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A g-level alphabet is defined as a row vector space over a finite field with
q elements. The letlers of the alphabet are the rows of the vector space, each
consisting of n symbols from the ground field. The weight of a letter is the
number of nonzero symbols it contains. The minimum weight of the letters
of the alphabet, excluding zero, is denoted by d. A relationship is established
between the alphabet and a set of points S in a finile projective space. There
is a many-one correspondence between the letters of the alphabet and the
hyperplanes of the space. The weight of a letler is simply relaled to the
incidence of the set S with the corresponding hyperplane.

Two sels of points in a finile projective space are called equivalent if they
are related by a collineation of the space. Two alphabels are called equivalent
if there exists between them, as vector spaces, a weight-preserving semi-
isomorphism. It is shown that these definitions mean the same thing and
reduce to the usual definition when g = 2.

An inequalily is established between the dimension of the alphabel and
the paramelers d, g, n. This gives a lower bound for n in lerms of the other
paramelers. It is shown that this bound cannot be achieved by alphabels
with repeated columns. A method is given for constructing a class of alpha-
bets which attain this bound. It is shown that for the case ¢ = 2 these are
the only alphabets (in the sense of equivalence) for which the bound s at-
tained.

I. INTRODUCTION

A great deal of work has been done on error-correcting codes for the
binary channel. In this paper we consider codes for a channel that can
transmit more than two levels. Multiple-level transmission is practical
if the channel is sufficiently quiet, as, for example, the submarine voice
cable. It results in a substantial increase in bit rate and in added flex-
ibility in choosing a code. One now has four parameters to adjust — the
number of levels of transmission, the number of information symbols,
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the number of redundant symbols, and the number of errors it is desir-
able to detect and/or correct. Of course it cannot be decided without
detailed analysis whether these advantages will more than compensate
for the added complexity of the terminal equipment.

In the binary case, systematie error-correcting codes have certain ad-
vantages;' in particular, they are amenable to known mathematical tech-
niques. It has been shown by Slepian® that the words of a systematic
code form a group under place-by-place addition mod 2. The natural
generalization of a group code over the field (0,1) appears to be a vector
space over a finite field of g elements. We call such vector spaces alpha-
bets, and their individual elements are called letters. In the general case,
a “code” becomes an ‘“‘alphabet” and a word (unfortunately!) becomes
a “letter.” Each letter is a row of n symbols picked from the ground
field; the alphabet is a space of row vectors of length n. The ¢ different
symbols of the ground field correspond to ¢ different transmission levels.

Because only a restricted type of code is considered, some assumptions
must be made about the nature of the channel and of the information
being transmitted. These are as follows:

(a) The number of transmission levels is a power of a prime number,
since the number of elements in a finite field is a power of a prime. In
practice this is not a severe restriction; between one and nine we have
excluded only the number six.

(b) The channel is “symmetric” in the sense that every symbol has
the same chance of getting through correctly, and that the probability
of one symbol being changed into another is the same for every pair of
symbols.

(e) All errors are equally bad. This might be the case, for example, if
one were ordering merchandise from a mail order house by catalog num-
ber only.

With these assumptions the principles of error correction by a g-level
alphabet are exactly the same as those described by Slepian® for a group
code (i.e., a two-level alphabet). For convenience, the pertinent results
from Slepian’s paper are summarized in the Appendix. The parameters
of an alphabet, besides » and g are

1. Its dimension as a vector space, denoted by k. The alphabet con-
tains ¢* letters; k is also the number of symbols in each letter which can
be regarded as carrying information. The remaining n — & symbols are
added for the purpose of error detection and/or correction.

2. The minimum weight, d, of the letters of the alphabet other than
(00 --- 0). (The weight of a letter is the number of nonzero symbols it
contains.) The quantity d is closely related to the error-correcting prop-
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erties of the alphabet; if an alphabet is to be capable of correcting all
occurrences of 1,2, - -+, e errors in each letter it must haved = 2e + 1.

The purpose of this paper is to investigate the properties of vector
spaces over finite fields, particularly those properties which are related
to the parameter d. The weight of a letter exists only in relation to a
particular base of the vector space, which is an awkward situation in
modern algebra. Hence our chief mathematical tool is not algebra but
finite projective geometry. The connection between binary group codes
and finite geometries was pointed out by Bose,” and is easily extended
to the general case.

We first establish several new definitions of equivalence between alpha-
bets. (Two equivalent alphabets have the same error-correcting proper-
ties.) A lower bound for n is found in terms of k, ¢ and d. Clearly it is
desirable to have n — k& (the number of check symbols) as small as
possible. It is shown that this lower bound can be attained, but only by
a restricted class of alphabets. These alphabets are, on the whole, not
practical for communication purposes unless the expected error rate is
extremely high. However, the geometric methods used in the construc-
tion of these alphabets can be applied to find useful alphabets for specific
cases. The theorems derived for g-level alphabets apply equally well to
the case ¢ = 2 and contribute to the theory of binary group codes.

II. NOTATION

In this section we define the notation to be used in this paper and
introduce Bose’s theorem on the relation between alphabets and
projective geometries.

Let F(q) be a finite field with ¢ elements and characteristic p, and let
F*(q) denote the nonzero elements of F(q). We consider a vector space
of dimension n over F(q). Let G.(¢) denote the ‘‘row space,” i.e., that
particular representation of the vector space consisting of all possible
n-tuples of elements of F(g). For example, G:2(4) consists of the 2-tuples

(00) (10) (01) (1)  (lw) (1w
(w0)  (Ow)  (ww) (ww®) (wl)
(w'0)  (0w') (ww') (w'1) (w'w)

where w is a primitive cube root of unity.

Clearly G, (g) has ¢" members. The ¢" — 1 nonzero elements of G»(q)
can be divided, in many ways, into (¢ — 1) sets Gy, -+, Gy such
that G, = MG, A € F*(q). For our purposes it is usually enough to

t For finite projective geometry, see Carmichael,* Ch. 2; for Galois fields, see
van der Waerden,® Ch. 5, Seet. 37.
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examine only one of these sets, for example the first line in the table
above.

