Normal Modes and Mode Conversion
in Helix Waveguide

By H. G. UNGER
(Manuseript received August 9, 1960)

Heliz wavegquide, composed of closely wound insulaled copper wire cov-
ered with an absorplive or reactive jacket, transmits circular electric waves
with low loss. Mechanical imperfections, such as curvature and deforma-
tion, cause coupling between the. circular electric waves and unwanted maodes
and degrade the transmission. In designing a helix waveguide for a partic-
ular application, a jacket must be found that minimizes the lransmission
degradation. Unwanted mode characteristics and their coupling coefficients
must be known; these quantities are given by the rools of a transcendental
equation tnvolving complex Bessel functions.

A program has been set up for automatically finding the complex rools
by ilerative approximation. Starting from the known roots at infinile Jacket
conduetivily, the characleristic equation is solved for all practical values of
wall impedance of the jacket and all modes of interest. The representation
of the mode characteristics as a function of wall impedance leads to a definile
designation of modes in helerogeneous waveguide. The TEy, modes of helix
waveguide with n 5 1 can have only a limited allenuation. These limits
determine the design of mode filters. Manufacturing tmperfections in-
erease the average TEw loss independently of the wall impedance. Random
curvature with large correlation distance is produced by laying tolerances,
but its contribution to the average loss is minimized in a heliz waveguide
with very large wall impedance.

I. INTRODUCTION

Helix waveguide, closely wound from insulated copper wire and cov-
ered with an absorptive or reactive jacket, is a good transmission me-
dium for circular electric waves.! In long distance communication, wave-
guide can be designed to act as a mode filter, to negotiate bends or,
particularly, to serve as the transmission line proper.?

As in metallic waveguide, the loss of circular electric waves decreases
steadily with frequency only in a perfect helix waveguide. Any curva-
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ture of the guide axis, deformation of the cross section or deviation of
the winding from a low and uniform pitch adds to the loss and degrades
the transmission characteristies.?*

In a perfect helix waveguide circular electric waves propagate un-
disturbed. Imperfections cause coupling between circular electric waves
and other modes. Power is lost by conversion to unwanted modes and
reconversion distorts any smooth transmission characteristics.

In order to control mode conversion and reconversion in helix wave-
guide with practical imperfections, and also to design helix waveguides
for mode filters and intentional bends, the unwanted mode character-
istics and unwanted mode coupling must be investigated. Earlier calcu-
lations have resulted in a characteristic equation which implicitly de-
termines the properties of helix waveguide-modes,' and also in explicit
expressions for various coupling coefficients.?** Numerical evaluations
of these equations have been very informative. They were, however,
not complete enough to reveal all the unwanted mode properties and
could not serve as a basis for helix waveguide design in every applica-
tion.

The results of a more exhaustive numerical evaluation of helix wave-
guide equations will be presented here. In a few typical examples these
results will be applied to helix waveguide design problems. First the
equations which describe wave propagation in perfect and imperfect
helix waveguide will be listed.

II. PERFECT HELIX WAVEGUIDE

A helix waveguide (Fig. 1) will be called perfect when the helix forms
a straight circular cylinder and is wound with a low and uniform pitch.
The mathematical model which then replaces it is an anisotropic im-
pedance sheet at radius ¢ conducting perfectly in circumferential direc-
tion but with a wall impedance Z in axial direction. The Z replaces the
jacket surrounding the helix and takes into account the finite size of
helix wires. The electromagnetic field components in a eylindrical co-
ordinate system (r,¢,z) are then subject at r = a to the boundary con-
ditions

L, =0, (1)
EZ —_
7= (2)

Solutions of Maxwell’s equations in cylindrical coordinates are Bessel
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Fig. 1 — Helix waveguide and boundary conditions.

functions .J, of the radius, trigonometric functions of the azimuth and
exponential functions of the axial distance:

Jp (2—: 1') sin P
e (3)

’
J ,,' (£ r) coS P
a
where p is the azimuthal order of the wave. The axial propagation con-

stant v and radial propagation constant k/a are related with the in-
trinsic propagation constant wy/ e of the material filling the waveguide:

