Prolate Spheroidal Wave Functions,
Fourier Analysis and Uncertainty — 1

By D. SLEPIAN and H. O. POLLAK
(Manuscript received August 1, 1960)

A complete set of bandlimiled functions is described which possesses the
curious property of being orthogonal over a given finite interval as well as
over (— o, »). Properties of the functions are derived and several appli-
cations to the representation of signals are made.

I. INTRODUCTION

It is pointed out in this paper that the eigenfunctions of the finite
Fourier transform are certain prolate spheroidal wave functions., These
eigenfunctions properly extended possess properties that make them
ideally suited for the study of certain questions regarding the relation-
ship between functions and their Fourier transforms. Here we shall
study the functions in some detail and present some applications to the
representation of bandlimited functions. The property that we shall be
most concerned with is the orthogonality of the functions over two dif-
ferent intervals. The paper' by Landau and Pollak which follows draws
on this material, establishes other properties of the functions and pro-
vides further examples of their application,

After some definitions contained in the next section, we proceed to
state without proof in Section III our main results. Certain applications
of these results are then given in Section IV. The remaining sections of
the paper are devoted to establishing the results already stated.

II. NOTATION

In what follows, we denote by £, the class of all complex valued fune-
tions f(¢) defined on the real line and integrable in absolute square.
We adopt the notation

1w 1 = [ Isor 1)

43
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and refer to || f(t) ||..° as the total energy of f(t) and refer to || f(t) ||..*
as the energy of f(t) in the interval (—A,A). In an analogous manner, we
denote by £,° the class of all complex valued functions f(¢) defined for
—A =1t £ A and integrable in absolute square in the interval (—A4,4).

Functions in £_° possess Fourier transforms. Upper and lower case
versions of a letter will always denote a Fourier pair. We write, for ex-
ample,

f(t) %[: F(w)e™ dw, (2)

F(w) [ F(t)e" dt. (3)
We refer to ¢ as ttme, w as angular frequency and /27 as frequency. The
functions F(w) are also integrable in absolute square. In this notation
Parseval’s theorem is

[ somma =5 [ re)a d. (1)

We denote by ® the subclass of £,° consisting of those functions,
J(t), whose Fourier transforms, F(w), vanish if |w| > 2. Here Q@ =
27 W is a positive real number fixed throughout this paper. Every mem-
ber, f(t), of ® can be written as a finite Fourier transform of a func-
tion integrable in absolute square:

1 ;
10 = o [ Fw)e™ d (5)
27 La
Functions in ® are called bandlimited and ® will be referred to as the
class of bandlimited functions. It follows from (5) that members of ®
are entire functions of the complex variable ¢.

From any function f(f) in £,_° we can obtain a function, Bf(t), con-
tained in & by the rule

| N

B = o [ Fw)e™ da, (6)

27[' —Q
where F(w) is given by (3). We call Bf(t) the bandlimited version of
f(t). We regard B as an operator whose effect on a function in £_* is to
produce its bandlimited version. In electrical engineering terms, Bf(t)
results from passing f(#) through an ideal low-pass filter with angular
cutoff frequency €.

We denote by © the subclass of functions, f(¢), of £, each of which
vanishes for | ¢| > 7'/2. Here 7' is a positive real number fixed through-
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out this paper. Members of © are called timelimited and D will be re-
ferred to as the class of timelimited functions.
From any function f(¢) in £,° we can obtain a function Df(t) contained
in O by the rule
t), t| = 17/2
DI(t) = @, =1/ -
0, [t > T/2.
We call Df(t) the timelimited version of f(t). We regard D) as an operator
whose effect on a function of £.° is to produce its timelimited version.
We shall use the notation f(t) € F to mean that the function f(t)
belongs to the class § of functions.

