cin —j(hy—hn) 1 .
E. =_"" (e i — 1), 30
() = 2 ( ) (30)
The converted wave amplitudes E, may be regarded as being generated
from the TEy, wave at the two discontinuities z = 0 and z = [. Then the
conversion at one such discontinuity is:

En Cin ‘
n 0 31
J El hl - hll ( )
From (23) and (31), with § = &, a formula for mode conversion be-
tween circular electric waves at diameter changes is obtained:

EU» _ kﬂmk[)n 5
Eﬂm aﬂz ‘\/thmthn (hﬂm - hﬂu) v

Likewise, a formula for mode conversion in offsets of helix waveguide
with § = 8, cos ¢ can be written down. In the case of Z = 0, the formula
describes mode conversion at offsets of a metallic guide:

Eln kumkln kln

B T, (hom — o) vz =1 (33)

Thus, from (31), mode conversion at an arbitrary discontinuity in helix
waveguide can be caleulated.

Mode conversion at an arbitrary nonuniform deformation of the helix
waveguide, however, is found from (27).

(32)

IV. TOLERANCES OF HELIX WAVEGUIDE FOR CIRCULAR ELECTRIC WAVE
TRANSMISSION

The all-important question may be asked now: What deformations
can be tolerated in a helix waveguide without any excessive degradation
of the TEy transmission characteristics? There are two factors which
degrade the TEy, transmission: (a) Additional normal mode loss in a
deformed helix waveguide, as calculated in Section II and described by
(18), increases the overall TEy; transmission loss. (b) Mode conversion
and reconversion in nonuniform sections of helix waveguide, as cal-
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culated in Section IIT and described by (27) and (28), cause mode con-
version loss and reconversion distortion of the TEq; characteristic.

4.1 Normal Mode Loss

The normal mode loss of a uniformly deformed waveguide will be
considered first. Helix waveguide in current experimental use at the
Bell Telephone Laboratories has a nominal inner radius of a; = 1 inch.
A median frequency of the planned operating range is 55.5 kme. To
optimize various transmission characteristics, the surrounding jacket
has been made to present a real wall impedance to the interior that is
half of free space impedance Z = i4/pu/e. For these values, expres-
sions (19), (20), (21) for the added circular electric wave loss have been
evaluated:

Qolly = 3.64 523,
a3y = 0.458 632, (34)
gy = 0516 642.

By far the largest losses are caused by an elliptical deformation. The
theoretical loss of Ty, in a perfect copper waveguide of 2-inch inside
diameter at 55.5 kme is

gty = 2.77 X 1078,

In order that the increase of attenuation be not more than 10 per cent
of this theoretical loss, the elliptical deformation should be

8 < 0.276 X 107

The elliptical diameter differences in a 2-inch helix waveguide should
not exceed 1 mil. This is quite a strict requirement.

It is interesting to compare these figures with losses in a deformed
metallic waveguide:

2 2
%7!3000

o
@ 2
o 10.5026502532, (35)
oy
ay

—_—= 1.5,Bn2a02642.
[241]

In a metallic waveguide it is the trifoil deformation which causes most
loss. In order that such a trifoil deformation not cause more than 10
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per cent of the theoretical TEy loss in a 2-inch metallic waveguide at
55.5 kme, this deformation should be:

5y < 3.42 X 1072

1.2 Mode Conversion Loss

Equations (34) and (35) describe the added TEy, loss correctly only
in a waveguide with uniform, z-independent deformation §. When the
deformation is a function of z, as is the case in an imperfect waveguide,
the general expression (28) describes the transmission. Changing the
order of integration in (28), a more suitable form is obtained:

Eiz) =1 — Zf g/t duf
n 0 0

The loss can be expressed in terms of the geometrical imperfections §
with ¢1, = C.8. For sufficiently small §,

[Ey| =1 — A,

’ en(8)ewm(s + u) ds. (36)

with the loss

A=, f (P, cos ABuu — Q, sin AB,u) du
n ]
— (37)
f 5(s)d(s + u) ds,
0

where
C.2 = P, + Q.
and
Fhy — b)) = Aaw + FAB. .