A subspace of G,(q) is called an alphabet over F(q) and its members
are called letters. The length of a letter is n and the number of nonzero
coordinates in a letter is its weight. Every alphabet contains the letter
(00 - -- 0). The minimum weight of its other letters is denoted by d, and
d is also called the weight of the alphabet. The dimension of the alphabet
as a vector space over F(q) is k. By @(k,d,n) we mean an alphabet @
with dimension k, weight ¢ and length (of each letter) n. For example,
G.(q) is G(n,1n).

An alphabet @(k,dn) contains ¢* letters, from which we pick any &
independent vectors as generators. We write these as the rows of a
k X n matrix M (@), the generator matriz of @. For example,

10 1)
(0 11
is the generator matrix of an @(2,2,3). We may assume that no column
of a generator matrix consists entirely of zeros, for then the alphabet is
isomorphic to a subspace of G,_1(¢q).

An ordered set of & elements of F(g), not all zero (for example, a
column of a generator matrix), may be regarded as the coordinates of a
point of a projective space Tx_i(g), of projective dimension (k£ — 1),
over F'(g). We shall adopt the convention that a k-tuple which refers to
a point of T_(q) is to be written as a column vector, e.g.,

qn

[#£3}
Q=

qr1
T:_1(g) contains (¢ — 1)/(q — 1) points; if A € F*(q), Q and \Q are
the same point. The points of T _:(g¢) are in one-to-one correspondence
with one-dimensional subspaces through the origin in G (g).
Let us now write the generator matrix of @&(k,d,n):

Q1 Q2 Qn
R, qu G2 -t Gn

M(G) =R: |gun g+ Gon

Ry Qe Grz Qi
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and call the rows Ry, R», -+, R and the columns Q,, Qz, -+, Qx.
Regard the columns as a set of points in Tx_;(g). There are exactly k
independent columns, so this set of points spans the space T'—.(g). Let
v; be the number of times which some multiple of the column Q; [the
multiplier being an element of F*(q)] appears in M(@). The correspond-
ing point in T%_i(¢) shall then have multiplicity »;. We can now intro-
duce Bose’s theorem.t

Theorem 1: Let

y=

Y
be a general point of T,_,(¢). Let S denote the set of points Q;,Qz, - -+,
Q.. each counted with proper multiplicity. Then the weight of the letter
RO\) = MR+ MR+ - + MBe, N E F(g)
of @ is equal to the number of points of the set S which do not lie on the
hyperplane
HMN =M Mn+ M ya+ - + N =0

of Tk,l(q).

Proof: If, for example,

AMqu + Aagm + o Mg = 0,

the point Q, lies on H (). The zeros in the letter R()\) arise from the
points of S which lie on H(X), and the number of zeros will be the
number of such points counted with proper multiplicity. The weight of
R()\) is the number of its nonzero coordinates, which is the number of
points of S (again counted with proper multiplicity) not lying on H()).
This proves the theorem.

In Fig. 1, the projective plane T(2) is over the field (0,1). Note that
Q4Q:Qs are also collinear:

1 0 0 0
Q=(0]), Q=(1|], Q=[0], Q={1],
0 0 1 1
1 1 1
Q=(0], QG=(1], Q=11
1 0 1

t A different proof of this theorem for the field (01) is given in Ref. 3.
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Q,

Fig. 1 — Nlustration of Theorem 1.

Taking points Q;,Q-,@:,@; in Fig. 1 as the set N we obtain a generator
matrix

10 01
0101
00 11

of an alphabet @(3,2,4). It is clear from the figure that there are at
least two points of N not on any line of T5(2).

III. EQUIVALENT ALPHABETS

In this section we take up the question of equivalent alphabets, and
show how Slepian’s definition of equivalence may be extended to the
more general case. First we discuss what properties one would intuitively
hope for from such a definition.

We may consider an alphabet as an array of letters arranged one under
another in such a way that we can speak of its columns. We know that
the operations of permuting the columns, multiplying any column by an
element of F*(g¢), and interchanging the names of the nonzero symbols
will not change the error-correcting properties of the alphabet. The defi-
nition of equivalence between alphabets should allow us to do as many
of these things as possible.

TFrom Bose’s theorem we recall that the weight of every letter of an
alphabet is determined by the properties of a set of points in Ty_1(gq).
First we wish that all alphabets derived from the same set of points
should be equivalent; secondly, if two sets of points S,8" have, in some
sense, the same incidence relations with the hyperplanes of T_1(g) they
should give rise to equivalent alphabets.
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Given a set of points S in T:_i(¢), we derive an alphabet from them
by means of a generator matrix. We obtain the generator matrix by the
following steps:

1. Fix a coordinate system in Tr_i(¢q).f

9. Write the coordinates of the points of S as columns of a matrix
repeating each column (not necessarily consecutively) with the proper
multiplicity.

The order in which we write the columns is immaterial; also if X; is
such a column, we have the option of using XX, , A € F*(q), instead. Thus
it is apparent that a great many different generator matrices may arise
from the same set of points.

