Prolate Spheroidal Wave Functions,
Fourier Analysis and Uncertainty —II

By H. J. LANDAU and H. O. POLLAK
(Manuseript received July 6, 1960)

The theory developed in the preceding paper' is applied to a number of
questions about timelimited and bandlimited signals. In particular, if a
finite-energy signal 1s given, the possible proportions of its energy in a
fintte time interval and a finite frequency band are found, as well as the
signals which do the best job of simultaneous time and frequency concen-
iration.

I. INTRODUCTION AND SUMMARY

It is a common experience in the communications field that one can-
not simultaneously confine a funetion f(¢) and its Fourier transform
F(w) too severely. The most familiar statement of this phenomenon is
the Heisenberg uncertainty principle: If we measure the time-spread T
of f(t) by

f_: (t — w)* [ f(0) [ at
[ a

and the frequency-spread @ of F(w) by

T =

f (0 — @) | F(w) |* de
92 — 3

‘[" | F(w) |* de

then, for any choice of f and wy, QT = . Thus T and @ ecannot, for
any Iourier transform pair, be both small. Equality will hold if f(?)
[and hence F(w)] are gaussian, and #, and w, are chosen as the means
of | f(¢)|* and | F(w) |* (in this case both zero). This result, while
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demonstrating that our experience with timelimiting and bandlimiting
is indeed related to mathematical truth, does not succeed in providing
a very good understanding of what is really happening. We should like
to know just how close one can come to simultaneous limiting in both
time and frequency, and what the price is that one has to pay. We need
a sharper measure of the concentrations of f({) and F(w) than that
afforded by the above variances of | f(¢) |* and | F(w) |*, a measure
which, if possible, will depend on the behavior of f(¢) in a given finite
time interval, and of F(w) in a given finite frequency band.

An early attempt to meet this need was made by L. A. MacColl,
who around 1940 proved the following previously unpublished form
of the uncertainty principle:

If
to+T
[T 150 P
[ pa
and
wgtQ
[ 1P | do
0 - = ag,
L | F(w) | do
then
Q7 > 21ra1a22. (1)

This theorem does indeed emphasize the behavior of f(¢) and F(w) in
given finite intervals. The quantity o, representing the proportion
of the total energy of f(¢) which is in the time-interval (f, to + 7'), is
especially satisfying as a measure of the spread of f(¢); on the other
hand, a; has no immediate physical interpretation. A further difficulty
with (1) is that there are no functions for which equality can be
achieved, although in practice the estimate is quite good.

A more useful form of the uncertainty principle would replace the
above measure a: by the proportion of energy of F(w) in a frequency
band, that is, by a definition similar to that of @, . This is done in the
present paper. We shall see that if
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to+T/2
[T L P

o—T/2 _ 2

IRICIR

and

)
f | Fw) [F de
s =g
f_ | F(w) [} dw

then
QT z ®(a,B),

where ®(a,8) will be found explicitly, the inequality will be sharp and
funetions yielding equality will be given. The optimal functions f(¢)
will always be real if, as in the above statement, the frequeney band
is centered at zero. The same inequality holds if the frequency band
under study is not centered at zero, but then the optimal functions are,
in general, complex-valued.

The simplest special case of our result arises if 8 = 1, so that all
of F(w) is contained in |w| £ @, and F(w) = 0 for |w| > Q. The
question “if « is given, what is the minimum Q7?” can now be re-
phrased “if Q7 is given, what is the maximum a?” Let us introduce
the following notation: The square norm of f is the total energy of f:

7]

: [oif(t) Fde.

Timelimiting a function f produces a function Df which is f restricted
to|t| = T/2:

_ i =772
Df—{o if |t > T/2.

Bandlimiting a function f produces a function Bf whose Fourier trans-
form agrees with the Fourier transform of f for | @ | £ ©, and vanishes
for |w| > Q:

1 ? Twt
Bf = — Flw)e™ dw.
27 La



68 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961
By writing
w0 .
Fw) = [ f(s)a™ as,
— o
we see that an alternative expression for Bf is given by

Bf—-_[ f()wds_

s

It was shown in the preceding paper' that if a function is band-

limited and then timelimited its energy must be reduced by at least a
factor Ay, where ), it the largest eigenvalue of the integral equation

M) = L [ g 8= g (2)

If, in particular, a function is already bandlimited (f = Bf), then by
this result || Df || £ Ao. This, now, is just the special case of the
uncertainty principle which we have been seeking: If 3 = 1, then
a =< \/ }\_D .