In general, the geometric imperfections will not be known, only their
statistical properties. Rowe and Warters® have determined with a rela-
tion like (36) the statistics of the loss in terms of the statistics of the
guide imperfections. Use of their analysis is made here.

The deformation is assumed to be a stationary random process with
covariance R(u) and spectral distribution S({)

R(u) = <(2)8(z + u)>, (38)

+=

R(u)e ™™ du. (39)

Il

S(¢)

—®

In (38), <x> is the expected value of .
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Taking the expected value on both sides of (37), the average added
loss is obtained in terms of the covariance R(u) is

A = Zf e “R(u)(z — u) (P, cos ABu — @, sin AB,u) du. (40)
n 0

For the following analysis, a special form for the covariance must be
assumed. Since existing experimental information is rather vague,
Rowe’ assumes R(u) to be exponential as reasonable physically and to
simplify the calculation

R(u) = %S" g il ko, (41)
0

Then the spectral distribution of & becomes
Sy
I+ (Lot)*’

where S({) is nearly flat with spectral density S, for mechanical fre-
quencies in distance smaller than

8(¢) = (42)

1
-
At ¢o the spectral distribution is down 3 db and falls very rapidly above
¢o ; Lo may be regarded as the cutoff mechanical wavelength.
Substituting (41) for the covariance in (40) and performing the in- .
tegration over a length z >> Ly, the average added loss is:

Pn(27r - AanLﬂ) - QnAanL[)

$o (43)

<A> = w8z Z NG T (2r — BeL)? (44)
TFor Aa,L¢ 3> 27, (44) reduces to
TSz —P,Aa, — Q,A8,
Sl PP P vy ey v R
or with
Z’S_" = R(0) = <&(2)>
the added average loss is for this special case:
<A> 2 _an :l
— =& Re| ————— |[. 45
2 = "’L(hl = ) (45)

As seen from (29), a long waveguide with a uniform deformation § =
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4/ <% would have the same added loss. Equation (45) then is the added
normal mode loss. It is also much simpler than that described by (18).
But only when the differential loss Aa of every single coupled mode is
very large in the cutoff mechanical wavelength Ly will the added loss be
described by (18) with § = /<.

The L, for waveguide deformation is probably small, certainly not
much larger than 1 foot. Certain coupled modes might have a very high
differential loss per foot, but then there would always be coupled modes
with low differential loss.

Consequently, the condition leading to (45) is not satisfied for cross-
sectional deformation in helix waveguide. Expressions (34) cannot be
used to determine cross-sectional tolerances. As shown by Rowe,® this
conclusion is true for a wide class of covariance functions.

The correct expression for mode conversion in helix waveguide is (44).
Written as added loss per wavelength, it reads:

<AS

P"(Q',vr - AanLﬂ) - QHA.BHLU
Z @Lo Z AB2Le + (27 — Aanlo)®

For real coupling coefficients in a lossless structure, (46) reduces to

<A> 2,
S = O L gy (40

(46)

and for very small L from (46)
9:3 = <" > o Z P.. (48)

For a very short correlation distance, however, a more general ex-
pression than (48) for the average added loss can be found. In this case
R(u), whatever function it may be, has substantial values only in the
immediate vicinity of « = 0. Then, instead of (40),

A> =z [ R(w) du Y. P,
o0 n

and, with (39),

A> _ 1500) S P (49)

for any spectral distribution S(¢) of geometric imperfections with small
correlation distance.

Equation (47) has been evaluated in Appendix B for cross-sectional
deformations in a helix waveguide with an infinitely high wall impedance.
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CORRELATION DISTANCE OF EXPONENTIAL COVARIANCE IN INCHES

Fig. 1 — TEg loss in round waveguide with random ellipticity; 2 inch inside
diameter, at 55.5 kme.

This particular helix waveguide design minimizes circular electric wave
loss and mode conversion in bends.? In Ifig. 1 is plotted the average
ellipticity 4/¢8:*> as a function of the correlation distance L, for an
additional average loss equal to 10 per cent of the TEy; loss in a perfect
copper pipe. For comparison, the same curve is plotted for Z = 0 repre-
senting metallic waveguide.