We shall presently give separate intrinsic definitions of equivalence
between two sets of points, two matrices and two alphabets, and show
how they are interrelated. First we give a brief description of the col-
lineation group of Tx—1(¢).1 _

A collineation is a mapping of the set of points of T:_(¢) onto itself
which preserves all incidence properties; that is, it sends lines into lines,
planes into planes, lines through a point into lines through a point, and
o on. The collineations of Tx_i(¢) form a group, denoted by C(k,q).
A nonsingular linear projective transformation of coordinates is a
collineation; so is the (nonlinear) transformation of coordinates induced
by an automorphism of the ground field #(¢). Let P(k,q) be the group
of linear projective transformations, and A(k,q) the group of trans-
formations induced by automorphisms of the ground field. Then any
collineation of ('(k,q) can be expressed as the product of a member of
P(k,g) and a member of A (k). [Although an element of P(k,q) does
not in general commute with an element of A(k,q), the two groups
commute as subgroups of ('(k,q).] We recall that an automorphism of a
finite field of ¢ = pm elements is always of the form 6 — 6", where 6
is a primitive element; and, for a nontrivial automorphism, 0 < » < m.
The integers of the field (the elements of the prime subfield) are not
changed by such a mapping; hence a prime field has no nontrivial auto-
morphisms, and in this case C(k,p) = P(k,p).

We now make the following definitions of equivalence:

Definition 1: The (unordered) sets of points S,S8" are equivalent if
there exists a collineation of T:_y(¢) which sends S into S’. We write
S = C(8).

+ By a fixed coordinate system we mean that the coordinates of every point are
fixed, except possibly for multiplication by an element of F*(g). In the case of
finite projective geometries, this involves more than choosing the base points of
the system.

1t The subject is treated in great detail in Carmichael ' pp. 355-372.
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Definition 2: Two (k X n) generator matrices M,M’ over F(q) are
equivalent if

M’ = gdM* ~ M* = MrA.

Here @ is an automorphism of the ground field applied to the entries in
M*, g an invertible (k X k) matrix over F(¢), = an (n X n) permutation
matrix, A a (nonsingular) diagonal (n X n) matrix over F*(g).

Since 7 has only one nonzero entry in each row and column we can
always choose A’ so that

Amr = wA.

Definition 3: Two alphabets @ and @' are equivalent if there exists
between them a weight-preserving semi-isomorphism.

A semi-isomorphism f between two vector spaces @, @ is uniquely
specified by describing what happens to the base vectors R, , --- , Ry
of @, and choosing an automorphism of the ground field. The mapping

f(RI')=R;7 "'::11"'1]‘;:

k k
£(Z aki) = L ok,
is a semi-isomorphism provided that R , Ry are linearly independ-
ent; any semi-isomorphism can be described in this way.

We note also that a weight-preserving mapping of an alphabet @ onto
an alphabet @' is necessarily one-to-one; for only letters of zero weight
in @ can map onto the zero (00 --- 0) of @'

In all of these definitions, equivalence has its usual properties; i.e., it
is symmetric, reflexive and transitive.

We now show that the three definitions are compatible; that is, in a
sense to be made precise,

Definition 1 — Definition 2,
Definition 2 — Definition 3,
Definition 3 — Definition 1.

Theorem 2: If 8,8’ are equivalent in the sense of Definition 1, then the
matrices M M’ to which they give rise in a fixed coordinate system, are
equivalent in the sense of Definition 2.

Proof: Let S be an ordering of the set S, and S’ the ordering of S’
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into which S is sent by a collineation g® of Tha(q). If X; ,X'l- are cor-
responding points of S,8’ their coordinates are given by

T ‘1’(3:1)

Ta ’ ‘I’(Ig)
X,— = . ’ X; = g‘

i ‘I’(’Cn)

Let M(S), M(S’) denote the matrices with columns

r

X, -, X, X1, -, X, M(S) = geM(8).
Then there exist permutation matrices such that
Mz = M(S) = gdM(8S'), M(S) = M.
Hence
M = gdM*, M* = Mrr'"' = Mz*,

where 7* is a permutation matrix.

Theorem 3: If the generator matrices M, M’ are equivalent in the sense
of Definition 2, then the alphabets @,@" derived from them are equiva-
lent in the sense of Definition 3.

Proof: We have

M' = gdM*, ~ M* = MxA.

Let @* be the alphabet derived from M*. We set up a weight-preserving
isomorphism h between @ and @* and a weight-preserving semi-iso-
morphism [ between @* and @'. We define h as follows: If R is a letter
of @ then

h(R) = RrA.

This is clearly a weight-preserving mapping, since its effect is to permute
the entries in R and multiply each entry by an element of F*(g). It is
also linear, for if Ry, - -+, Ry are the rows of M, and R,*, -- -, R,* the
rows of M* we have

h(R,) = R.“J‘I’A = R,‘*,

k

k k
h (Z (x,‘R;‘) = Z O!,'R;“JTA = Z C!z'R,‘*.
=1

i=1 i=1

We define f as follows: If R* = (r;, ra, -+, ra) is a letter of @*, then
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f(R*) = [®(r),®(ry), - -+, ®(r,)]; fis weight-preserving, since ®(r) = 0
implies r = 0.
To show that f is a semi-isomorphism,

e* 4 @,

we observe that ¢ "M’ is also a generator matrix of @’. Let R: A R;,
be the rows of g_'M’, and let R: = (ra ,7‘:2, - ,r’.-,,_). Let Ry, --- , Ry*
be the rows of M*, with R;* = (riy *ri * -+ -, 7*). Since g "M’ = dM*
we have

(Fasriay =y rm) = [B(ra*)@(ra*), -, ®(ru*)],
or
f(R*) = R:.
Then

((Eon) - () o (o) o ()

Since @ is a field automorphism this becomes

i) (i a;l? :*)

i=1

k k k
= [; d)(a,-)fll(r,-l*), ; ‘I)(ai)d)(rl".!*): T ; q’(a{)q’('rin*)]

@(CE,)R': .

M=

1

We then have

||
kA

R "> R* L5 R, ZeuR; 5 ZaiR* L 3d(a)R),

and hf is a weight-preserving semi-isomorphism between @ and @'

Theorem 4: Let @,@" be equivalent alphabets in the sense of Definition
3, and M,M’ be any generator matrices of @,@’. Fix the coordinate sys-
tem in 7% (g), and let S,S’ be the sets of points whose coordinates are
the columns of M and M’. Then S and S’ are equivalent in the sense of
Definition 1.