In the sequel, we shall take a longer look at this formula and its
significance; let us, however, state the full result for all values of «
and 8:

"Theorem: There is a function f such that | f|| = 1, || Df || = @ and

| Bf || = 8, under the following conditions, and only under the follow-
ing conditions:
1. If e =0, when0 = 8 < 1.

2. If0 < a <N, when0=g=1.
3. UvVN=Ea<, when cos™ a + cos ' 8 = cos VAo
4, Ifa = 1, when 0 < 8 = VA .

The body of the present paper will cover the following sequence of
topics: Section IT will develop the properties of timelimited and band-
limited functions, and the geometric interpretation of these properties,
which we require. Section III contains the proof of the quoted theorem,
a discussion of the “best’” functions, and a number of pertinent graphs
and numerical examples. Section IV indicates possible extensions of the
theory, and includes the interesting result that if a timelimited function
d and a bandlimited function b are given, it is always possible to find a
“smallest”” function f so that Df = d and Bf = b. Finally, Section V
gives applications of the preceding theory to filter theory, data trans-
mission and antenna theory.
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II. SPACES OF TIMELIMITED FUNCTIONS AND BANDLIMITED FUNCTIONS

We are concerned, in the present paper, with the collection of func-
tions f(t) which are square-integrable on (— «,%). These form a
Hilbert space, denoted by £°, in which the inner product (f,g) is de-
fined by

(ﬁ!]) = f_:f(t)é’(_tj dt;

and || f1I* = (ff) as usual.

The collection of timelimited functions forms a linear subspace D
of £* so that if f; and f, are timelimited, so is afy + bfs . Furthermore, O
is complete, which means that if we have a sequence of functions {fa},
fu € Dand if || f» — fm | — 0, then there is a function f € © such that
I f = fall—0.

Exactly the same statements may be made a‘bout bandlimited func-
tions; they form a complete linear subspace & of £%. The latter state-
ment follows from the earlier one through the Parseval relation for
Tourier transforms: If 7 and G are the Fourier transforms of f and ¢
respectively, then

© R 1 @
j_-mf(t)g(t) dt = o j:m F(w)G(w) do.
We shall call two functions f and g orthogonal if
(f)g) =0

Notice that Df and f — Df are orthogonal, since each one vanishes
where the other one does not; by the Parseval relation, Bf and f — Bf
are also orthogonal.

The inner product permits us to define the angle between two func-
tions f and g as follows: By the Schwarz inequality, we know that

Vo) L= rl-glls
since

[Re(fg) | = | (F9) |,
we know that

Re(fg) o4
Trn-Tel =

We may thus define the angle 0(f,g) between the functions f and ¢ by
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_ —1 Re(f ,y)
"50) = o g
The extreme values 0 and = for 6(f,g) can be reached only if f and g
are proportional (so that equality holds in the Schwarz inequality)
and (f,g) is real.
Suppose now that f € & and ¢ € D, and that neither function
vanishes identically. What can we say about the angle between them?
The angle can vanish only if for some constant k, f = kg. But since &
.and D are linear spaces, this would mean that f is both timelimited and

bandlimited, and this is known to be impossible.t If, then, the angle
" cannot vanish, can it be arbitrarily small? This is the key question
which shall oceupy us for some time. Let us consider, first of all, a
fixed function f'€ ®, and an arbitrary ¢ € . We know that 8(f,g) can-
not vanish; is 8(f,g) bounded away from zero? If there is a greatest
lower bound for 8(f,g), is it assumed for some particular functions
g € D? In this case, the answers are quite simple, and are given by the
following:

Lemma 1: If f € ® is given, then

inf 6(f,g) > 0.
7€D

This infimum equals

and is assumed by g = kDf for any positive constant k.
Proof: If g is any function in D, then

Re(fy) = | (F9) | = | (Dfg) |

since
f=f—Df+Df and  (f— Dfg) =0.
But
- | (Dfg) | = I DFI-Ng ],
1 For then

Q
Ji = ] Fw) et duw,
Lo

since f € ®, would be an analytic function of the complex variable ¢ whaose
vanishing for | ¢ | > 1" would imply f=0.
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so that

Re(fg) _ I Df]| _ Re(£Df)
ATl = 17T ~071- 1D

Since cos @ is monotone decreasing in (0,7), it follows that

0(f,9) = 6(f,Df)

for any g € D, with equality whenever g and Df are proportional. This
proves the lemma.