Both curves coincide for small values of the correlation distance and
differ only slighly over the practieal range of L,. Though Fig. 1 is only
drawn for a particular helix waveguide and a particular set of covariance
funections, it is fairly safe to generalize: Random ellipticity of the cross
section causes nearly as much average circular electric wave loss in helix
waveguide as it does in metallic waveguide.

A more exact statement has been made for the case of vanishing cor-
relation.’® When L; is small enough for (48) to be valid, the average
added TEj, loss is independent of the wall impedance and the same as in
metallic waveguide.

Manufacturing imperfections usually have a small correlation distance.
Therefore helix waveguide has to be manufactured to as close cross-
sectional tolerances as metallic waveguide for circular electric wave
transmission.

V. CONCLUSIONS

Cross-sectional deformations of the helix waveguide perturb circular
electric wave propagation. In a slightly but uniformly deformed helix
waveguide circular electric waves propagate with slightly changed field
pattern. Power is dissipated into the helix jacket. Consequently, the
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added circular electric wave loss in a uniformly deformed helix wave-
guide is considerably larger than it is in a copper waveguide of the same
uniform deformation.

Nonuniform deformations cause mode conversion and added TEg
loss. Manufacturing imperfections are expected to be random deforma-
tions with small correlation distance. Such imperfections increase the
average circular electric wave loss nearly independently of the wall
impedance which the helix jacket presents to the waveguide interior.
The average added loss is therefore nearly the same as it is in metallic
waveguide with the same imperfections. For example, ellipticity was
assumed to be a stationary random process along the guide with ex-
ponential covariance. Then, even at a correlation distance of 1 foot, the
added average TEy, loss at 55.5 kme in a 2-inch inside diameter helix
waveguide of infinite wall impedance is only 16 per cent smaller than it
is in metallic waveguide.
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APPENDIX A

(Generalized Telegraphist’s Equations for Deformed Helix-Waveguide

Maxwell’s equations in cylindrical coordinates (r,g,2) are:

}% _ 3@% = —jouH,, (50)

361? - % = —jeuH,, (51)

7_{ a(;fw) — ; ‘%’% = —jouH. (52)
Q]{“' - ‘%’_ = juell,, (54)
%a(.,?,) _ ;a;i _ e, (55)
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The electromagnetic field in the helix waveguide can be derived from
. ’ .
two sets of wave functions T, and T', given by
Tu = Nan(an) sin Pe,
’ (56)
Tw = NuJp(xar) cos pe.

The T, and T, satisfy the wave equation

1[;( BT) + 3 (i ﬁf)] —x'T, (57)

where x is a separation constant which takes on discrete values for the
various normal modes. The transverse field components are written in
terms of these functions:

aT, aT

= ;Vn(—a?-l—dn@)r
r

-V, (51 d, "T"),

d rd
o ntor (58
r = - Iu > — — )
H ; (T‘ﬂgo du k* or )
arT, h,” 0T,
H, = ;I“(W “w—e@)-

Substituting from (58) into (55) and taking advantage of (57), an ex-
pression for the longitudinal electric field is obtained:

2
E. = jou ; I % T, , (59)

where k is the intrinsie propagation constant of the waveguide interior;
d, and the propagation constant h, are chosen so that the boundary
conditions of the round helix waveguide

Ew(aﬂ) = OJ
E.(a)) = —ZH ,(a0)

are satisfied by the individual terms of (58). Only then do the individual
terms of (58) represent normal modes of the helix waveguide.
From E,(a;) = 0:

aT,
_ Tarp _ pJp(k’n)
du - iﬂ - ’C"J’p(nlﬂng) ) (60)

ar ag
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where k, = x.ao. The prime at the Bessel function denotes differentia-
tion with respeet to the argument. The remaining boundary condition
between K, and H, leads to the following (characteristic) equation:

1 Jy(k) _ pha' Jp(k) _ —j
kn Jp(kn)  Ea?l® J(ka) — weaoZ

The characteristic equation, together with

krzz = (k2 - hnﬂ)aoﬁ,

(61)

determines the separation constant k, . The transverse field components
of any two different modes are orthogonal to each other in that:

Lf (Etu X Hlm) dS =
8

VnIm
e [[aT. AT\ (8T, bl 0T
L;[(a—r + raq,) (T,- +dn e “ra¢) (62)

T, AT\ (9T b aT,’,.)] _
+(r0¢ —d 67')(@ In 7 o dS = dun,

where 8., is the Kronecker symbol. The integration is to be extended
over the cross section of the waveguide. For n = m equation (62) de-
termines the normalization factor:

V2 [h o a oava 1
N,=—"— | %pk — )Y, +
Vi d (k) LF Y,
2 P2 1 2 - (63)
+ nr\"-n 1 - kE—aoﬂ + 2 ?ﬂ - p Yn )
with
AL
" kud (Ka) ©

All quantities in (56) and (58) have now been determined except the
current and voltage coefficients. To find relations for them the field
components from (58) are substituted into Maxwell’s equations and
these then are converted to generalized telegraphist’s equations.

Add
(aT,,, R aT,’,.)
—( L — g,
rde k* or
times (50) and
2 !
aT,, 1 d N 0T

ar "'FE
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times (h1) and integrate over the cross section. The result is:

2
Mm

Vo
‘ + J —E- Im =

dz

f (grad E.)(grad T,) dS + dn ’% f (grad E.)(flux T;.) dsS
8
(64)

— jou Z I, % [f (grad T,)(grad T,) dS

" [ (grad 1) (ux 7 )ds]

where the gradient and flux of a scalar are defined by:

aT 19T
ar’ grad, T ;3_60’

10T T
vag  we T =

Il
Il

grad, T
(65)

flux, T

After partial integration on the right-hand side of (64),

dV
dz

2 9 !
f E,(%+@h’—'.‘%)and@+xﬁfmmds
0 S

. hs,
+ J - Im =
we

ar a k* do
o OTw . dy by T,
- I, % f T,L(———"‘ G fln T2 m ) 4o dd
Jon 2 k‘—'[o ar T a i o ) 0

T xo L T,T., n's].

(66)

In special cases when the helix waveguide degenerates into a perfectly
conducting metallic waveguide, the individual terms for E. in (59) are
zero for r = a,, while E. itself, because of the boundary condition (3),
is different from zero. Then (59) is a nonuniformly convergent series,
which deseribes E, only in the open interval 0 < r < aq . Term-by-term
differentiation will make the series diverge. Therefore the series had
not heen substituted for £, in (64). In (66), (59) may now be substituted
in the integral over the cross section. In the line integral, E. from the
boundary condition (3) may be substituted. The fields at r = a can by
a Taylor series be written in terms of fields at r = ao . Neglecting higher-
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order terms:

Ba) = 2 [H,,(ao) 4 ;i““) a + Hi(a) %‘;]
(67)
aE (ao)
“or
Thus, instead of (66):
dVm +j I"“ —
dz
(68)

2r 2 ’
d Tw | dwhw 3Tw
—y /'; [a[la - (F + ZII‘p) + ZH da] [aar + a— hk"] a_¢] d@.
v 0

For the other of the two sets of generalized telegraphist’s equations, add

AT, dw 0T
( ar T a)

(1 T aT,’,.)
2@im g o
r O¢ ar

times (54) and integrate over the cross section. The result is:

times (53) and

dl .
_—m 7=
o + jweV,,

—-f (grad H.)(flux T,.) dS + dn f (grad H.)(grad Ty dS
8 S

(69)
+ jwe Z Va.d, X"
' [ [(grad %) (Aux T,) — d,(grad T',) (grad T')] dS.
Js
After partial integration on the right-hand side of (69),
W 4 eV = duxa® [ HT0 08
(70)

— jwe 3 Vadudy ""x"‘ fm" as.

To replace H, , substitute &, from (58), in (52), multiply (52) by 7w
and integrate over the cross section. The series (58) for E, is nonuni-
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formly convergent and cannot be used in (52). After partial integration,

—joon fs H.T, dS = fo " B Tntode + 2 Vadxa' L ToTmdS. (71)
With the boundary condition (2) as Taylor series at » = ap :

E (a)) = —E.(ao) dj _ aL (@)

de ar dab.