11I. RESULTS

The statements made below are proved in Sections V and VI.
Given any T > 0 and any © > 0, we can find a countably infinite set
of real functions wo(1),¥1(t)¥2(t), - - and a set of real positive numbers

M>M>N> (8)

with the following properties:

i. The ¢,(¢) are bandlimited, orthonormal on the real line and com-
plete in ®:

°° 0, N

[wowwa={y 77

—%0 ’ =]

< T/2, the ¢(t) are orthogonal and

7,7 =012 ---. (9)

ii. In the interval —7/2 =
complete in Lqys':

~

2 0, oy
Lr/2 Ay 1 =7
iti. Tor all values of ¢, real or complex,
TIZ - _
() = [ I i = 0,1,2,-0. (1)
Lrp w(t — 8)

Further properties of the ¢’s are given in Sections V and VL.

The notation used above conceals the fact that both the ¢’s and the
M's are functions of the product 7. When it is necessary to make this
dependence explicit, we write A; = Ni(c), ¥:(t) = ¢i(et), v = 0,1,2,- -+,
where 2¢ = QT.

Some values of A;(¢) are given in Table I. It is to be noted that for a
fixed value of ¢ the A; fall off to zero rapidly with increasing 7 once ¢ has
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TaBLE [—VALUES oF M.(¢) = La(c) X 10-7-

c=05 ¢ =10 e=20 ¢ =40 ¢ =80
n

L » L » L p L ? L »
0 | 3.0969 1| 5.7258 1| 8.8056 1| 9.9589 1 1.0000 0
1 | 8.5811 3| 6.2791 2| 3.5564 1] 9.1211 1| 9.9988 1
2 | 3.9175 5| 1.2375 3| 3.5868 2| 5.1905 1 9.9700 1
3 | 7.2114 8| 9.2010 6| 1.1522 3| 1.1021 1 9.6055 1
4 | 7.27114 | 11 | 3.7179 8| 1.8882 5| 8.8279 3 7.4790 1
5 | 4.6378 | 14 | 9.4914 | 11 | 1.9359 7 3.8129 4 3.2028 1
6 | 2.0413 | 17 | 1.6716 | 13 | 1.3661 9] 1.0951 5 6.0784 2
7 | 6.57606 |21 | 2.1544 | 16| 7.0489 | 12 | 2.2786 7 6.1263 3
8 | 1.6183 | 24 | 2.1207 |19 | 2.7768 | 14 | 3.6066 9 4.1825 4

exceeded (2/7)ec. (The significance of this will be discussed in detail in
a later paper.) Because of (9) and (10), namely || ¥ ||,° = 1, || ¢i || 212
= X, a small value of A; implies that .(¢) will have most of its energy
outside the interval (—7/2,T7/2) whereas a value of A; near 1 implies
that ¢;(¢) will be concentrated largely in (—7/2,7/2). This behavior
of the y’s can be clearly seen in Figs. 1 through 5. Figs. 1 through 4
show yo(e,t), ya(e,t), Ya(et) and ¥y(e,t) for several different values of e.
For ¢ = 0.5, or (2/w)c = 0.3183, as shown on I'ig. 1, ¢» and y; are prac-
tically zero in the interval ( —7/2,7/2). For ¢ = 4, or (2/7)c = 2.546,
as shown on Iig. 4, ¢4 is largely concentrated in the interval (—17/2,
T/2). Fig. 5 compares yy(c,t) for several different values of ¢.

IV. SOME APPLICATIONS
4.1 Extrapolation of a Bandlimited Function

Tt is sometimes desired to extrapolate a bandlimited function known
only on the interval (—7/2,T/2) to values outside this interval. Since
any f € ® is an entire function, this extrapolation ean be done exactly
in principle. One could, for example, calculate successive derivatives of
f at’some point in (—T7/2,7/2) and form a Taylor series representation
which would converge everywhere. In practice, however, such a Taylor
series would necessarily be truncated and the resultant approximation
to f(¢) would be a polynomial which for sufficiently large values of
| £| would give a very poor approximation to f. This approximation is
not, of course, bandlimited.