We proceed now to the case of arbitrary f ¢ & and g € D. Let us
say, for convenience, if

IA

inf 6(fg)
Te®

gED

is actually assumed by specific functions, that the spaces ® and D form
a least angle. We now have the following:

Theorem 1: There exists a least angle between ® and ©. This angle
equals cos ' v/Ag, and is assumed by ¢, € ® and Dyy € D, where A\
is the largest eigenvalue of (2), and ¥, the corresponding eigenfunec-
tion.

Proof: By the preceding lemma,

min §(f,g) = cos™ HLfH,
0€D 71
so that
inf 6(fg) = inf cos ! _” Df H (3)
1€® TE® Il
gED

and the infimum on the left of (3) will actually be assumed if the in-
fimum on the right is. It was shown in the preceding paper' that any
f € & may be expanded in a series, convergent in L’ mean, of the
eigenfunctions ¢, of (2),

oo

f= 2 aw..

n=0

Then

s

2 = 2
= el
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since

Df = i a, Dy, ,

n=(0
it follows from the properties of { Dy,} that
IDFIF = 22| an ™.
Thus

cos ”T?il T” — cos! (ZZ!—?%F'}])%.

Since it was shown in the preceding paper' that X, < X, if n = 1,

it follows that
(Z | a, |’ M)
max | =21 -~

>laf

is achieved if a, = 0 for n = 1, so that the minimum possible value of

| .Df |l
[

namely cos™' VAo, is actually assumed if f = o, and ¢ = Dy . The
theorem is proved.

We have thus found that the two subspaces ® and D of £°, which
have no functions exeept 0 in common, actually have a minimum angle
between them, so that, in fact, a timelimited function and a band-
limited function cannot even be very close together. With the aid of
this result, as we shall see, the uncertainty principle which we are
seeking will follow.

In preparation for the coming theorems, we must consider one
further aspect of the spaces ® and ©. How close do ® and D together
come to filling up all of £°? The two specific questions which concern
us are the following: (i) if {f.}, f» = b. + d. is a Cauchy sequencef of
functions in ® + D, what can the limiting function f look like; and (ii)
do there exist functions f € £° orthogonal to both & and D (i.e., to
every function in ® and D)? The answers to these questions are the
subjects of the subsequent two lemmas.

Lemma 2: If {f,} is a Cauchy sequence of functions of the form f, =

-1
coSs

+ A Cauchy sequence of functions is a sequence such that || f» — fm || — 0, s0
that, by the completeness of Hilbert space, there exists a limiting function f
such that | f — fa || = 0.
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d, + b, whered, € D and b, € ® for each n, then the limiting function
f is itself of the form d + b, where d € D and b € ®.
Proof: For each f, = d, + b, , we may also write

fn = (bn - Dbn) + (Dbn + dn)-

Here Db, 4+ d, € D, while b, — Db, L D. It now follows from the
fact that the f, form a Cauchy sequence that the functions b, — Db,
do; for

[ fu =l =
| bn — Db, — (bn — Db,) |* + || Dby + du + Db, + du |,
so that
“ bu - Dbn - (bm - Dbm) ” g ”fﬂ —fm “ M

But now, since {b, — Db,} forms a Cauchy sequence, so does {b,] itself.
For

1o = bu|* = D0 = bu) [ + || (ba = bu) — D(bu — ba) |}
and by Lemma 1,

H D(bll - bm) ” é \/Yo “ bn - bm ” 3
so that

” bn - Dbn - (bm - Dbm) Hz
1 — Xo '

Sinece [b,} is now a Cauchy sequence, there is a function b € ® such
that

” bn - bm ”2 é

1o — b —o0.

Thus {f.} and {b,} both converge in norm, and hence so does {d.}, and
to a limiting function d € D for which

f=bt+4d

We have thus shown that taking a limit of sums of functions from
® and D gives us nothing new, but only, once again, a sum of functions
in ® and ©. We may abbreviate this by saying simply that 8 + D is
closed.

