Synthesis of N-Port Active RC Networks

By I. W. SANDBERG
(Manuseript received August 16, 1960)

The following basic theorem concerning active RC' networks is proved:

Theorem: An arbitrary N X N matrix of real rational funclions in
the complex-frequency variable (a) can be realized as the short-circuit ad-
mittance matrix of a transformerless active RC' N-port network containing
N real-coefficient controlled sources, and (b) cannot, in general, be realized
as the short-circuit admittance matriz of an active RC network containing
less than N controlled sources.

1. INTRODUCTION

It is often desirable to avoid the use of magnetic elements in synthesis
procedures, since resistors and capacitors are more nearly ideal elements
and are usually cheaper, lighter and smaller. This is especially true in
control systems in which, typically, exacting performance is required
at very low frequencies. The rapid development of the transistor has
provided the network synthesist with an efficient low-cost active ele-
ment and has stimulated considerable interest in active RC' network
theory during the past decade.

Several techniques have been proposed for the active RC' realization
of transfer and driving-point functions.™ Tt has been established that
any real rational fraction can be realized as the transfer or driving-
point function of a transformerless active RC' network containing one
active element. In particular, Linvill’s technique’ has been the basis
for much of the later work.

Recently, Sipress” has shown that any two of the four short-circuit
admittance parameters of a two-port network ean be chosen arbitrarily
and realized with a structure requiring only one active element. It fol-
lows that all four parameters can be realized with three active elements.

The problem of determining the minimum number of controlled
sources required to realize all N® parameters of an arbitrary N-port
immittance matrix is of considerable theoretical importance and has
been of interest to network theorists for several years. The solution to
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this problem is stated in the abstract; its proof is the subject of this
paper.

In Section II we derive some fundamental properties of N-port net-
works containing less than N controlled sources. The results are
formulated in terms of inequalities involving the ranks of certain
matrices. It follows from this study that at least N controlled sources
are required for the realization of an arbitrary N X N immittance
matrix. In Section IIT we make use of our previous results to establish
an approach to the realization problem. This approach leads to a con-
structive proof that N controlled sources are in fact sufficient. A nu-
merical example illustrating the essential points in the synthesis tech-
nique is presented in the Appendix.

II. N-PORT NETWORKS CONTAINING CONTROLLED SOURCES

A controlled source is ordinarily understood to be an ideal two-port
network-representation of a single branch-branch constraint. The four
types of elementary controlled sources are shown in Fig. 1. Note that
the two “hybrid sources” [Iig. 1(a) and (b)] form a complete set, since
they can be appropriately connected in cascade to realize each of the
other two.

TFor our purposes it is convenient to generalize the definition of a
controlled source to refer to any voltage or current source whose value
is & weighted sum of certain prescribed voltages and currents. Specifi-
cally, if the value of a controlled voltage or current source is denoted
by a,,

itk
ap = Zc,,.-b.-, (1)
i=1
where by, bz ,- - -, b; are controlling currents and b; 41, bj40,- -+, bjyx are

controlling voltages. It is assumed that the a, , ¢,; and b; are Laplace-

R . (L ; %L
1 R E | ee 1) l\l/)AI E T\BE
(@ © © " @

Fig. 1 — The four elementary controlled sources.
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transformed quantities and that the ¢,; are real rational functions of
the complex frequency variable s.

2.1 The Short-Circutt Admittance Matrix of an N-Port Network Contain-
ing Controlled Sources

Consider the evaluation of the short-circuit admittance matrix of
an N-port network containing a controlled source subnetwork as shown
in Fig. 2. Denote by E and I respectively the column matricesof voltages
and currents at the N accessible ports:

B I
£ I

E=| " 1=l (2)
Ex | 7

et A be the column matrix of all [ controlled current sources and m
controlled voltage sources, and let B be the column matrix of all j cur-
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Fig. 2 — N-port network containing a controlled-source subnetwork.
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rents and k voltages influencing the controlled sourees:

— - — =

(15} Il
[21] I';
A= a |=!1|, (3)
1738 ] E;
L &+m_] ___E’:l_
C 6] [ ]
be Iy
B=|b |=117]. (4)
b1'+1 E;’
b LET

The relationship between A and B is assumed to be given by
A = CB, (5)

where Cis a (I + m) X (j 4+ k) matrix of real rational functions in
the complex frequency variable.