The functions ¢; provide an alternative approach. Since f € ®, we
can write, from i., for all ¢

J(t) = Zﬂ'rt’prl(t), (12)

0
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where

a = [ 0.0 a,

- - (13)
>at= [ s a
and the convergence in (12) is in the mean square sense
00 N 2
lim f [f(t) — Zany{zn(t):l dt = 0.
Nasw J—o
Multiply (12) by ¢;(¢), integrate and use (10). There results
1 T/2
a == [ jow) i (14)
Rn T/2

The coefficients in (12) can be delermined by (14) from values of f(t) in
the interval (—T/2,T/2).
The above result suggests approximating f({) for all ¢ by

fu(t) = Zﬂ)anw,.(t) (15)

with the a, given by (14). The approximation (15) is itself bandlimited.
The mean squared error is

[Tt = pra = 3 a (16)

N4l
and by (13) can be made as small as desired by making N sufficiently
large. In the sense of (16), the extrapolation remains good for all ¢.
The error in the fit of fx to fin (—T/2,T/2) is given by

/2 o0
f (f - fN)2 di = EanEAn- (17)
—T/2 N+1

T

As the X, approach zero rapidly for sufficiently large n, it may happen
that (17) is small for values of N for which (16) is still large. The fit of
fv inside the interval should not be taken as an indication of the fit else-

where.
1.2 Approximation in an Interval by a Bandlimited Function

Suppose now f(t) € Ly is known in the interval (—7T /2,7/2) but
f is not necessarily a piece of a bandlimited unection. From i. above it
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follows that f(¢) may still be represented by (12) with a’s given by (14),
but this representation is valid now only for |¢| = 7'/2. If indeed f is
not a piece of a bandlimited function, the series (12) will certainly not
converge in mean square over the whole real line.

The foregoing suggests the utility of finite sums of the form (15) as
approximants to bandlimited functions having a prescribed form in the
interval (—7T/2,T7/2). The conditions of bandlimitation and prescribed
form in (—T/2,T/2) are, of course, in general incompatible (unless in-
deed, the prescribed form is a piece of a bandlimited function). How-
ever, finite sums of the form (15) taken for all { with a’s computed by
(14) permit approximations by bandlimited functions to a prescribed
f € £r,2. We are assured by ii. that the approximation can be made as
good as desired in the sense that the right side of (17) approaches zero
for large N. We have, however,

f fu(t) dt = i a,’

N
and, if f is not a piece of a bandlimited function, > a,’ grows without
bound for increasing N. Thus, in approximating a piece of a nonband-
limited function by a bandlimited function, we exchange goodness of
fit in (—7/2,7/2) with wildness of behavior outside this interval.
We now impose an energy restriction. Given [ € Lro. What ¢ € ®
with prescribed energy | ¢ ||.* = E minimizes || f — g ||z”? Let

f=aw(t), |t|=1T/2
g = an\[’n(t), —w << »,

Then a simple argument gives

A\
b, = _nm ,
TR
where g is the unique positive number which satisfies
24 2
a; A
E = — .
)> (1 4+ Aa)?
If the constraint on g is that the energy outside (—7/2,T/2) is pre-
seribed, || ¢l — |lgllze° = I, rather than the total energy, the
result is
Anhn

bu = = T
.u(l - Au) + A
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where u (again positive) is chosen to satisfy

’ af)\,.z
D M i w W

4.3 Some Extremal Properties of yo(t)

The y’s possess a number of interesting extremal properties. The most
important of these, the fact that ¥, has the largest energy in (—7/2,T/2)
of all function in ® of unit total energy, is discussed in detail by Landau
and Pollak." We comment here on two other extremal properties of v .