(i—t) = 'ue + 7" (4)

When the boundary conditions (1) and (2) are imposed on the solutions
(3) of Maxwell’s equations the following characteristic equation results:
b (k)T (k
jweaZ — —— »(k)J, (k) _o. -
P LXK + 9, (k)

I wne

Values of v that satisfy the characteristic equation (5) are the propaga-
tion constants of normal modes of the perfect helix waveguide. They
describe wave propagation in a perfect helix waveguide completely.
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III. IMPERFECT HELIX WAVEGUIDE

Wave propagation in imperfect helix waveguide has been described
by generalized telegraphist’s equations.2** In a perfect helix waveguide
a normal mode n of amplitude | £, | propagates independently from all
other modes m:

dE,
dz

= —v.B,. (6)

Imperfections cause interaction between modes so that the wave ampli--
tudes are mutually coupled:

d(i'ﬂ = _'YJAEn - j E cnmEm . (7)

The coupling coefficients are determined by the kind and size of the im-
perfection, but they are also strongly dependent on the wall impedance.

For circular electric wave applications, only coupling between these
and other waves is of interest. Coupling coeflicients of typical imper-
fections in helix waveguide will now be listed. The subscript m will refer
to the Ty, wave; n will refer to any of the coupled modes. A normali-
zation factor

_ V2
N = ‘\/; Jp(k'u)

2 2 2 -1 (8)
n o2 2yyr 2 1 2 P 1 2
'I:p.:y (p _I"u )}r” +',.,+ J‘\.u (1_;,—., +2(_'pY")]
W e Y,2 wopHea” Y.
with
Jp( ku) (
Ty = e )
Y, ked 5 (k) (9)
is used to render the coupling coefficients symmetric, i.e.,
cn"l = c"i" . (10)

3.1 Curvature®

There is only coupling between circular electric modes and modes of
first azimuthal order in a curved helix waveguide:

Vadil) | /ye kakd [ Ym | Ym + Yn ]1
Com = N, YT g /0 SmPn g T g Y T Yoy 12 (11)
2w ‘\/,u,ea Yo km® — Ya Ym — Yn R

where R is the radius of curvature.
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3.2 Deformation of the Cross Section®
The radius a; of a deformed guide of nominal radius a can be written
a = a(l + 2 5, cos pe). (12)
r

Each component §, will cause coupling between circular electric modes
and modes of azimuthal order p:

_Vr o _Kmkn? Vv .
Cmn = T Nn '}Tm w\/; aﬂ p'Ip(]lu)I llﬁp' (13)

3.3 Irreqular Helix Winding*

In a perfect helix waveguide the angle between a helix wire and the
cross section is small enough to be regarded as zero. In an irregular
winding this angle can be written

¥ = 2 6, sin pe. (14)

Each component 8, causes coupling to modes of azimuthal order p:

_ Vrkaka'Nod y(n) 0

cnm - — ( 15 )
20-"\/#5 \/'Ym'?n aﬂ

IV. NUMERICAL EVALUATION

The propagation constant of normal modes in helix waveguide is, by
(4) and (5), only implicitly given as a function of frequency and wave-
guide parameters. The problem is to find the complex roots of a tran-
scendental and complex equation.

With (4), v can be eliminated from (5). Then, for a given frequency
and guide radius, the characteristic equation determines k as a function
of Z:

F(k,Z) = 0. (16)
For Z = 0 the characteristic equation degenerates into
k) =0, J) (k) =0, (17)

the roots of which correspond to TM and TE waves respectively of
metallic waveguide.

Starting from the known roots of (17) for Z = 0, the solutions of (16)
for helix waveguide can be traced by gradually increasing the wall im-
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pedance. If ky and Z; are a known solution of (5), then an approximate
value for the solution at Z, = Z, + AZ is given by:

o
a7 F (ko Zo)]

by = ko — %Z——E—OAZ. (18)

ﬁ[F(kUaZD)]

A better approximation is found by Newton’s formula:
F(i{fl ) Zl)

k2=k1_a .
A CIA)

(19)

For further improvement, the process (19) can be repeated to any de-
sired accuracy.