Lemma 3: There are infinitely many functions in £ which are orthog-
onal to ® 4+ D.
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Proof: The functions

{1 WT/2+ns|t|<T/2+n+1

f =
0 elsewhere

n n = 0, 1, 2,

are instances of functions not in ® + D, since the portion of f, in
| t| > T/2 is not a piece of a bandlimited function. Lemma 2 permits
us to write the best approximation to f, from & + D in the form
b, + d., where b, € ® and d, € D; then

fﬂ* =.fn - bn - dn

are distinct functions in £* which are orthogonal to ® + .

There are in fact, in some sense “many more” functions in £ — ® —
D than in ® 4+ D; we do not know, however, of any really convenient
representation for such funetions.

III. THE UNCERTAINTY PRINCIPLE

We begin by restating the theorem announced in Section I.
Theorem 2: There is a function f € £* such that || f || = 1, || Df || = «

and || Bf || = 8, under the following conditions, and only under the
following conditions:
1. fa =0, when 0 = g < 1.

IA

2.If0 < a < VA, when0=3=1.
3. If \/)G = a<l, when cos 'a + cos '8 = cos Vho -

4 Ifa =1, when 0 < 8 = V/\o.
Proof: Let G be the family of functions f € £° with || f] = 1 and
| Df|| = a, a,nd let us, for each case of &, determine

sup B = sup || Bf || .
reg feg

We shall also show, in each case, that any value of 8 less than the
supremum can be realized by an appropriate function. Whether or
not the supremum itself can be realized will vary from case to case.

Case 1.« = 0. If @ = 0, the family G can contain no function with
B =1 Torif f € g with 8 = 1 we must have f € ®, whence fis ana-
lytic and vanishes for | | < T/2 only if f = 0. This is a contradiction.

To show that G contains functions with values of g arbitrarily close
to 1 we set

f* ‘!’n Dpn
‘\/l - Aﬂ
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where A, and ¢, are respectively an eigenvalue and corresponding eigen-
function of (2). We observe that f* £ g and that 8 = || Bf*|| =
41 — \,. Since there exist eigenvalues A\, arbitrarily small, there
exist functions in G with values of g8 arbitrarily close to 1,

To find functions in G with values of 8 between those already covered,
we consider ¢”f*(¢), which belongs to G since || ¢®'f* | = || /*| = 1
and || D e”'f* || = | Df* | = a. For 8 we find

. —p+ 4
B=1Be"f*| = {f_ RO dw} ..

where F* is the Fourier transform of f*. This quantity is continuous in
p and approaches zero as p — =, since F* € £°; thus G contains func-
tions with all smaller values of 8, except possibly g = 0.

A function f in G for which 8 = 0 must have the property that
Df = Bf = 0; the existence of such functions was demonstrated in
Lemma 3.

This completes the proof in Case 1; if we reverse B and D in the
preceding arguments, we find that 8 = 0 is possible if and only if
0 = a < 1; thus the minimum g8 in Cases 2 and 3 has also been estab-
lished.

Case 2.0 < a < /X . Since A, —0asn — o, weecan find an eigen-
value A\, < a. Let ¢, be the corresponding eigenfunction, and consider

r* — ‘\/&2 - Anlg&l) + ‘\/A[I - aﬂ‘Pn

: (5)

\/AD - }\n
We have f* € ®, and || f*|| = || Bf* || = 1, while a simple computation
shows that || Df* || = a. This, then, covers the case 8 = 1; by picking

¢®'f* asin Case 1, we may obtainany 0 < 8 < 1, and 8 = 0 is covered
by the remark immediately preceding Case 2.

Cases 3 and 4. v/A < o« = 1. Tor a function f € ¢, let us find the
closest point to f on the plane spanned by Df and Bf; we then can
write

[ =ADf + uBf + g, (6)
with g orthogonal to both Df and Bf. Taking the inner product of (6)
successively with f, Df, Bf and ¢, and using the fact that f € G, we
obtain

1 =\a' + " + (g.0),

o' = Ao’ + u(Bf,Df),
N(Df,Bf) + wf’,
(f,9) = (9.9).