Lemma: Let the alphabets @&,@* be related by a weight-preserving
isomorphism w; M ,M* are generator matrices of @ and @* such that
M* = w(M). Then in any coordinate system in Tx_,(¢) the columns of
M and M* give rise to the same (unordered) set of points S,
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Proof of Lemma: If Ry, ---, Ry ; Ri*, ---, R* are the rows of M
and M* we have
k

k
’UJ(R.‘) = Rf*, w (z[ a,-R;) = El Ct.'R,*.

Let (41 - -+ yx) be the coordinates of the general point of T_,(¢). Map
the letters of @ onto the hyperplanes of T._1(¢) as follows: E; maps onto
y: = 0, Y a;R; maps onto > aiy; = 0.Because of the isomorphism be-
tween @ and @* we have a similar mapping of the letters of @* onto
the hyperplanes of T._i(¢): R* maps onto y; = 0, Z a;R* maps
ontoz ai = 0.

Let I = (8;;) be the incidence matrix of points and hyperplanes in
Ti1(q), where 8;; = 1 if the 7th point lies on the jth hyperplane and is
zero otherwise. Each row (eolumn) of I contains (¢ = 1)/(g—1)
ones and ¢*' zeros. The matrix I for the projective plane T(2) is il-
lustrated in Table I.

The matrix  is nonsingular. This is easily seen by considering the
product 7-7. In this, all terms on the main diagonal are equal to the
number of points, a = (¢~ — 1)/(g — 1), on a hyperplane. All other
terms are equal to the number of points, b = (¢* = 1)/(g — 1), on
the intersection of two hyperplanes. The determinant of the matrix is
then

[a + (u— 1bl(a — b)"".
When we substitute the values for a,b, the first factor becomes
(q"_‘ - 1)2.
-1/’
hence the determinant is not zero. (We assume & > 1.)

Let Py, Py, -+, Py,u = (¢" — 1)/(g — 1), be the ordering of the
points of T_i(q) as they appear as columns of 7. Let S,S* be the sets

TaBLE I — I = INcIDENCE MATRIX For PoinTs AND LINES IN T%(2)

100 010 001 110 101 o1t 111

n =20 0 1 1 0 0 1 0

ys =0 1 1 0 1 0 0 0

n+ y2=0 0 0 1 1 0 0 1
n+y=0 0 1 0 0 1 0 1
Y2+ ya =0 1 0 0 0 0 1 1
n+t+y:2+ys =0 0 0 0 1 1 1 0
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of points whose coordinates are columns of M ,M* respectively. Assign
to P; the multiplicity n:(n;*) with which it appears in the set S(.S8*).
If P; does not appear in S(S8*), n; = 0 (n;* = 0). Form the column
vectors

n 'fh*

Mo no*
n = , n* =

Ny n,*

The 7th term of the matrix product In is the sum of the multiplicities
of the points of S which lie on the 7th hyperplane. By Theorem 1, this
is the number of zeros in the corresponding letters of Q.

Since the isomorphism between @ and @* is weight-preserving we have

In = In*
or, since [ is invertible,
n = n*

Hence the set of points S* is at most a rearrangement of the set S.

Proof of Theorem 4: @ and @' are related by a weight-preserving semi-
isomorphism f. Let R, , - -+, R; be the rows of the generator matrix M
of @ RY = f(R,), -+, R = f(R:) are k linearly independent letters
of @', which we may take as the rows of a generator matrix M” of @’.
We can describe f as follows:

k

k
(R;) = R?, f(zl a,—R,-) = Z; tIJ(a.-)R;’,
where @ is an automorphism of the ground field which is uniquely deter-
mined by f once we have chosen M.

Let R* = & "(RY),i =1, ---, k; R*, -+, R* are linearly inde-
pendent. Let M* be the generator matrix formed of these rows and @*
the alphabet derived from AM*. The mapping i of @ onto @* induced
by & is clearly a weight-preserving semi-isomorphism.

Consider the mapping fh between @ and @*. We have

R: 5 R "5 R*
Sa;R; L 2®(a)RT s 37 28(e )R] = ZeuR:*.

Since f is weight-preserving by hypothesis, fh is a weight-preserving
isomorphism between @ and @*; M and M* are corresponding generator
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matrices under fh, hence by the Lemma they arise from the same set of
points S in T (gq).
Let S” be the points of T_i(q) corresponding to the columns of M”. If

n
T *
” . £ _
Xi = : y xf -
n
Lk ¥

are the 7th columns of M” and M* respectively, we have

”

T ®(x,*)

”n

T b(x*)

Hence the set S” is obtained from the set S* by a collineation C; of
Tea(q).

Let M’ be any generator matrix of @'; then M’ = gM”. Let S’ be the
points of T_1(¢) corresponding to the columns of M’. S’ arises from S”
by a linear projective transformation, i.e., by a collineation C’ .

We have then

& = C4(87) = C0y(S),

which proves the theorem.

It can be shown from Theorems 2, 3 and 4 that a complete equivalence
class of sets of points gives rise to a complete equivalence class of
matrices; a complete equivalence class of matrices gives rise to a com-
plete equivalence class of alphabets; and this in turn gives rise to a
complete equivalence class of sets of points. The details of these cor-
respondences are quite complicated, since an unordered set of points can
give rise to many matrices, and different generator matrices can produce
the same alphabet.

Theorems 2, 3 and 4 are, of course, true over the field (0,1). We rewrite
our definitions for this field, since they take a simpler form. ® is the
identity, and the only possible choice for A is the unit matrix.

Definition 1': Two sets of points S,8" in T4_4(2) are equivalent if
they are related by a linear projective transformation of coordinates.

Definition 2': Two (k X n) matrices M,M’ over F(2) are equivalent if

M = gM'r,

where 7 is an (n X n) permutation matrix, and g an invertible (k X k)
matrix over F(2).
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Definition 3': Two alphabets @,@" over F(2) are equivalent if they
are isomorphic as groups in such a way that corresponding elements
have the same weight.