With E and A treated as independent variables, we apply the super-
position theorem to obtain

I = Y,E + DA, (6)

where Y, and D are defined by the equation. In particular, Y, is the
N X N short-circuit admittance matrix of the N-port network with
the value of all controlled sources set equal to zero.

Similarly, we can express B as

B = FE + GA, (7)

where the matrices F and G are defined by the equation. From (5)
and (7),

A = [U — CGJ] 'CFE, (8)
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where U is the identity matrix of order I 4+ m. Using (6),
[Y — Y,] = D[U — CG] 'CF, (9)

where Y and Y, are the short-circuit admittance matrices of the N-port
network with all eontrolled sources respectively operative and set equal
to zero. In certain degenerate cases, Y, and/or the right-hand side of
(9) will not exist. In such instances the network can be treated as a
limiting case of a structure for which this difficulty does not occur.

2.2 The Rank of [Y — Yol

Consider the maximum rank of the N X N matrix [Y — Y,]. Since
the rank of a matrix product cannot exceed the rank of any of its
constituent factors,"

rank [Y — Y| = rank [C] = R.. (10)

The elements of [Y — Y] are real rational functions in the complex
frequency variable. Assuming that this matrix has finite poles at s =
$1, 8, 8m of multiplicity ny , na,- - -, n, respectively, it can be ex-
pressed as

m

» ny
Y oY) =Y A+ >3 B,0 1
E=0 1 (s

=1 k= — )%’

(11)

where the A, and BY are coefficient matrices and in particular, the
B! are residue matrices.

Trom (11), the matrix of coefficients of the first term in the Laurent
expansion at the pole s = s; s

B, = (s —s)"[Y = Yol | ey, - (12)

In view of (10), we have
rank [BY))] £ R, . (13)
Similarly, the leading coefficient of the matric polynomial in (11) is

given by

A, = lim :j[Y — Y., (14)

and hence
rank [A,] £ R, . (15)

Consequently, when R, < N, all k-rowed minors of the matrices
BY), and A, vanish, where k = R. + |, R. + 2,---,N.
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Inequalities (13) and (15) shed considerable light on the fundamental
properties of an N-port network containing a controlled source sub-
network. In fact, at poles of Y which are not poles of Yy, these condi-
tions yield explicit restrictions on the Y matrix. For example, let Y be
the admittance matrix of an active RC network and take Y, to be the
corresponding passive RC matrix obtained from Y by setting all con-
trolled source coefficients equal to zero. It is well known that Y, must
be regular everywhere in the complex plane except at infinity and at
points on the negative-real axis where only simple poles may occur.
Hence Y, cannot influence the coefficient matrices BY), at any mul-
tiple-order pole or at any pole not on the negative-real axis. In par-
ticular, the rank of the residue matrix at any simple complex pole can-
not exceed R, , the rank of the matrix C.

The rank of C, of course, cannot exceed the number of its rows or
columns, whichever is smaller. That is,

R, £ min [j + kI + m]. (16)

This means that R, cannot exceed the number of controlled sources or
the total number of controlling voltages and currents, whichever is
smaller. Consequently, if any of the prescribed BY), are to have full
rank at a pole of Y which is not a pole of Y,, the controlled source
subnetwork must include at least N controlled sources and at least N
distinet control ports.

A similar development, of course, can be carried out in terms of the
open-circuit impedance matrices Z and Z, . Note that these results are
valid for controlled source coefficients ¢,; which may be any set of real
rational functions in the complex-frequency variable. Note also that a
driving-point immittance can be regarded as a controlled source, since
such immittances impose a constraint which is merely a special case
of (1).

III. N-PORT ACTIVE RC REALIZATION

We begin the study of the N-port realization problem by considering
an active BC network containing one controlled source. Specifically,
consider an (N 4+ 2)-port passive RC network characterized by the
(N + 2) X (N + 2) short-circuit admittance matrix ?, and suppose

t The realization of an arbitrary N X N matrix of constants as the short-circuit
admittance matrix of an N-port network containing positive resistors, ideal trans-
formers and controlled sources also requires, in general, at least N controlled
sources. This follows from the fact that, in this case, Y, is the matrix of a non-
negative quadratic form, and hence it is possible to prescribe constant matrices
Y such that, for the entire class of matrices Yo, [Y — Yol is of rank N.
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Fig. 3 — Active RC network containing one controlled source—canonical

subnetwork.

that a current-controlled voltage source is connected between ports
N + 1land N + 2 as shown in Fig. 3. Denote by Yoand Y the N X N
short-circuit admittance matrices relating the column vectors

Fol I “

o 1
E=| and I=| (17)
E,v IN

when the controlled source coefficient respectively vanishes and is equal

to I?.
The matrix Y is given, as a special case of (9), by

gl,h’+‘.‘
R .