™
s
Il
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By eliminating (g,f), A and p from the above equations we find, for
aof #= 0,

8 — 2Re (DfBf) = —a’ + (1 - Ul%f”z)
n (7
ez
We next set
_(DIBf)
Re rpr 1By =~

The angle # is that formed between Df € D and Bf € ® so that, by
Theorem 1,

6= cos ' V. (8)
Since
af cos 0 = Re(Df,Bf) = | (Df,Bf) | £ aB,
we have
Oél—w—;Bpﬁél—cosﬂﬂ. (9)
B

Introducing 4 into (7), completing the square on the left-hand side,
and applying (9) we obtain

(8 — acos 8) = (1 — a°) sin’s, (10)

with equality if and only if ¢ = 0 and (Df,Bf) is real. From (10) we
find immediately

B = cos(f — cos 'a),
whence by (8)
B = cos(cos ' 4/ A — cos 'a), (11)
or
cos ‘e + cosT'8 = cos V.
Equality in (11) is attained for the function
I* = pbo + Dy, (12)

=/‘/1—az2
p 1 — N

with
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and (13)

=L,_1/1_rﬁ
17V =

since f* satisfies all the conditions for equality in the above sequence
of inequalities; the constants p and ¢ are chosen so that f € G. As in
Case 1, all smaller values of 8, except possibly for 8 = 0, are attainable
by the functions e”f*(¢) with suitable values of p, and, by the argu-
ment above, the family G contains functions with 8 = 0 as well, except
when cos 'a = 0. Thus, in Case 3, G is made up of functions for which
B takes on all values for which

— — —1 -
cos'a + cos '8 = cos VN

If, however, « = 1, we must exclude 8 = 0, so that we obtain in Case 4
0<B <.

The result of Theorem 2 is illustrated in Fig. 1, which shows the
permissible region in the (a*,8°) plane for various values of ¢ = QT/2.

nT=
2
b 6.25

1.0 —~—

~ Y
o8 ar=11N\, X_
N

0.6

A 05
0.4 ‘

0.3
0.2

» 0.5
0.1

0.2

o 0.1

0 od 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1.0
aZ

Fig. 1 — Possible combinations of «? and g for different QT'.
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Tor each value of ¢, this region is bounded by the line segments

o =0 for 028 <1,

=0 for 0=d <1,
o =1 for 0< B = Ne),
g =1 for 0 < o' = Aol0),

and the curve cos™'a + cos™'8 = cosT'v/Ae(¢), which is labeled by
the appropriate value of ¢.

An interesting phenomenon is brought up by the line o* + §° = 1,
which is labeled with ¢ = 0. This labeling agrees with Theorem 2 in
the following way:

If & + 8 = 1, then cos 'a + cos '8 = =/2, which automatically
exceeds cos ' VAo for any ¢, no matter how small. In physical terms,
this observation states that if the proportions of energy of f(¢) in
|t] = T/2, and of F(w) in | w| = Q, add up to less than the total
energy of f(¢), then we have really put no restraint on @ and 7', and
an arbitrarily small QT product will still permit this distribution of
energy. It is only when o’ + §° > 1, so that the energies in | ¢| <
T/2 and in |w| < € add up to more than the total energy, that a
nonzero lower bound on Q7 is implied.

Fig. 2 gives a detailed plot of what is essentially the top (or the
right) edge of Fig. 1. We plot A\(¢), the maximum of o if 8° = 1,
against ¢. We note that M(e¢) — 1 quite rapidly as ¢ — « ; the approach
is exponential, but the exact rate has not been proved. Fig. 2 also gives,

1.0 T ———il I
MAXIMUM =~ =~
il
os L~ T 1
. !
/ Fonf(t):c——f——s'"n
0.6 7
o2 /
04 /
el /]
(o]
[+] ] 2 3 4 5 6 7 a8 9
nT

Fig. 2 — Possible a2 if g2 = 1.
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for comparison, the proportion of energy in | ¢ | < 7/2 for the function

ft) =

sin Qt
L

b

which has sometimes been “intuitively” considered as the bandlimited
function which is as concentrated in time as possible. For small A,
it appears, f(t) is indeed essentially as good as the optimal function;
if, however, we wish to achieve a proportion of energy like 92 per cent,
we see that QT = 4.5 suffices, while use of (sin Qt)/t would require
QT = 8.5. IFor a proportion of 99 per cent, the minimal Q7 is 6.25,
while (sin Q1) /i would require a value of QT of about 30.