The final result is the starting point for the next root at the neighbor-
ing value of wall impedance. For the numerical evaluation, the wall
impedance was related to the impedance of free space Zo = v/ pu/e:

7 = (20)
The solutions were traced along lines of constant phase @ of Z. The
increment Ap was varied and kept sufficiently small to insure continuity
of the process.

The evaluation was programmed by Mrs. C. L. Beattie for automatice
execution on an IBM 704 Data Processing System.

The characteristic equation was evaluated for all wall impedances
with passive phases and amplitudes up to 5000 ohms. All those solu-
tions were traced which for zero wall impedance start as the following
metallic waveguide modes:

TEy , TMy , TEp, TM;2, TEy;;, TMy; .
TE21 y TMgl , TEgz » TMQQ 3 TE23 .
TEs , TM;, , TE;s, TM;, .

For some special wall impedance phases the evaluations were extended
over many more modes. A value of a/A = 4.7 was assumed correspond-
ing to a center frequency of the proposed 35 to 75 kme frequency band
for the 2-inch inside diameter waveguide system.

The numerical results were also used to calculate from the separation
constant k, the propagation constant v in its real and imaginary parts.
Figs. 2 through 6 are plotted from these results. These diagrams show
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Fig. 2 — Propagation constant v = aa + j(Bu + AB)a in helix waveguide of
wall impedance Z; contours in v-plane of constant magnitude p and phase angle
bof Z/Zo;a/n=47,p = 1.

contour lines of constant phase ® and constant amplitude p of the wall
impedance drawn in the complex plane of propagation constant y. The
scale on the Ba-axis has been shifted by the TEy phase fna = 29.305
and represents the difference in phase constant between TEq and the
plotted mode.

Each diagram is for a particular value of p, specifying the respective
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Curves for wall impedances with complex phase fan out into the
v-plane. Some return to the imaginary axis; others continue more and
more out to ever increasing values of the attenuation constant.

The propagation constant is a multivalued function of the wall im-
pedance. For any one wall impedance value there are as many different
values of the propagation constant as there are points of zero wall im-
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Fig. 5 — Propagation constant v = aa + j(Bn + AB)a in helix waveguide of
wall impedance Z; contours in y-plane of constant magnitude p and phase angle
eof ZfZoja/\x =47, p = 2.
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Fig. 6 — Propagation constant ¥ = ea + j(Bo + AB)a in helix waveguide of
wall impedance Z; contours in y-plane of constant magnitude p and phase angle
oof Z/Zy;a/n =47, p = 3.

pedance on the g-axis. Each value of propagation constant corresponds
to a normal mode. The designation of these modes is not as simple as in
metallic waveguide. The modes of helix waveguide are, in general, neither
transverse with respect to any field component nor is their radial order
well defined. Therefore, the simple designation of metallic waveguide
TE,, or TM,, loses its significance. Nevertheless, the mode designation
of metallic waveguide can be extended to helix waveguide or, for that
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matter, to any heterogeneous waveguide, when the vy-plane is divided
up so that in each region the propagation constant is a single-valued
function of the critical guide parameter. In the present case the wall
impedance is the critical parameter.

The dividing lines in the y-plane will be branch cuts of v in the Z-plane.
They separate the infinite set of branches of v from each other, each
branch corresponding to a helix waveguide mode. The branch cuts of
+ should connect the branch points in the Z-plane. The branch points
of v in the Z-plane are saddle points of Z in the y-plane. Branch cuts
of v should therefore go through the saddle points of Z in the y-plane.
As many branches will be in contact at the saddle point as is the order
of the saddle point. From inspection of the diagrams all saddle points
are found to be of second order; therefore, only two branches of vy are
in contact at these saddle points and only one dividing line or branch
cut must be made through each.

The remaining path of the branch cuts is arbitrary. They should
conveniently follow a course that never cuts contour lines of constant
phase of the wall impedance and ends either in infinity or on the g-axis
at the points of infinite wall impedance.