It will be recognized that this is, in fact, the familiar definition of
equivalence for alphabets over (0,1).

IV. RELATIONS BETWEEN k, d, n

In this section we establish certain relations between the parameters
k,dmn, which are necessary conditions for the existence of an alphabet
A(k,dmn). We assume, as before, that the alphabet has no column con-
sisting entirely of zeros.

Define Z[x] to mean the least integer greater than or equal to the
rational number .

Theorem 5:T A necessary condition for the existence of @(k,d,n) is that

1 (¢ —1
> i
n=z[q""(q— l)d]'

Proof: As before, let I be the incidence matrix of points and hyper-
planes in T (q).

Let .J be the complement of I obtained by replacing zeros by ones and
ones by zeros. J is symmetric; each row (column) contains ¢** ones and
14+ g+ -+ + ¢ zeros.

The matrix J for the projective plane T2(2) over the field (0,1) is
illustrated in Table II.

Let

ny

Ny

where g = 1 + ¢ + -+ + ¢" " and n, stands for the multiplicity of the
point P; of Tw4(q).

Consider the expression Jn. The product of the ith row of J with
the column of n; is the sum of the multiplicities of the points P; which
do not lie on the 7th hyperplane. By Bose’s theorem, this is the weight
of the letters of the alphabet corresponding to the 7th hyperplane. Now

t This theorem has been obtained for the field (0,1) by many authors in asmany
ways. See for example, Ref. 6, Theorem 5; Ref. 3, Eq. (52), and other authors
quoted in Ref. 3.
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TaBLE IT —J = CoMPLEMENT OF [

100 010 001 110 101 o1t 1
=10 1 0 0 1 1 0 1
ya = 0 0 1 0 1 0 1 1
ys =0 0 0 1 0 1 1 1
nh+y:=0 1 1 0 0 1 1 0
m+y=0 1 0 1 1 0 1 0
ya+ ys =0 0 1 1 1 1 0 0
n+y2+ =0 1 ‘ 1 1 0 0 0 1
deﬁne & column vector
d
d =
d

Since our alphabet is assumed to have minimum weight d, we have the
inequalities

Jn = d.

Since we may assume d = 1, these inequalities imply that there must be
at least one point of nonzero multiplicity not lying on any given hyper-
plane — that is, the points of nonzero multiplicity span the space

Tia(q).
Hence, given k and d, the least value of n for which there exists an
alphabet @(k,d,n) is the minimum value of

N
Z Nni,
i=1

where n; ,7 = 1, --- , u are nonnegative integers which satisfy Jn = d.
By adding all the inequalities of /n = d, we obtain

n
qk_l Z;Tl'l' g (1 + g + P + qk—l) d,

or, setting

n

1\%
N
—
u:,__i_

L
P
=,
L
Ll Y
~—
=9
| I
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In the case that d = ¢, for any value of % the lower bound becomes
k

nzl ot dg+ o+ g

qg—1
In this case the lower bound is the largest possible lower bound, as it is
achieved by the alphabet which correspondston; = no = -+ = n, = 1,

that is, the alphabet which results from taking every point of T:_,(q)
with multiplicity one.

One has an intuitive feeling that alphabets with the least n for a given
k,d are likely to have no repeated columns if this is possible. This is
partly justified by the following theorem.

Theorem 6: If a generator matrix of @(k,d,n) contains a repeated
column [in the sense that Q, = AQ, for some A of F*(q)], then

yiaeny

For the purposes of this proof and the succeeding lemma we write the
above inequality as

g _ L
nzz[q_l(l qH)d]+2.

Proof: Let P be the point of T%1(g) which corresponds to the re-
peated column. Choose a coordinate system in which P is one of the
base points, say P = e;. We then have an equivalent alphabet @’
which may be written

\4

110 - 0

, 0
M(e') =

000 -1

The letters of @' to which the first two columns contribute zeros form
a vector space @; @ is generated by the rows 2, --- , k of M(@’). The
minimum weight of the letters of @ is at least as great as the minimum
weight of the letters of @’. Hence the alphabet @ has parameters k — 1,
d',n — 2, withd' = d. By Theorem 3 we get

e[ (- )]
(-2
[q—l 1 q’Hd + 2

or

v

n
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It is clear that, if d < 2¢*

(e e )
q—l(l rf‘“)d+2 q-— !

We need a little more, namely:
Lemma: If d < ¢*', then

q _ 1 _a (-1
q—l(l q"‘l)d+2gq—-1(1 q")d_l_l'

Hence

N
—
=

s
-
/'—.\

-
=~
~—

a

+

o
[

V

[\N
—
=]

15
ot
—
ek
I
=
-

o

1

q 1 1
+q——1(rq~——i)]d”
q 1 d
q—l(l_E)d_F+2

q—f—l(lf?)d-i-l

Theorem 7: If d = ¢"" the bound given in Theorem 3 cannot be at-
tained by an alphabet with repeated columns.

This result is not surprising in view of the remark at the end of the
proof of Theorem 3. If d > ¢, the inequality of Theorem 5 gives
n> (¢ — 1)/(g — 1);i.e., nis larger than the total number of points
in the space Ti_1(q). Thus we must have repeated columns in the
generator matrix.

By repeated applications of the procedure of Theorem 6 we can write
down lower bounds for the n of alphabets having a given number of
columns with given multiplicities. However, this does not seem very
interesting; we will first say what we can about alphabets with no re-
peated columns. We assume from now on that we are dealing with such
alphabets.

v

V. A CLASS OF ALPHABETS

In this section we describe a class of alphabets for which the bound of
Theorem 5 is attained, and show how other alphabets which attain this
bound may be derived from them.
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We can immediately write down the class of alphabets.t Choose a
fixed k, and consider the following sets of points in Tx_;(g):
(0) — The set S, of all points of Tw_1(q):

m=1+q+---+4d" do=g"
Every letter of this alphabet has weight d, .
(1) — The set S, of all points but one of T\_(q):

'n_|_=q+q2+“'+gk71, dl=qk-‘1_l-

The (1 + ¢ + --- + ¢"*) hyperplanes through the omitted point
correspond to letters of weight ¢*', other hyperplanes to letters of
weight ¢ — 1.