Let f(t) € £, have total energy E = | f|,". The timelimited ver-
sion of f(¢) has total energy Ep = || Df||." = || f ||z < E. Since Df
cannot be bandlimited, its Fourier transform has nonvanishing energy
in | w| > €. The bandlimited version of Df, namely BDf, will therefore
have total energy Ezp < FEp = E. The operation BD transforms a
member of £.° into a member of & with smaller total energy. Which
members of £.° lose the smallest fraction of their energy under such a
transformation? That is, for which f € £, is u = || BDf ||/ f. a
maximum?

The answer to this question, unique except for an arbitrary multi-
plicative constant, is Dy(¢). This may be seen as follows. I'rom (3), (6)
and the definition (7) of D,

a _ T2 )
BDf(1) = %r[n dw ™! '[m ds f(s) 6"

(18)
= [, alt = 5)1(5) as
-T2
where we have written
!. n s
polr) = 09 _ 1 f dw . (19)
T 21 J_q

Note that pa(7) is an even function of 7 and that from (19) and Parse-
val’s theorem (4) it follows that

[ outt = whoalu — ) du = outt — 9. (20)

Therefore,
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| BDf(w) | = [ du [BDf(u)][BDf(u)]
® T2 T/2 _
=[¢mf dt [ dspalt — wpalu — )F(WF(s)  (21)
o —T1/2 -T/2

2 T2
_ [ dt [ dspalt — ) f(1)](s).

T/2 T/2

Here we have used (20) and the fact that pe is real and even.
Since from (21) we see that || BDf ||..* depends only on values of f in
(—1T/2,T/2), it follows that u is equal to the maximum of

T/2 T/2

72 T2
| BDf ||" ,[ dt ds pa(t — 8) (1) J(s)

17l [ s ra

over all f € £ It is well known that the solution to this problem is
v = Ao, where )\, is the largest eigenvalue of the integral equation

T2
xﬂg=[mMU—9ﬁg@, L] < T/2, (22)

and that » attains the value A, for f equal to a corresponding eigenfunc-
tion. We shall see later that ¥, is such an eigenfunction. Thus f agrees
with ¥ in (—T/2,T/2) and so Dy is a function in £,° for which u
attains its maximum value Ao .

We now ask which f € @ as opposed to f € £.7 maximizes u. That is,
which bandlimited function loses the least (fractional) energy when first
timelimited then bandlimited? The answer is ¥, and the corresponding
value of u is Ao’

To see this, introduce the representation (5) for f € ® into the nu-
merator [as given by (‘)1)] of p. There results

I BDSf . f dwf de’ F(0)Fla) K (wy'),
where we have set
T/2 T/2 . o,
K(ww') = f dt_[ dt’ pa(t — t)e™ e,
—T/2 T/2

To transform this expression further, introduce the representation (19)
to obtain
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1 Q T

12 /2
K(ww') = — dw” dt e f dt’ g it wen
—T/2

27 Lg 12

]
2w fg dw”.owz(w - w”)sz(“’” - w')

2 r
2mpr (ww').

I

By Parseval’s theorem, (4), the denominator of x can be written as

2 _ 1 (" 2
170 = o [ FG) [ o
w @
Our task, then, is to maximize

Q Q
| BDS |l f_n dw ]: . do'pra™® (we )F(w)F(w')

I 1lee?

[1]
[ | F(w) [ deo
Q

over all F € £¢°. The solution to this problem is p = py, where pq is
the largest eigenvalue of the integral equation

Q2
?\F(w) = f 9112(2)(03@’)1’1(:3’) dw’.
1)
Now prs® (w,w’) is the first iterate of prs(w — «’). Therefore, yp is the
square of the largest eigenvalue of the integral equation

Q
AF(w) = [ pria(e — & )F(a) dad.

A change of variables reduces this equation to the form of (22) whence
it is seen that u = A" and that F(w) = $o(«T/22) for |« | = Q. From
(29), which will be established later, it follows that f(¢) = ¥o(2).