Let us consider one more numerical example. If values of o® = 0.977 and
8° = 0.96 are desired, what are the minimum Q7', and the corresponding
optimal function? I'rom cos 'a + cos '8 = cos ' V/Ag we find Ay =
0.88, so that QT = 4, or ¢ = 2. If, now, Y(t) is the first eigenfunction
corresponding to ¢ = 2, then, by (12) and (13), the optimal function
(see Fig. 3) i 0.578yy + 0.465D4, . 1t is thus not a continuous function
of ¢ but has jumps at ¢ = =£T/2; this is characteristic of all of our
optimization problems except for the special case g = 1.

A note on previous work in the direction of Theorem 2. The con-
nection between the extremum problem for §° = 1 and the largest
eigenvalue of (2) was noted by Chalk® and Gurevich,® both of whom
found the appearance of the optimal function without analytic solution

0.9

0.8 T

A
0.6 l \
0.5 | / \

£(t) / |
04 : : :
0.3 : : l :
3 ). \
0.2 , T
0.1 / / | T i\l\
\\. i L
° ~ 7 ‘ . N <
. N1 N
% -3 -2 =1 ) 2 3 !
t

i

Fig. 3 — Plot of optimal f(t) for «* = 0.977, 8? =096, T/2 = 1,
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of the integral equation; the latter also plotted the largest eigenvalue.
The set of eigenfunctions was recognized in this context by Ville and
Bouzitat,' who also performed a lot of numerical work. Finally Fuchs®
has stated, without proof, a theorem equivalent to Theorem 2. He
considers n-dimensional spaces and Fourier transforms, and two
arbitrary subsets of finite measure in the time- and frequency-spaces
respectively. His proof, however, which we have been privileged to see,
is quite different, and is not directed towards the properties of ® and
© which have been our chief concern. Our present method is capable
of broad generalization; some thoughts in this direction are given in
the next section.

IV. EXTENSIONS OF THE THEORY

It is quite natural for us to ask what the real essentials of the study
up to this point have been, and under what circumstances results
similar to Theorems 1 and 2 could be obtained. Such an investigation
will be reported in a separate paper;’ we should, however, note what
some of the results are. For the relevant language, we refer the reader
to Ref. 6.

We have a Hilbert space £°, and two subspaces ®& and ©. The key
property we require is that ® and © form a nonzero minimum angle;
the latter property is equivalent to requiring that

wup | BDBS |

regr 111
It now follows that 8 + D is closed, and we can again study the region
of possible values of || Bf || and || Df || if || f || = 1. We do not, however,
obtain eigenfunctions analogous to {¢.} unless the operator BDB is
completely continuous. If, for example, £ is the space of square-
integrable functions with respect to Lebesgue measure over n-dimen-
sional Euclidean space R", if © is the subspace of functions vanishing
outside of a bounded subset of R" of positive measure, and if ® is the
subspace of functions whose Fourier transforms vanish outside of an-
other bounded subset of R" of positive measure, then BDB is com-
pletely continuous, and the full theory applies.

As an example of a theorem which is again true in the general situa-
tion, but is of interest also for timelimited and bandlimited functions,
let us prove

Theorem 3: Let an arbitrary function d € D, and another function
b € ®, be given. Then there exists an infinite collection S of functions
f € g suchthatif f € S, then Df = d and Bf = b. There is a unique

<1
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fo € 8 of least energy, and there is a unique f; € S N (& + D); fur-
thermore, fo = f1.
Proof: Let us consider the function

I* = i (1 — B)(DB)"d + Z:: (1 — D)(BD)"b. (14)

The first sum, for example, means
d — Bd + DBd — BDBd + DBDBd — BDBDBd + --- .

Since, for any g, || DBg || < v/Xo [l ¢ || and [ BDg || = VN | g |l
we know that the two series defined on the right side of (14) con-
verge in norm, with their sum defined as the function f* € £
T'urthermore, since f* is defined as a limit of functions in ® + D, it is,
by Lemma 2, itself in & 4+ ©D. So we may write

I* = d* + b*,

where d* € D and b* € ®@.
Let us next compute Df* and Bf*. We have

Df* = > (1 — DB)(DB)"d + > (D — D)(BD)"b;
0 0
all of the second series, and all but the first half of the first term of the
first series, vanish. Hence Df* = d, and similarly Bf* = b. We have
thus shown that f* ¢ SN (& + D); we can complete the proof that

f* = f,if we can show that SN (® + D) contains no other function.
Suppose thatf; = d,+b;, i=1,2arebothin SN (® + D). Then

d = Dfy = di+ Dby = dy + Dby = Dfs (15)
and

b= Bfl B(Fl + bl . Bdg + bg Bfg

I
Il

so that
DBd, + Db, = DBd, + Db, . (16)
Hence, by subtracting (16) from (15), we have
(1 — DB)d, = (1 — DB)d,,
or
(di — d2) = DB(dy — ds).