For example, the branch cut between TEy and TMy, starts in Fig. 2
at the corresponding point of infinite wall impedance and separates the
contour line (# = 40°) coming from TEy from the contour line (¢ =
45°) coming from TMy . Somewhere in the y-plane the dividing line
hits a saddle point of Z = f(v). Beyond this saddle point the branch
cut is continued according to the same rule, always separating contour
lines of constant phase which originated at different points of zero wall
impedance.

Each such region, bounded by the g-axis and the branch cuts (broken
lines in the diagrams) is now designated by the metallic waveguide mode
located within it. The normal modes of helix waveguide are then defined
uniquely, and any further discussions can be made in terms of these
modes.

This mode designation in helix waveguide can be defined in fewer
words as follows: A mode in helix waveguide of finite wall impedance is
identified with the metallic waveguide mode into which it degenerates
when the wall impedance phase is kept constant and the wall impedance
amplitude made zero.

Modes in any heterogeneous waveguide can correspondingly be iden-
tified with metallic waveguide modes when the critical parameters are
subjected to the proper limiting process. All critical parameters should
be kept constant except that one which in its limit changes the particular
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heterogeneous waveguide into a metallic waveguide. Requiring the
procedure to be most direct will in general eliminate any further am-
biguity.

Quite generally it is found that in the y-plane the regions of all TEx
and TM,, modes in helix waveguide are unbounded while all TE,.
modes with n > 1 have a bounded region. Thus, the attenuation of all
TE,,. modes with n > 1 is limited and cannot exceed a certain maxi-
mum value for any wall impedance. The attenuation constant of any
of the other modes can be made arbitrarily high simply by choosing
the proper wall impedance.

In most helix waveguide applications unwanted mode loss should
be as high as possible. A more detailed discussion of those modes which
cannot exceed a certain value of attenuation is therefore in order. A
typical mode with limited attenuation is T, . Iig. 4 shows an enlarged
portion of the y-plane that contains the TEy, area. Besides being bounded
by the g-axis this area is also bounded by an approximate semicircle as
branch eut. The maximum loss of aa = 0.0363 for TE,, is realized when
the wall impedance is chosen

Z
Zy
where v lies on the branch cut at the point of highest «. There is, how-
ever, another v value for this wall impedance on the other side of the
branch cut, a y value that represents a TMy, wave. Its real part is aa =
0.0350.

For all practical purposes it does not matter which of these points is
called TE;» and which TM;, . The point with lower attenuation « is
therefore the decisive one. To render the attenuation of this point as
high as possible, it is moved along the branch cut into the saddle point
at aa = 0.0360. The wall impedance for this condition is

Z
Z
At the same time, the other point moves also into the saddle point,
and both modes degenerate into identity.

All other modes with limited attenuation behave similarly.

Using the results for the separation constant k and the propagation
constant of helix waveguide modes, the coefficient of curvature coupling
between TEq and unwanted modes was computed for modes with first-
order (p = 1) azimuthal dependence. For the modes of higher order in
p the coupling coefficient to TEq in a deformed cross section was com-

= 0.495 arc (Z) = 4.5° (21)

= 0.487 are (Z) = 4.5°. (22)
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puted. For p = 2 these coefficients deseribe coupling in an elliptical
pipe. For p = 3 it is coupling in a trifoil deformation.

Of greater practical importance are the coefficients of curvature
coupling. In Figs. 7 through 12 plots of these coupling-coefficients have
been made for the modes TEy; , TMy; , TE;» , TM;. . Again, the contour
lines of constant phase and the contour lines of constant amplitude of
the wall impedance have been plotted as an orthogonal network in the
plane of complex coupling coefficient ¢. Some of the lines of constant
phase run out of the diagrams to very large values of ¢, indicating that
the particular coupling coefficient has a pole in their vicinity. Compari-
son with the propagation constant of the respective modes shows that
these poles occur at the saddle points of the Z = f(y) plot. Indeed in-
spection of (8) and

a
dy

from (16) shows that where aF/dy is zero and Z = f(y) has a saddle
point the normalization factor N, has a pole.