(2) — S: = all points of Tx_1(¢) except for the (1 + ¢) points of a
line L .

Ny = qﬂ + .. + qk*l, d2 — qk—] - q.

The (1 + ¢ + -+ + ¢“°) hyperplanes through L, correspond to letters
of weight ¢"”', others to letters of weight ¢ — ¢.

(3) — 83 = all points of T:_1(¢) except for the (1 4+ ¢ + ¢°) points
of a plane P .

2

m=¢+ - +4¢Y d=d4d"-q

The (1 + q + -+ + ¢"*) hyperplanes through P correspond to letters
of weight ¢"', other hyperplanes to letters of weight ¢** — ¢~

(k — 1) — Sk = all points of Ti_1(g) except for the points of a

hyperplane

The g = gﬁ:—1, doy = qk—l _ qk—2.
The omitted hyperplane corresponds to letters of weight ¢*~, all others
to letters of weight ¢ ' — ¢~

It is easy to verify that for these alphabets the bound of Theorem 3 is
attained. Consider

t For the case of ¢ = 2 some, or all, of these alphabets have been found by other
authors by different methods, See, for example, Refs, 3 and 6. They are, of course,
picked up by any systematic search, such as linear programming. ®_ is the Reed-
Muller code for m = n, r = 1.
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1 (¢ -1
n‘_F(q— 1)0]'" N

|
I-Q_‘
+
+
[~y
T
l -
S
=]
Eod
—
~—
Lol
L
T

1l
Qn
=
=T
-
l_l
[a—
~—
|
il
|,
I
Ll IS

=)

Since ¢ = 2, this quantity is less than one; i.e.,

1 (¢ =1
1>’ni—qk—_l(q_1

)d‘->0.

It will appear presently that for ¢ = 2 these are the only alphabets
which attain the bound of Theorem 5. The case ¢ > 2 is more compli-
cated.

Suppose that @(k,d,n) is an alphabet (with no repeated columns) for

which
_ 1 q"—l)]
n_Z[EE(q—l q
Write
L(d=1_ 4+ @ e _d -
qﬁ(?_—T)—l'i_qkln Q—Q + +‘1‘|‘1" q—l ’
n=Z|:rl+?_dl:|.
q

Let
Qd = s —r, 0=r=<gqg"' -1, 0<s=Q, (1)

where r and s are integers; s cannot be zero since d is positive; s £ Q
since d < ¢"7". Then
— Z|d T =d
n = +3_F =d + s

If we remove 5 columns from the generator matrix of @ in such a way
that the remaining matrix is of rank & (this is always possible for
7 £ n — k), we obtain an alphabet of length n — » and minimum
weight d = d — 7. Let us consider the worst case, i.e., d=d— 1.



300 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961

o2

Lemma: If

then

provided that
=1 (2)

n<(q—1)—q

Proof:

A IR R SO
=z[(d+s—n)—Q’;kj"].

This is equal to d + s — 7 if and only if (Qq + r)/¢"™" < 1;i.e.,

k—1
r

n<%(qu1_'f)=(Q'_1)QT_%*_—1—(Q_'1)QT_1—_'—1

or
l

qlu —1 __

Now suppose that d > d — 5, and 5 satisfies (2):

o[+ 23] o[+ ) wv] e

By Theorem 3 applied to the alphabet @(k,dn — 7), we have

aaf(ir 2]

Hence only equality is possible.

Theorem 8: If @(k,d;n) attains the bound of Theorem 5 and
@(k,dn — 75) is obtained from it by removing 3 columns from a gen-
erator matrix of @, where 7 satisfies (2) in such a way that the remaining
matrix is of rank k, then the new alphabet also attains the bound of
Theorem 5.

p<(g—1) —(g—1) ——
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We remark that if we select the columns with proper care, it is possible
to remove more than the number given by (2) and still obtain an alpha-
bet which attains the bound of Theorem 5. The alphabets @., - -+, Qi
listed at the beginning of this section are examples.

We now reformulate (2) in a more convenient form. We observe,
from (1), that, since d is an integer, so is (s¢"™" — r)/Q. Subtract from
it the integer

s(q_l)_LQ_l)

and we find that

s =T s —r

Q ¢+ +g+1
is also an integer. We have two cases:
i.s=Q,r=puQ [0 = ¢ — 1from (1)].
Then (2) becomes

1
<(g—1) —p+ 3
n q 0
or, since all these symbols represent integers,

7=(¢g—1) —m (3)
s <Qr=uQ +s I:u<(1—qk_ls_l)(q—l)from(1)i|.

Then (2) becomes

s —1
n<(g—1) —p-— )
or
7=S¢q—1—-—p—-1=¢g—2—p (4)
In case i we have, from (1),
d=¢"'—p 0=p=g-1

The alphabet @, corresponds to the case p = 0, and the alphabet @, to
g = 1. From the alphabet @, we can subtract any number 7 £ ¢ — 1
of columns and obtain an alphabet which attains the bound of Theorem
5. (The alphabet @, is obtained by subtracting one arbitrary column.)
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In case ii we have, from (1),

8q
d=2_—"* 1 " —5(¢g—1) — p
a) 0 q B
For the alphabets @2, - -+, @_; we have p = 0. This is readily verified

by direct calculation:

=¢ (¢ =D=(-Dg (¢ T+ +qg+1)

1

di — qk—l _ qt’—

Thus
s=(¢""+ - +4¢"), =0

We shall show that these are the only alphabets besides @, for which
w=0.