Equation (70) can be written as:

dl,. | . X f“ ( ds | aE, ,
& + jweV,. = —) o ay \ E, @ + ar apd | T de.  (72)
Partial integration on the right-hand side,

2 2x ’
[ B2 1=~ (aE' T. + E, "T"‘) de,
0 de 0 A de

and substitution of the series expressions (58),

al, oE
- L + Qy — = Z Vn annzaUT:z )
6¢p ar n

reduces (72) to

2 27
Un t joeVn = =% Vadudnxa'x [ TaTob de
dz wp & 0
o , (73)

+ jﬂdmx,ff BT 5 dp.

wy 0 dp

The interest is limited here to the propagation characteristics of
circular electric waves. Therefore, only terms that describe direct inter-
action between circular electric and other waves need to be retained in
(68) and (73). When V,, and I, are voltage and current amplitudes of
circular electric waves, then T, and 97,/d¢, and consequently the
right-hand side of (68) and the last term on the right-hand side of (73),
are zero. When V., and 7,, are amplitudes of other modes, then the same
terms in (68) and (73) are zero, since E, , H, , E, and H.(ay) are zero for

circular electric waves. Thus (68) and (73) reduce to:

AV | ol .
W-FJ;E—L,.——O, (74)
dl k

. . ¢ 2;0 : f“ !
== m = n b Om . anTm \
7 + jwe V. 7 ; Vadad wnad? Jo 5 dep
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The generalized telegraphist’s equations represent an infinite set of
coupled transmission lines. It is convenient to write transmission line
equations not in terms of currents and voltages but in terms of the
amplitudes of forward and backward traveling waves. Thus, let A and
B be the amplitudes of the forward and backward waves of a typical
mode at a certain cross section. The mode current and voltage are
related to the mode amplitudes by

V = \/K(A + B),

I = (A — B), (75)
\/7
where K is the wave impedance
K, == (76)
we

If the currents and voltages in the generalized telegraphist’s equations
(74) are represented in terms of the traveling-wave amplitudes, after
some obvious additions and subtractions the following equations for
coupled traveling waves are obtained:

A.,, .
d + Jhm m = —J Z Cnm(An + Bn);
iB (77)
ot = JhnBn = +J 2 cam(An + Ba).
The ¢’s are coupling coefficients defined by:
2x
Cam = %'\/m dnd ]:, 5 f T,;T,,,B dﬁﬂ (78)

To replace the d’s and 7’s in (78), the customary double-subscript
notation for the various modes in round helix waveguide is used. Then
from (66), (70) and (73) the interaction between circular electric waves
and other waves in deformed helix waveguide is described by the cou-
pling coefficients:

p # 0: Cloml[pn] =
Fipn Komdipn P Iy (kipn) fh
qu/” oL p 5 cos pe de,
hom kG-UZ 2‘\/11' Jp(kpﬂ) 0 et

p=0: ¢ Fomkon 1 [*"
= . [0m]lOn] = —%5 ,— 5 _
aﬂz\/hﬂthn 2w o

(79)
& de.
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APPENDIX B

Nonuniform Helix Waveguide with Infinite Wall I'mpedance

For Z — « the characteristic equation (61) reduces to
k
Y= +£— (80)
pha

or the two equations:

ku Jpia(ka) _ 1 — | /1 Fat
p Jp(ka) kPas®’
kn Jp-1(kn) _ 1 — | /1 _ Rt
p Jp(k.) kae®”

Tor k, < ka, an approximation for the roots of (81) is furnished by
Jpia(kn) = 0,
Jp1(ly) = 0.

Equation (81) can be expanded about the roots of (82) to improve the
approximations for k, .
Substituting (80) for Y, in (63) reduces the normalization factor to:

_ 1 _ 7 P )"“
Nu - \/'r—rkan(k") (1 kz—agz -+ ]ﬂhﬂauz . (83)

Hence the coupling coefficient is, from (23),

1 l"‘l]m]“ n ( P2 P )_; &
Clom)ipn] = &£ = ————n 1 — 2= F -] = 84
(omiten] 2 v/ homhpn @ IPa®  kh.ai®/ ao (84)
In (84) all the subscripts have been included to identify the coupling
coefficient properly.

(81)

(82)
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