Since, however, | DBg| = +/X | g for any g, we must have
dy — ds = 0, so that d, = d». Similarly, by = b., so that f; = f», and
thus f* is the unique member of S N (® + D).

Now suppose 2 is any other member of S. We may write
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x=f*4 ¢,
and since Dx = Df* = d and Bx = Bf* = b, it follows that
De = Be = 0.
But
e l* = I1/*1* + e IF + 2 Re(Fe),
and
*=d* + bv* while o 1l D+ &
Hence
() =0,
and
(R il o 2 = [l

with equality if and only if ¢ vanishes. Thus f* is also the unique mem-
ber of S of minimum norm. An infinite number of other members of S
may be formed by adding to f* any of the functions orthogonal to
® -+ D whose existence is guaranteed by Lemma 3.
Note: It d = 2, a:Dy;and b = 2 by, , then
* _ a; — b; by — ail;
A AP IR e el 2

so that, in particular,

1541 s = lall + o).

V. APPLICATIONS

5..~Filter Theory

Suppose we wish a filter to have an impulse response f(¢) which
vanishes for { > 7. Such a filter clearly cannot be strictly bandpass;
but how would we select the filter so that as much of the impulse re-
sponse as possible is contained in | w | < @ for some given Q? Suppose,
by this, we mean to choose f({) so that

Q
f | F(w) |} do
Lo
[ 17 P de
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is as large as possible, where
T
Flw) = [ s ™ a
0

is the Fourier transform of f(¢). Then the best choice is

ﬂw—w0+§m)

where ¢ = QT/2, and y, is the prolate spheroidal function of the
present and the preceding papers.

If, instead of requiring f(¢) to vanish outside of (0,7'), we ask that
both

jl‘ |2ﬂIF(w) ]Edw =g

and

[+ [ 1wpa=d

be small while the total energy of the impulse response is fixed at unity,
then Theorem 2 above gives the complete region of possible («,8)
values.

5.2 Data Transmission

When we choose a combination of pulse shape and transmission
characteristic for a broadband data transmission system, we are in-
terested in minimizing both the tail of a pulse outside its time slot and
its spectrum outside of an assigned frequency band. Once again, it is
not possible to make both of these “spillovers” in time and frequency
arbitrarily small; the above theory gives some information on inter-
channel and intersymbol interference. For a theory which is more
nearly complete, however, the relation between timelimiting and pass-
bandlimiting (i.e., to & = |« | = ©2) needs to be better understood;
while our general results apply, the identity of the optimal function
Yo is not known in the case that B is projection of the transform into
such a passhand.

5.3 Antenna Theory

Let us consider a horizontal (s,t) plane from which the strip [ t| < a
of width 2a, to be called the aperture, has been removed. If the illumi-
nation across the aperture is independent of s, then the amplitude of
the field across the aperture may be represented by a function f(¢) of
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one variable, where | ¢| < a. If we consider the resultant pattern of
radiation in a distant parallel horizontal plane, then the field at a large
distance from the aperture is proportional to

[af(t) ¢ dt = Flu),

where w = k sin 8, k = 27/, 8 is an angle measured from the vertical
through the center of the aperture, and ) is the wavelength. The @ of
the antenna is then defined (equivalent to the definition of Woodward
and Lawson;’ it is given explicitly by Kovdcs and Solymén®) as

[ 1) Fdu
|u] >k
X :
f [ F(u) [* du
—%

Q=

This may be rewritten as

[ 15
Q=T -1
' [ 1B P

where B means limiting the Fourier transform of f to | v | = k. Thus
by the previous theory,

1
> . —
Qz -1,

where Ay = No(ak/2) is the first eigenvalue of (2) as defined in this
and the preceding paper. We thus have an absolute lower bound on the
@ which can be obtained for given a and k.
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