Poles of the coupling coefficients might cause concern; after all, they
represent very strong coupling to unwanted modes. But since the poles
coincide with saddle points of Z = f(y) there is always strong coupling
to the two degenerate modes at the saddle point. Coupling to each one
of these modes is of opposite sign from the other. The total mode con-
version stays in quite normal bounds.

It should be recalled on occasions like this that the normal modes of
helix waveguide, like modes in any lossy structure, are not orthogonal
with respect to power. Suppose, for example, that A4, is the amplitude
normalized with respeect to power of a circular electric wave. Then A
is the power carried by this wave. Let the helix waveguide have a wall
impedance near (22). Then the two modes TE;, and TM;, are nearly
degenerate with respect to each other. Curvature will cause coupling as
described by (11). Since the coupling coefficients are very large, even a
short section of small curvature will generate large amplitudes A, of
TMy; and A4, of TE;». One of these amplitudes alone, for example A;
would mean seriously high mode conversion. Since TM;; and TE;; are
not orthogonal with respect to power, both of the amplitudes A, and A,
together compensate each other to a small total effect.

In the plots of Figs. 7 and 9 for TE;; and TE,; the wall impedance is
always a single-valued function of the coupling coefficient. In Figs. 8
and 10 for TMy; and TMy., Z = f(¢) is multivalued. This observation
can be generalized to the following statement: Any coupling coefficient

[F(v,2))
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Fig. 8 — Coeflicient ¢ of curvature coupling between TEq and TMy; in helix
waveguide of wall impedance Z. Contours of constant magnitude p and phase
angle ® of Z/Z, in branches I and II of (¢R)-plane; a/x = 4.7.

¢ between circular electric modes and TM modes in helix waveguide of
wall impedance Z is a function of Z such that its inversion Z = f(c) is
a multivalued function. A sufficient condition for this statement is that
¢ = g(Z) should have more than one pole, for then each of these poles
gives a different value Z = f(¢) for the same argument ¢ = <. Inspec-
tion of Figs. 2 through 6 shows that the area of every TM mode is ad-
jacent to more than one saddle point of Z = f(y). As stated earlier, a
saddle point of Z = f(y) corresponds to a pole of ¢ = g(Z). All TM modes
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Tig. 9 — Coefficient ¢ of curvature coupling between TEx and TEi. in helix
waveguide of wall impedance Z. Contours in (cR)-plane of constant magnitude
p and phase angle ® of Z/Zq ; a/N = 4.7.

therefore have more than one pole of ¢ = ¢g(Z) and Z = f(c¢) is multi-
valued.

Actually the plots of Figs. 7 and 9 for TEy and TE;; might be multi-
valued too. But when limiting the representation to wall impedance
values with positive real part, the plots are single-valued.

To facilitate the representation of the multivalued function Z = f(c)
for TM;, and TMis, branch cuts have been made in the e-plane and
the different branches of ¢ have been plotted in separate planes.

The broken lines indicate the border of a particular mode in the c-
plane. They correspond to the branch cuts of v in Figs. 2 through 6.
The adjoining modes are always listed in the corresponding area.

V. APPLICATION

The results of the numerical evaluations have been applied to several
problems of helix waveguide design:
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5.1 Mode Filter

Sections of helix waveguide are inserted at intervals into plain metallic
waveguide to absorb unwanted modes. For best absorption of a metallic
waveguide mode the attenuation of the corresponding helix waveguide
mode should be as high as possible. The most unwanted mode in metallic
waveguide is TEy ; it most strongly degrades TEy characteristies
through mode-conversion effects. A good helix waveguide mode filter
should therefore have a wall impedance that makes the attenuation
constant of the corresponding TE;; mode a maximum. For the present
case (a/N = 4.70) this wall impedance value is given by (22). As high
as the attenuation is for TE;; mode for this design, TIE;; has quite low
an attenuation constant

TEu . ald = 0.0360,
TEy: - aa = 0.00686.