_ml"_” \' [y-\’+1.l‘ . 'ﬂ~+1.~l, (18)

Y - Yu =
3]~.~+2

where Y, is the matrix of elements in the first N rows and columns of
Y. It is convenient to express (18) as

ﬁl.N+2

R
q(q + Rij+l.N+2)

Y - Y, = [(Pysras - Pasan], (19)

PN.N42



336 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961
where ¢ and the ;. are polynomials, and

Git = %‘ (20)
It is evident from (18) or (19) that, as anticipated, [Y — Y,] has
unit rank.

3.1 N-Port Synthesis

Our objective is to obtain an expression involving Y similar to (9)
with a right-hand side of rank N. We know that a network character-
ized by such a relationship will require at least N controlled sources.

It is well known that a rank N matrix can be expressed as a sum of
N rank 1 matrices.” This suggests that the realization of Y can be ac-
complished with N networks connected in parallel. We shall specifically
consider the parallel connection of N networks of the type shown in
Tig. 3.

Assuming that the scalar coefficient on the right-hand side of (19)
is the same function of s for each of the N subnetworks, we obtainf

~ (1)

Pi.v+2
Y i Y R o - [-(!') ~ (1) ] (21)
TETY T q(q + Rprirv+2) = ’ Prtrat e Prnady
P b
where
oo _ L )
Y = - [ij (22)
q
and
f)i(\".-i)-l,N+2 = Pr+1,N42, t=1.2,---,N. (23)

The sum of matrix products in (21) can be written as a single matrix
with the element in the jth row and kth column given by

N
2 PinsaPain - (24)
This matrix can therefore be written as the product of the following

two matrices:

1 The networks are assumed to be such that admittance matrices add without
the use of ideal transformers. This is justified later by employing balanced strue-
tures.
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=(1) ~(N) ~(1) ~(1)
Pinyes DN Priiae PN+1 N
PP, = : : ) : : (25)
~(1) ~(N) ~(N) ~(N)
PN N2 " DN N2 Pr+1,1t " Pay1,N
From (21) and (25),
R
Y- Yy= - PP, (26)

q(q + BPyyinyiz)
where
N
Yor = Zl Yo:‘ .
Let the prescribed short-circuit admittance matrix Y be given as
1
Y = Vi, (27)

where D is the common denominator polynomial of the elements in Y
and [N;;] is a matrix of polynomials. Similarly, write Yor as

1
Yor = é[pu = ; pu (28)

I'rom (26), (27) and (28),
R
— [Dpi; — qNy] = Y PP,. 29
D[ Py = Nl ¢(q + Rbriines) (29)

In (29) let terms be identified as follows:

_ 1 ,
Pyy1, N2 = R (D - Q) , (30}

1 .
P1P2 = R [DPU' - qA’u‘]- (31)

At this point we have reduced the synthesis of the N-port admittance
matrix Y to the det‘_er'minatiou of N realizable (N + 2) X (N + 2) RC
network matrices ¥ whose elements satisfy (30) and (31).

3.2 Sufficient Conditions for the Realization of Y

The matrices Y can be expressed as

Y(:) — SK,Q(U _,r Ko(a) + Zl Kj(l) (32}
I=

S+0’j!
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where “deg ¢"" means the degree of the polynomial ¢, and where the
o; are real and satisfy

0<a’1<cr2--- <o’d..gq.

If the coefficient matrices K., , K; and K; are “dominant-diagonal’’
matrices,T (32) can be realized as a transformerless balanced RC(N +
2)-port network.”