The generator matrix of an alphabet @(%,d,n) with no repeated col-
umns consists of a subset of the columns of the generator matrix M (®).
Let S be the generating points of @(k,d,n) in T%,(q), and denote by
C'(S) the points of T—1(g) which are not in S.

Let » be the number of points in C'(S) and § the maximum number of
points of C'(,S) which do not lie on a hyperplane of T._;(¢). The alphabet
@ then has length ny — » and weight dy — 8, where ny = (¢* — 1)/
(¢ — 1), dy = ¢"" are the parameters of @. Using Theorem 5 on these
numbers, we obtain

(C=f-a-vzlzta -,

qg—1
1
vig—1) =\lg— 558
q
Since »(q — 1) is an integer we may replace this by

vig—1) = ¢ — 1. (5)

k—1

or

This is the best we can do, since § = ¢
By some further manipulation we find that for the alphabet a, gen-
erated by Gy — C'(S), to attain the bound of Theorem 5 we must have

(g —1) —(¢g—2)=»g—1) =¢ — 1L (6)
We also wish to have an alphabet with g = 0; for such an alphabet
s¢" ' — s
d=—q—Q—=s(q—1),

5:dn—d=qk_]—8(.€1—1),
@ —1=("~-1) —sglg —1);
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i.e., ¢¢ — 1is divisible by (¢ — 1). From (6), the only possibility is

v(g—1) =g — L (7)

We also observe from (6) that if ¢ = 2 we have »(¢ — 1) = ¢d — 1
without any other considerations.

To justify our statement that @, ---, @ are the only alphabets
besides @, for which u = 0, we prove the following theorem.

Theorem 9: If C(S) is a set of v points in T, (g), with § defined as
above, and »(¢ — 1) = ¢ — 1, then C(.S) is the set of all points of a
linear space in T:_,(q). This, of course, implies that

v=14qg+ - + ¢, &= ¢, 1=s=k-—2

Conversely, if C'(S) is the set of all points of a linear space, then the
alphabet @ has p = 0 and attains the bound of Theorem 5. This we have
already verified.

Proof: Wehaver — & = (» — 1) /g, sothat (v — 1) must be a multiple
of ¢. If » = 1 the corresponding alphabet is @, , for which u = 1.

The proof is by induction on §; we start by proving the theorem for the
ease (v — 1)/g = 1;1e,6 =¢q v =q+ 1.

Lemma:1f v = 1 + gandd = ¢, the (1 + ¢) points Xy, X, -+, X,
are collinear, however large the containing space.

An equivalent statement, which is the one we prove, is: If every
hyperplane of 7_i(¢) contains at least one of the points Xo, Xy, ---,
X, , then X, X, ---, X, are the points of a line.

We may assume that there is one hyperplane, say ¥, = 0, which con-
tains exactly one point X, , which we may call X;. Pick another point
for X, and let the coordinates of these two points be e;, e; . We assume
the coordinate system normalized so that the first nonzero coordinate of
every point is unity. Write the coordinates of the X; as columns of a
matrix as follows:

Xu Xl Xg X3 e Xq
Y1+ 0 1 1 -1
Y2 0 1 s Az °°° Oy

173 0 0 bg b3 e bq .

VilO 0 fo fa - Jo
By Theorem 1, every letter of the form ¥, + 8Y, must contain at least
one zero coordinate. For &« = 0 (8 = 0) we always have a zero in the
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second (first) place of such a letter. In the (¢ — 1) letters of the form
aY, + Yo, e € F*(q), the zero mustoccur in one of the places 2,3, - -- , ¢.
Hence the a2, a3, -- -, a, above must denote some arrangement of all

the elements of F*(q).
Consider now letters of the form

aY1 + IBY:J_ + TY;{ .

Again, the first two coordinate places take care of those letters for which
one of a8,y is zero. Hence we restrict ourselves to letters

oY1+ 8Y. + Vs, aB € F*(q).

Each such letter must have a zero in one of the places 2, 3, --- , ¢.
We note that there are (¢ — 1)* such letters, and (¢ — 1) coordinate
places.

Suppose now that b, # 0. We shall count the number of letters to which
the X, column contributes a zero. We may choose any « in F*(g) such
that « # bs. 8(#0) is then uniquely determined by the equation

[in F(g)]
,3(12 = —(rx + bz)

Hence if bs # 0 the X; column contributes a zero to only (¢ — 2) letters.
If b, = 0 we have (¢ — 1) choices for a, and 3 is determined by

19(12 = —a.

In this case the X, column contributes a zero to (¢ — 1) letters.
Hence the only possible choice for b; is b; = 0 for all .
The same argument shows that all rows ¥;, ¢ > 3, consist entirely of

zeros. The coordinates of X, , -+, X, are linearly dependent on those
of Xy,X; ; that is, the points X,, .-+, X, all lie on the line joining
X0, X1 .

Returning now to the main theorem we make the following induction
hypothesis:

Let C'(S) be a set of » points in T (g), with é defined as before, and

such that
(g — 1y =g — L (7)

Let ¢ * < & = ¢, and assume that Theorem 9 is true for values of
b= qH". We wish to prove that

i'a:qr—l’ p=1+q+92+__.+qr—l.

ii. C(S) consists of all points of a linear space of projective dimension
(r —1).
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From (7),» — 8 = (v — 1)/q = h, where h is an integer greater than
1. h = 1 is the case already considered in the Lemma. Also

6=v—h="h+1-—h

An arbitrary space of dimension (k — 3), say Dy, in Ts(q) will
contain a number a of points of C'(S). We wish to find a lower bound
a for a.