4.4 Problems Concerning Bandlimited N oise

Much of the theory of detection, parameter estimation and predic-
tion of signals in noise when observations are made in a finite time is
based on the Karhunen-Logéve representation of the noise. (See Ref. 2
for such a treatment of these problems.) This representation involves
expansions in terms of the eigenfunction solutions of a certain integral
equation. When the noise in question is second order stationary and with
angular frequency spectral density uniform in (—Q,2) and zero else-
where (bandlimited white noise), the integral equation in question is
identical with (19), (22). The function ¥; and eigenvalues A; thus play
an important role in numerous questions concerning bandlimited white
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noise observed for a finite time. Their role in this connection has been
pointed out previously in Ref. 3.

V. THE PROLATE SPHEROIDAL WAVE FUNCTION

The functions ¥.(c,t) are scaled versions of certain of the angular
prolate spheroidal wave functions. A number of books"**" treat the
prolate spheroidal wave functions in detail. We will draw freely from
this literature. We adopt the notation* of Flammer.*

When ¢ is real, the differential equation

2 d2u du 2.9
(l—i)Eﬁ-%(—ﬁ—I-(x—ct)u:O (23)

has continuous solutions in the closed ¢ interval [—1,1] only for certain
discrete real positive values 0 < xo(c) < x(e) < xa(c) < --- of the
parameter x. Corresponding to each eigenvalue x.(c), n = 0,1,2, ---
there is a unique solution Sy.(¢,t) such that Sp.(c,0) = P.(0) where
P.(t) is the nth Legendre polynomial. The functions So.(c,t) are called
angular prolate spheroidal functions. They are real for real ¢, are continu-
ous functions of ¢ for ¢ = 0, and can be extended to be entire functions
of the complex variable t. They are orthogonal in (—1,1) and are com-
plete in £,°. Sp.(¢,t) has exactly n zeros in (—1,1), reduces to P,(t) uni-
formly in [—1,1] as ¢ — 0, and is even or odd according as n is even or
odd, n = 0,1,2, --- . The eigenvalues x,(c) are continuous functions
of cand x,.(0) = n(n 4+ 1),n =012, ---.

A second set of solutions R, " (e,t), n = 0,1, - - -, called radial prolate
spheroidal functions, which differ from the angular functions only by a
real scale factor,

Ro.(c)t) = ka(c)San(eyt),
are of use in many applications. These radial functions are normalized
so that
Ro"(et) — }tcos [et — 2(n + 1)7]

agt — o,
The equations

1 -
2 (R O () Sm(e) = [ A=) () s, (24)
T 1 w(t — )
l .
27" Ron ™ (¢,1) Son(et) = f e Sonle,s) ds n=012-- (25
-1

* The reader should be eautioned that various authors disagree not only on
notation for these functions, but also in their method of normalization.
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are both special cases of more general integral relations satisfied by
prolate spheroidal functions that can be found in the literature, They
are valid for all ¢, real or complex.

Equation (24) shows that Sp.(c,t) is a solution of the integral equa-
tion

MO = [ odt = 9p)ds, 1] 1 (26)

corresponding to the eigenvalue
26 (1 2
An(c) = ; [le (8,1)] 3 n = Oa 1, 2’ . (27)

Here p.(7) is given by (19). Indeed, the completeness of the S, in £,°
assures us that the quantities (27) are the only eigenvalues of (26) and
that if these quantities are distinet, the Sy, are (apart from multipli-
cative constants) the unique £,° solutions of (26). If several of the quan-
tities (27) are equal for different values of n, then linear combinations
of the corresponding Sy, will also satisfy (26). Within the sense of this
degeneracy, then, the Sy, are unique solutions of (26). In Section VI
we shall see, indeed, that this degeneracy does not occur.