Assume that Yyr has been chosen so that

(a) its coefficient matrices satisfy the dominant-diagonal condition
with the inequality sign;t

(b) the matrix (1/R)[Dp:; — gN;;] can be expressed as the product
of two polynomial matrices P, and P. with the property that (1/¢)P,
and (1/¢)P, are matrices of realizable RC transfer admittances (these
admittances are assumed to have poles at infinity only when Y,r has a
pole at infinity); and

(¢) the function fwy4i,nie satisfies the realizability and regularity
constraints stated in (b).

If (a) is satisfied, we can write Yor as the sum of N matrices Yy,
each of which has coefficient matrices that satisfy the dominant-diag-
onal condition with the inequality sign. Recall that Yy, is the matrix of
elements in the first N rows and columns of the (N + 2) X (N + 2)
matrix Y. To obtain ¥'”, we border Y,; with two additional rows and
columns of elements. All but three of the required numerator poly-
nomials are determined by the entries in the polynomial matrices P,
and Ps which satisty (b). Of the remaining three polynomials, Py.i1 nv42
is given by (30) and is assumed to satisfy (e), while ;ii,(v"ll,“l and
Pyia.nse may be chosen freely to assist realizability, since they are
unrestricted by (30) or (31).

The realizability of ¥ can be ensured by having it exhibit the
dominance characteristic, and this can always be done by choosing the
scale factors of the polynomials Pyis vs1 and Pysense as well as the
value of R, the controlled source coefficient, to be sufficiently large.

Hence (a), (b) and (¢) are sufficient for the realization of Y. To
make further progress, we next establish conditions that permit P =
(1/R)[Dp:; — gN ;] to be written as the product of two matrices with
polynomial elements of lower degree.

t A dominant-diagonal matrix M has elements m;; which satisfy

mii = 2, | ma .
= k#j
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3.3 Factorization of the Matric Polynomial P

Let L be the degree of the highest degree polynomial in P = (1/R)-
[Dpi; — ¢N:;], and suppose that the zeros of

NL
det P = 2 as’
k=0

include K distinet real zerosat s = s;, (2 = 1,2,--+ N, -+, K),

Consider the result of determining a nonsingular matrix Q with real
constant elements such that every element in the 7th column of PQ
has a zero at s = s;, (i = 1,2, ---,N). If indeed this can be done, P
can be written as

P = (PQ)Q' =P(DQ ), (33)

where D is the diagonal matrix diag[s — s1, s — s2,--+, 8 — sy}, and
the degree of the highest degree polynomial in P’ is L. — 1. This is
equivalent to removing a linear factor of the matric polynomial P:

L L—1
P=D sA = [Z s"Aj-] DQ !

- [;—1 s"Aj-Q*‘] QDQ™ (34)
-[E o ]eu-m),

where U is the identity matrix of order N and
B = Qdiag [s1, s, -+, sxQ . (35)

If (N — 1)L < K, a matrix Q having the required properties exists
and can be constructed as follows. Iirst, note that at any zero of det P,
say at s = s;, the column rank of P is necessarily less than N, and hence
there exists a relationship of the form

N
0= ;an[P,-(Sz)], (36)
where [P;(s;)] is the jth column vector of P evaluated at s = s,, and
the aj; are not all zero. Note also that at no more than (N — 1)L of
the zeros of det P is it possible to determine alphas, not all zero, which
satisfy
v

0= Zﬂfj:[Pj(Sr)], (37)

iZk
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where & is any one of the integers [1,2,- - - N]. This follows at once from
the fact that all nonidentically vanishing determinants, formed from
det P by replacing the kth column of det P with a column of constants,
vanish at most at (N — 1)L points. Therefore, if (N — 1)L < K,
there must exist at least one equation of the type (36) for a real zero
and with a;; # 0. In other words, there exists a nonsingular matrix of
real elements

1 . Q1

Q: = -'Qkk.. (38)

L qnk '1_

such that every element in the kth column of PQ; has a real zero at
§ = 8. Note that the elements in all columns except the kth remain
unchanged. Hence the matrix Q can be constructed as a product of N
matrices Q; chosen so that every element in the 4th column of

PIIQ;, =12, m
=1

has a real zero at s = s;.

To summarize, if (N — 1)L < K, N distinct real zeros of det P can
be removed as a linear factor of the matric polynomial P. The remain-
ing polynomial is of degree L, — 1 and all coefficient matrices are real. T

To simplify the discussion, we have not considered certain extensions
of the factorization technique. It is possible, for example, to carry out a
similar development with respect to the rows of P. This permits the
removal of a linear factor that premultiplies the remaining matric poly-
nomial.