In metallic waveguide, TE; , although not as objectionable as TE;. ,
is still a serious offender. A mode filter should at least represent moder-
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Fig. 10 — Coeflicient ¢ of curvature coupling between TEq and TM;z in helix
waveguide of wall impedance Z, contours of constant magnitude p and phase
angle ® of Z/Z, in branch I of (cR)-plane; a/x = 4.7.
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ate absorption to TEy . The wall impedance for which the TE, and
TE:, attenuation are equal and a maximum is

7E — 02075 arc (Z) = 120°, (23)
0
and the corresponding attenuation is:

aa = 0.01158.

These two wall impedance values are the limits for mode filters. Any
practical design will be in between.

5.2 Random Curvature

Wave propagation in curved helix waveguide is described by gen-
eralized telegraphist’s equations as coupling between the modes of the
straight guide. For arbitrary but small coupling these equations can be
solved approximately. An expression for the added TEq loss can be
written in terms of the coupling coefficients and the coupled mode char-
acteristics.

Let the curvature distribution «(z) along the waveguide be a stationary
random process with covariance

o(u) = <«(@)k(z + u)>. (24)

According to Rowe® (see also Ref. 3), the average added TEq loss can
then be expressed in terms of the covariance of the coupling coefficient:

L
Ca> = El): f ¢35 (2) (L — 2)( Py cos ABaz + Qu sin ABz) dz, (25)

where L is the length of the line; (c.R)?> = P, + jQ., the square of the
coupling coefficient, with ¢, from (11); and Aa, + jAB. = va — 7o, the
difference in propagation constant of a coupled mode n to the TEy
mode. The summation has to be extended over all coupled modes n.

For a mere estimate of the effects of random curvature the covariance
is assumed to be exponential:

o(z) = wye T, (26)

where L, may be regarded as a correlation distance.

When the correlation distance Ly is small compared to the total length
L of the waveguide, the average added loss is determined by the rms
curvature 4/ <*> and Lo :

2 ’ 2 n en n
(@ = L, Y PrPr t da L) + QuAB.Lo

2
v ABLE + (27 + Aanle)® (27)
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Equation (27) has been evaluated for a helix waveguide, the TE;,
attenuation of which is an absolute maximum and for a helix waveguide
with equal and maximum attenuation for TE;; and TEy, . The results
are plotted in Fig. 13. Also plotted in this figure are the corresponding
curves for plain metallic waveguide and for helix wavegujde with infinite
wall impedance. The latter design of helix waveguide minimizes TEm
losses in intentional bends.

Shown in Fig. 13 are curves of the rms radius of curvature as a func-
tion of correlation distance Lo . This rms value would add 10 per cent
of the TEq, loss in a perfect copper pipe to the average TEqy, loss in the
respective waveguide.

In calculating the curves of Fig. 13, coupling to the following modes
of helix waveguide and metallic waveguide has been taken into account:

TEy, TMy, TE., TMp, TE;s, TM;.

Contributions from higher-order modes are small enough to be neglected.

One important conclusion can be drawn from Fig. 13. When the
correlation distance of random curvature is small enough — smaller
than 10 feet in the present case — the added average loss is nearly
independent of the wall impedance and nearly the same as in plain
metallic waveguide. This independence is not only true for random
curvature with exponential covariance but for any random curvature
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with sufficiently flat spectral distribution.® The curves of Tig. 13 for
exponential covariance demonstrate, as a typical example, over what
range of correlation distance the average added loss is independent of
the particular jacket structure.

Random curvature with a correlation distance smaller than 10 feet
can be classified as a manufacturing imperfection. After all, the in-
dividual pipe sections which make up the line are usually only 15 feet
long. Any particular choice of wall impedance therefore does not relieve
the straightness tolerances which should be met in the manufacturing
process.

For correlation digtances larger than 10 feet the average added loss
hecomes more and more dependent on the wall impedance. For a speci-
fied average loss helix waveguide with infinite wall impedance — for
intentional bends — may be bent most strongly. But even a helix wave-
guide designed optimally as a mode filter — arg,, = arg,, Or arg,, =
maximum — may be bent much more than plain metallic waveguide.

Random curvature with a correlation distance larger than 10 feet
may be classified as a laying imperfection. Its spectral distribution con-
tains mainly mechanical frequencies which correspond to sine waves of
10 feet and more. Such curvature distribution arises from following
right of ways or the contour of the landscape or just from not installing
the pipe very carefully.