Equation (19) and Bochner’s theorem (Ref. 8, Theorem 23, p. 95)
show that the kernel of (26) is positive definite. The quantities (27)
are therefore strictly positive. Set

1
() = [ [Shule)P d.
~1
We now finally define

V(o)
= VAl g (e2t/T).
Yaleyd) (o) Son(c,2t/T) (28)
Properties ii. of Section III now follow directly from definitions and
the orthonormality and completeness of the Sy, in (—1,1).
A change of variables and the definitions (27) and (28) convert (24)
into (11). A change of variables converts (25) into

“n, (1) 2
PR (01 g (or) = L [ d*pulewT/2) do,  (20)
T 2w Lg
which shows ¢, € ®. Indeed, since the function ¥, (¢,wT/22) are com-

plete in —Q = o = @, Parseval’s theorem shows that the ,(¢) are
complete in ®. The remaining assertion of i. of Section ITI, namely (9),



PROLATE SPHEROIDAL WAVE FUNCTIONS — I 59

follows from a computation. From (11) we have

[ ar oo

T/2

= Ti2
= )TIT, f_m dt -[m ds pa(t — s)¥:(s) j: du palt — u)g;(u)

T/2

T/2 T/2 ®
L du -’:w ds ¥ (s)y;(u) ./:.,, dt pa(u — t)palt — &)

)T;Yj —T7/2 2
1 Ti2

AAj i

T2
du () [ f ds p(u — 8)f(s)
/2

0, 7#7J

1 T/2
el du v () () =
v L aewtonco = 10T
Here we have used (20) and (10).

All properties of the y’s asserted in Section ITI have now been estab-
lished except for (8). To this end we devote the next section.*

VI. NONDEGENERACY AND ORDERING OF THE EIGENVALUES OF (26)

We have seen that the Sy.(c,t) are solutions of (26) with eigenvalues
given by (27). We show now that we cannot have two distinet So.
belonging to the same eigenvalue A if ¢ > 0.

Let fi(t) and fa(t) be two linearly independent solutions of (26) for
the same A, ¢ # 0. Then

MO = [ ot = )5ls) ds, (30)
MWD = [ ol — 90 ds (1)
ML = [ 51— s ds, (32)
M) = [t = D7) ds (33)

* Ville and Bouzitat? recognized (independently of the earlier Ref. 3) that the
solutions of the integral equation (11) are prolate spheroidal functions. They
assert that the eigenvalues A, are ordered as in (8) when y, is identified with So.
'lmlh no proof of this fact appears in their paper or apparently elsewhere in the
iterature.
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and
! ”
MW = [ (e = 9)fils) s (34)

Assume now that f; is even and f» is odd. Integrate (31) by parts to
obtain

1
M) = L(Dlp( =1 — 8) — po(1 — )] + L pe(t — $)fi(s) ds.
Multiply this equation by fi(¢) and integrate to obtain

M [ AOR© de = MADIR(=1) = (D)
1 1 (35)
+ [ at [ dsptt = ).

Now multiply (33) by f ! (t), integrate and subtract the result from (35).
One finds Mi()[f:(—1) — fo(1)] = 0, or
Fi(1)f2(1) = 0, fieven, fiodd. (36)

Assume now that f;(¢) and f.(t) are of the same parity, i.e., both even
or both odd. Multiply (32) by f.(f), multiply (34) by fi(¢), subtract
and integrate. There results

M arin - g3 = [ @l (s - 5
I (DL(1) = f(DAM] = 0

II

or
A(Df(1) = 7(1)f1(1),  fiand f; of same parity.  (37)

For any two linearly independent solutions of (26) belonging to the
same eigenvalue we must have either (36) or (37) hold. But we shall
show that both of these conditions are impossible for two different S
functions, say So.(¢,t) and Spn(c,t). From the differential equation (23),
we see that

280:(1) = (xn — €*)San(1). (38)
If Sp.(1) vanishes, then so does Son(1). But differentiating (23) shows
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that if Sy, (1) and Sc.',.(l) vanish so does So, (1). Repeated differentiation
(which is possible since the S, are entire) shows that if S,.(1) = 0,
then S;.(t) = 0. Therefore condition (36) cannot hold. On the other
hand, since Sp.(1) # 0, Som(1) # 0, (37) can be written

Som(1) _ Sen(1)
Som(1)  Spa(1)

or

= (39)

from (38). However, it is known that the eigenvalues of the differential
equation (23) are nondegenerate if ¢ is real, so that (39) cannot hold if
m # n. The eigenvalues (27) are thus seen to be distinct.