3.4 Consideration of Conditions (a), (b) and (c)

The admittance matrix Yyr can be made to have dominant-diagonal
coefficient matrices by choosing any N X N realizable RC admittance

t This implies that the matric polynomial P ean be written as
L
P = CII (sU — B))
i=1

when det P has NL distinct zeros. When these zeros are all real the coefficient
matrices C and B; are also real.
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matrix, with elements of suitable degree as determined subsequently,
and multiplying each diagonal entry by a sufficiently large positive
real constant p. Hence condition (a) is easily satisfied. Denote the
matrix determined in this way by

PPL P12 T PIN-’

1 ppzrz
Yor = - _ | (39)
q
Pw1 PP;'NJ
The polynomial det P can be written as
N N
det P = detl [(Dpi; — qN ) = (ﬂ) {DN 'pga + R(s)}’ (40)
R R i=l p¥

where R(s)/p¥ is a polynomial with degree not exceeding N L and with
all coefficients that approach zero as p approaches infinity. We shall
assume that the degree of p;;, deg p::, has been chosen to be inde-
pendent of the index 7. Note that, as p approaches infinity, N deg pi:
zeros of det P approach the zeros of

u I
1_11 Piie

The zeros of this product can be chosen to be distinct and different from
those of D. Hence, for a sufficiently large value of p, (a) is satisfied and
det P has at least N deg p;; distinet real zeros.

Next, consider condition (b). The degree of the highest degree
polynomial in P is given by

L = max [max deg p;; + deg D, max deg N;; + deg ¢|

= max [deg p;; + deg D, max deg N;; + deg ql. (41)
Hence,
L = deg p:; + max [max deg N;; — ¢, deg D]
= deg pii + L, (42)
where
e =0, deg p;; = deg q

(43)
e = 1, deg p;; = deg ¢ + 1.

To remove k linear factors of the matric polynomial P as deseribed
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in Section 3.3, it is sufficient, after removal of the (£ — 1)th factor,
that

(N — D)[deg pii + Le — (k — 1)] < Ndegpi — N(k — 1). (44)

If k = L, factors are removed, P could be written as the product of
two matrices, one of degree L. and the other of degree deg p:;. Sub-
stituting this value of k into (44) gives the required relationship be-
tween L. and deg p,; :

NLE - 1 < deg Pii . (45}

Hence conditions (a) and (b) are satisfied{ with deg p;; = NL. . Iinally,
it is evident that condition (e¢) can be satisfied simultaneously, since
Pny1,n42 can be chosen to have any degree not exceeding deg pi; .

This proves the theorem stated in the abstract.

IV. CONCLUSION

We have proven that N is the sufficient and, in general, minimum
number of controlled sources required to realize an arbitrary N X N
matrix of real rational functions as a transformerless active £C N-port
network. A ecanonical structure is a parallel combination of N networks,
each containing a single controlled source. The type of controlled source
employed is one of the two basic elementary controlled sources. Similar
developments can be carried out for other types of controlled sources.

Turther work is indicated in several directions. It is desirable to avoid
the use of balanced networks. A detailed investigation of matric poly-
nomial factorization may shed some light on this possibility. A major
difficulty stems from the fact that relatively little is known about the
realization of transformerless passive RC networks. Even so, it is almost
certain that more practical canonical structures will be discovered.

It is noteworthy that the analytical machinery employed here pro-
vides insight into other fundamental questions. For example, it is easy
to show that all N resistors in Oono’s passive N-port realization™ are in
fact necessary. Similarly all N-negative and N-positive resistors in Car-
lin’s active N-port realization® are necessary.
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APPENDIX
Synthesis of a Two-Port Network — A Numerical Example

To illustrate the main points in the synthesis technique presented in
Section 111, we consider in detail the synthesis of a two-port network.
This example demonstrates also that (45) is not a necessary condition.