There are (¢ + 1) hyperplanes of T:_.(¢) which pass through D, ;.
Denote by B, B1, - - - , 8, the number of points of C(S), outside of
D,_;, contained by these hyperplanes. The hyperplanes through D; ;
contain among them all points of Tx_i(g), so certainly all of C(S). We
have then

a+ 2 Bi=v=hg+1,

()
CE+B,§V*‘5:-’1
A lower bound for « is obtained by making all the 3, equal, 3; = B,
and replacing “=” by “=""in (8). Then,
a+pg=h

a+ (¢ + 1)8=nhg+ L

Solving these equations,

Let o be the least integer containing @ We note that «’ > 0.

We may assume that some hyperplane, say Hi_s, of Ty 1(g) contains
exactly v — & = h points of C(S). Call this set of points C'(S"). Each
hyperplane of H;_.is a (k — 3)-dimensional subspace of 7'1(¢), and so
by the previous result it contains at least o’ points of C'(.S").

For ('(S8") we have

Therefore,

@ —1=qgh —h+1—1=(¢g— Dh,
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or
Vig— 1) = g8’ — 1.
Comparing this with (5), only equality is possible; i.e.,
g — 1= (¢g— 1h
This implies that (& — 1)/¢ is an integer, and
§ =h — h—1 = é
q q
C'(8’) is thus a set of points with
v =h & = g and (g — 10 =g — 1.

Since ¢ * < 8/q £ ¢ ° we can apply the induction hypothesis, which
gives us

8 =q7 V=14+q¢+ - +q"°

or
b= =q¢7, v=g'+1=14+q¢+ - +4qg"

and the points C'(8’) are all the points of a linear space B,y in H;_, .

We can always find in H,_» a (¢ — 3)-dimensional subspace, say

Dy_3, which intersects B,_; in a space of dimension (» — 3), and thus
contains exactly
— h—1
L4+g+ - +g¢ 3=T= &
points of C'(S).
Consider the hyperplanes of T,_,(¢) which pass through D;_; . From
(8), we have for these

~ h—1
i = =h — 3
B B p
so that the total number of points of C'(S) in each hyperplane is
a+8=h

By the previous argument the intersection of C'(.S) with each hyper-
plane is a linear space of dimension (r — 2). These spaces have in com-
mon a linear space of dimension (r — 3), the intersection of B, » and
D3 . Hence the set of all their points is a linear space of dimension
(r — 1). This proves the theorem.
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We will now summarize the results of the last section. For ¢ = 2, the
alphabets @, @, - - - ,@i— introduced at the beginning of the section
are the only alphabets which attain the bound of Theorem 5. For g > 2
these alphabets attain this bound, and have the further property that
any k-dimensional alphabet obtained from them by removing up to
(¢ — 2) arbitrary columns of the generator matrix (¢ — 1 for @) also
attains this bound. They are the only alphabets with this property.
Clearly the alphabets Gy, G1, - - -, are completely determined, up
to equivalence, by the values of the parameters k,d,n. For a given £,
d and n are restricted to a certain set of values defined at the beginning
of this section.
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APPENDIX

Slepian’s Error-Correction Procedure

Let F(gq) denote a finite field, and G.(¢) the group, of order ¢", of
all possible rows of n symbols picked from F(g). The group operation
is place-by-place addition under the rules prevailing in #(g). Let A be
a subgroup of G, . [For the present purposes A need not be a vector
space over F(q); the two concepts are the same if and only if #(g) is
a prime field.]

Partition 7, into cosets with respect to A, with an element of least
weight in each coset being picked as “coset leader.” The element (00
.++ 0) is, of course, the coset leader of A itself. The cosets are formed
into a table as illustrated in Table ITI. The group A is the first row of
the coset table. The first column of the table contains the coset leaders.
In the case of Table III these are, besides (0000), all the elements of
weight 1 in G3(3).

The element in the sth row and the {th column of the coset table is
obtained by adding the sth coset leader to the element (of A) in the
first row and the {th column. The sth row is exactly the coset deter-
mined by the sth coset leader, and every element of (7.(¢) appears ex-
actly once in the table,
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TaBLe III — Cosers wiTH REsPEcT To A FoRrR G.(q) = G3(3)

1 2 3 4 5 6 7 8 9

0000 | 1011 | 0112 | 1120 | 1202 | 2022 | 0221 | 2210 | 2101
1000 | 2011 | 1112 | 2120 | 2202 | 0022 | 1221 | 0210 | 0101
2000 | o011 | 2112 | 0120 | 0202 | 1022 | 2221 | 1210 | 1101
0100 | 1111 | 0212 | 1220 | 1002 | 2122 | 0021 | 2010 | 2201
0200 | 1211 | 0012 | 1020 | 1102 | 2222 | 0121 | 2110 | 2001
0010 | 1021 | 0122 | 1100 | 1212 | 2002 | 0201 | 2220 | 2111
0020 | 1001 | 0102 | 1110 | 1222 | 2012 | 0211 | 2200 | 2121
0001 | 1012 | 0110 | 1121 | 1200 | 2020 | 0222 | 2211 | 2102
0002 | 1010 | O111 | 1122 | 1201 | 2021 | 0220 | 2212 | 2100

0O 00 =1 U= GO LY =

The error-correction procedure is as follows: If the received element
is a letter of A it is accepted as correct. If not, it is located in the coset
table, say in row s, column ¢, and the letter of 4 in row 1, column ¢ is

substituted.

It is clear that the example of Table IIT will correct all single errors.
Column 2 contains, besides (1011) which belongs to 4, all the elements
of G3(3) which differ from (1011) in exactly one place.

In general, if it is required to correct all single, double, ete., errors it
is necessary that all elements of G'.(q) of weights 1, 2, etc., appear as
coset, leaders in the coset table formed by A. Let d be the minimum
weight of the letters of A4, other than zero. The coset formed by a leader
of weight 1 will consist of elements of weight at least (d — 1). Hence
all elements of G.(g) of weight 1 appear as coset leaders if and only if
d = 3. Similarly, all elements of weight 2 appear as coset leaders if
and only if d = 5. If it is required to correct all e-fold errors, the al-
phabet A must have d = 2e + 1.
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