By their definition, the S;, functions are indexed so that the eigen-
values of the differential equation (23) xo < x1 < x2 < -+ are mono-
tone increasing functions of their index. We have defined ¢, in terms of
the So. by (28) and have labeled the corresponding eigenvalue of (26)
An by (27). There remains the task of proving that the A, are ordered as
in (8).

Our argument makes use of the fact (just demonstrated) that for all
real ¢ # 0 the \.(¢) are nondegenerate and the fact (see for example
Ref. 10, vol. I, p. 128) that the eigenfunctions and eigenvalues of (26)
are continuous functions of its kernel. Thus if we can prove that for
some ¢ > 0,

Ao(e) > Mi(e) > Male) -+,

then continuity and nondegeneracy of the A’s allows us to assert this
ordering for all positive c.

We now establish this ordering for ¢ sufficiently near zero. Let . and
V41 be successive eigenfunctions of (26), ¢ # 0. Then

7\;1"}’::('5) = [1 P:(t - S)\(/n(S) (lS,

1
)\!x+1§t’:i+l(l) = j:l. P:(t - s)'lbrl-H(.s) ds.

Multiply the first of these equations by N, 41¥.41(¢), multiply the second
by A (t), add the results and integrate to obtain
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! ’ ’
Arl.AﬂJrl fl (‘Pu’#n«kl + ‘lbn+1\bu) dt
1 1 )
= Mo fl di f ds pe(t — $)usa(E)n(s)
- -1

1 1
+ M L dl f—1 ds p:(t — )¢ (D¥nia(s)

(A = Ausa) f_[ dt f_ ds pl(t — $)gu(O¥nin(s)

Il

(A = A1) Aups f_ 1 OO

or

1
[ Vb dt
L

1 (40)
[l \bn'p:t+1 dt

Au - A)H»l = AJ! 1

,Now as ¢ — 0, ¥, — P,(t), the nth Legendre polynomial, and ¥, —
P (t). The denominator of the fraction in (40) approaches

1 1 1
f PuPLdi = PaPoyi| — f PonPlhdi = 2
-1 1 -1

since the integral on the right vanishes and P,(1) = 1. The numerator
approaches

1
f PLPoyydt = 0.
1

By making ¢ sufficiently small, therefore, the fraction on the right of
(40) is of absolute value less than unity and X\, — A =
A1 4 0(1)] = 0. Since for ¢ # 0 the A, are all distinet and positive,
the ordering (8) must hold. The limiting eigenvalues for ¢ — 0 are
0=AQ=AI=A2= .

VII. COMMENTS

It is worth pointing out that the basic importance of the ¢, for the
study of the relation between functions and their Fourier transforms
stems from (25), which shows that the Sy, are eigenfunctions of the finite
Fourier transform kernel. Indeed, many of the important properties of
the ¢’s (i. and ii. of Section III, for example) follow directly from (25)
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or its first iterate (24), without explicit use of (23) or recognition of the
Sy, as angular prolate spheroidal wave functions.

In the interests of simplicity of presentation, we have not put forth
the theme of this work in its most general form. We here make just one
comment in this direction and leave other generalizations to the in-
terested reader. The curious orthogonality over two different pointsets
of the analytically continued solution of (22) will hold whenever (20)
is true and the solutions are in £.°. For example, if the kernel p(r) of
(22) is even and has a Fourier transform constant on intervals and zero
elsewhere, e.g., po(7) = pa(7) cos ar, a > Q, then the double ortho-
gonality maintains. The eigenfunctions for the bandpass kernel pi(7)
do not seem to be expressible in terms of well-studied functions. Com-
putations in this case indicate the existence of degenerate eigenvalues.
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