Let the preseribed 2 X 2 matrix be

1
Y = v
(46)

1 |:s?+s+2 sz-l—s—l—B]
sSf+s+1|sP+s+4 s2+s+5]

We choose Yyr as the following matrix that obviously satisfies the domi-
nance condition with the inequality sign:

Yo = é {pij]
4
e e ] )
(s 4 2)(s + 4) 0 5(s 4+ (s 4+ 3)]°
From (30), (31), (46) and (47),
Pas = —}1, (5s + 7), (48)
1
PP, = P =

45" + 18" + 245 + 158 — 1 —s' — 78 — 178" — 26s — 24 (49)
s T8 — 185" — 325 — 32 46 + 188 +21° — 3s — 25 |

Consider the factorization of P into two matric polynomials of the
second degree. The factors of

RY det P = 155" 4 1305 + 420s" + 5555° — 152s'
— 1629s° — 2474s" — 19725 — 743,
determined with a digital computer, are
(s 4 1.0707018) (s — 1.6223931)(s + 3.0014915) (s + 2.6871002)
(s 4+ 13191886 = j1.2215876) (s + 0.4456939 =+ j0.9460882).
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Denote by s;, sz, 83 and s, respectively the zeros of the first four factors
in (50).

First, we determine a matrix Q, such that both elements in the first
column of PQ; have a zeroat s = s,. At s = s,

an[Pi(s1)] + au[Pa(s1)] = 0. (51)

By evaluating the pair of polynomials in either row of (49) at s = s; we
obtain:
0.76249 ay + ax = 0.

[ 1 0} (52)
Q=1 _ome2s0 1] ’

Hence,

From (49) and (52),

PQ, = Ili @], (53)
where
an = (4.7625s" 4+ 18.2382s" + 17.4347s + 16.1575)(s + 1.0707),
ay = —(4.0499s° + 16.3886s° + 16.4651s + 12.0835)(s + 1.0707),
aw = —(s' + 75" + 175" + 265 + 24),
am = (4s' 4 185° + 215" — 3s — 25).

Next we find a matrix Q. such that the first column of PQ,Q; is iden-
tical to that of PQ,, and both elements in the second column of PQ,Q.
have a zero at s = s». The evaluation of polynomials as before leads to

1 0.48643
Q. = [ } (54)
0 1

At this point, P can be expressed as
P — }_B[b,j] diag [s + 1.0707, s — 1.6223]Q°", (55)

where Q7' = (Q,Q.) ', and
by = 4.7625s" + 18.23825° + 17.4347s + 16.1575,
by = — (4.04995° + 16.3886s" + 16.4651s + 12.0835),
b = 1.3166s" + 6.4881s* + 11.5058s + 9.6064,
bar = 2.0300s" + 11.2124s° + 22.6465s + 19.2894.
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A second linear factor of P can be removed by repeating this process.
Specifically, if the zeros at s = s; and s = s; are removed respectively
from the first and second columns of [b;;], P can be expressed as

P = PP,
with
P, =
4.3560s*+3.1605s+4.3961  1.31665°+2.9503s43.5781
g [—(4.676632+5.81363+(5.0077) 2.030032+5.75765+7.1753:|
(56)

1 |:0 62025°+2.56

25420221 —0.4863s°—1.9803s— 1.5629
BR | 0.0568s"+1.5419s —2.7648

0.84995°40.50075 — 4.7910
where 8 is an arbitrary nonzero real parameter.
To determine ¥ and Y*, first write Yor as the sum of two matrices,

Y, and Yoo, that satisfy the dominance condition with the inequality
sign. The following choice is clearly acceptable:

Ym = Yuz = %an ‘

Hence, ¥ and ¥ are given by

= (i)

(1)

~(1)

P 0 Pz Dig

~ (1) ~(1) (i)
9 _ ]_ 0 Pa2’ P2z P2 (r7)
q _Gi) =) (i) =(i) 2
P31 Pa2 Paz Paa
PP P
where
= 52 = —L (s + 1),
I

Pl = Bii’ = P’ = P = §(s + 1(s + 3).
The polynomials Py, Pas, iy, and pii are unrestricted by (31) and
hence, for simplicity, can be chosen to be §(s + 1)(s + 3). The remain-
ing polynormals are obtained from (25) with P, and P, given explicitly
in (56). It is evident that finite, nonzero parameters 8 and R can be
determined so that the matrices ¥ and ¥ satisfy the dominance con-
dition. The realization of each of these matrices takes the form shown

2)
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()]

(2)

Fig. 4 — Realization of ¥ or ¥@ for two-port network example.

in Fig. 4, where the rectangles enclose transformerless passive balanced
RC structures.”
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