The curves in Fig. 13 have been drawn for a specified average loss.
For very large correlation distance they approach asymptotically a
constant value. This value corresponds to the normal circular electric
mode in the particular helix waveguide with constant curvature. Helix
waveguide for intentional bends, since with Z = o it is assumed to be
lossless, within the limits of the present calculation, may have an
arbitrarily small radius of curvature. Uniform curvature causes no loss
in this lossless structure. The curve for metallic waveguide goes to
infinity. The circular electric mode is not a normal mode of the curved
metallic guide.

5.3 Random Elliplicily

Wave propagation in elliptical helix waveguide is analyzed in a
similar manner to propagation in curved helix waveguide.
Instead of (21) the covariance of the eross sectional deformation

o(u) = <é(2)é(z + w)>
is introduced and, for (c,a/8,)* = P. + jQ., the coupling coefficients
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¢, = Cn from (13) of a deformed helix waveguide are substituted. Then
the average added TEqy loss is given by (25), and for an exponential
covariance by (27).

Equation (27) has been evaluated for elliptical deformations of the
same waveguides which were analyzed for random curvature before. The
result is shown in Fig. 14. The rms of elliptical diameter differences
4(4/<8;2>)a, which would add 10 per cent of the TEy loss in a perfect
copper pipe to the average TEq loss in the respective waveguide is
plotted over the correlation distance L, . Coupling to all modes which
are propagating in the metallic waveguide has been taken into account.
For a/x = 4.70 there are 17 modes of azimuthal order p = 2 propagating.
Contributions from higher-order modes are small enough to be neglected.

When the correlation distance is smaller than one foot the average
loss is independent of the wall impedance. For larger values of correla-
tion distance the average loss will depend on the wall impedance, but
this is hardly of any practical significance. Ellipticity is a typical manu-
facturing imperfection, and will always have a small correlation dis-
tance. For all practical purposes, cross-sectional tolerances in helix
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waveguide are independent of the wall impedance and the same as in
metallic waveguide.

The curves in Fig. 14 have been drawn for a specified average loss.
For very large correlation distance they approach asymptotically a
constant value, which corresponds to the normal circular electric mode
in the particular helix waveguide with uniform ellipticity.

Metallic waveguide (Z = 0) and helix waveguide (Z = =) — since
they are assumed to be lossless —have curves which have a never-
leveling slope. Uniform ellipticity causes no loss in these lossless strue-
tures.

VI. CONCLUSION

The characteristics of normal modes in helix waveguide can be repre-
sented as a function of the wall impedance Z. The propagation constant
v is a multivalued function of the wall impedance, with each value
corresponding to a normal mode. But for a specified order of azimuthal
dependence the wall impedance is a single-valued function of the prop-
agation constant. The most suitable representation of propagation char-
acteristics of modes in helix waveguide is therefore of contour lines of Z
in the y-plane.

Appropriate branch cuts make y a single-valued function of Z and
lead to a unique mode definition: Any mode of helix waveguide is identi-
fied by the mode of metallic waveguide into which it degenerates when
the wall impedance phase is kept constant and its amplitude made
Zero.

The attenuation constant of all TE,, modes with n # 1 is limited.
The attenuation constant of any other mode in helix waveguide can be
made arbitrarily high with a proper choice of wall impedance.

Helix waveguide for mode filters should be designed between two ex-
treme rules. One makes the TE,, attenuation an absolute maximum and
leads to low TEy loss; the other makes TE,, and TE;; attenuation equal
and as high as possible.

Mode conversion between circular electric and other modes in curved
or deformed helix waveguide can be calculated from the propagation
constants and coupling coefficients of the coupled modes. I'or random
imperfections the added average TEy loss is independent of the wall
impedance as long as the correlation distance is small. Manufacturing
tolerances for helix waveguide are therefore independent of the particu-
lar design.
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Laying tolerances produce random curvature of large correlation
distance. They depend strongly on the wall impedance. An infinite wall
impedance minimizes the average TEy loss in helix waveguide curved
randomly in this manner.
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