Resonant Modes in a Maser
Interferometer

By A. G. FOX and TINGYE LI
(Manuseript received October 20, 1960)

A theoretical investigation has been undertaken to study diffraction of
electromagnetic waves in Fabry-Perol inferferometers when they are used as
resonators in optical masers. An electronic digital computer was programmed
{o compute the electromagnetic field across the mirrors of the inlerferometer
where an initially launched wave is reflected back and forth between the
MATrrors.

It was found that after many reflections a state is reached in which the
relative field distribution does not vary from transit to transit and the ampli-
tude of the field decays at an exponential rate. This steady-state field dis-
tribution is regarded as a normal mode of the interferometer. Many such
normal modes are possible depending upon the initial wave distribution.
The lowest-order mode, which has the lowest diffraction loss, has a high
intensity at the middle of the mirror and rather low intensities at the edges.
Therefore, the diffraction loss is much lower than would be predicted for a
uniform plane wave. Curves for field distribution and diffraction loss are
given for different mirror geometries and different modes.

Since each mode has a characteristic loss and phase shift per transit, a
uniform plane wave which can be resolved into many modes cannot, properly
speaking, be resonated in an interferometer. In the usual oplical inter-
ferometers, the resolution 1s too poor to resolve the individual mode resonances
and the uniform plane wave distribution may be maintained approximately.
However, in an oscillating maser, the lowest-order mode should dominate
if the mirror spacing is correct for resonance.

A confocal spherical system has also been investigated and the losses are
shown to be orders of magnitude less than for plane mirrors.

I. INTRODUCTION

Schawlow and Townes' have proposed infrared and optical masers
using Fabry-Perot interferometers as resonators. Very recently, Mai-
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man® and Collins et al.’ have demonstrated experimentally the feasi-
bility of stimulated optical radiation in ruby. In these experiments two
parallel faces of the ruby sample were polished and silvered so as to
form an interferometer. The radiation due to stimulated emission
resonates in the interferometer and emerges from a partially silvered
face as a coherent beam of light.

In a maser using an interferometer for a resonator, a wave leaving one
mirror and traveling toward the other will be amplified as it travels
through the active medium. At the same time it will lose some power due
to scattering by inhomogeneities in the medium. When the wave arrives
at the second mirror some power will be lost in reflection due to the
finite conduetivity of the mirror and some power will be lost by radia-
tion around the edges of the mirror. For oscillation to occur, the total
loss in power due to density scattering, diffractive spillover and reflection
loss must be less than the power gained by travel through the active
medium. Thus diffraction loss is expected to be an important factor,
both in determining the start-oscillation condition, and in determining
the distribution of energy in the interferometer during oscillation.

While it is common practice to regard a Fabry-Perot interferometer as
being simultaneously resonant for uniform plane waves traveling parallel
to the axis and at certain discrete angles from the axis, this picture is
not adequate for the computation of diffraction loss in a maser. It is true
that, when the interferometer is operated as a passive instrument with
uniform plane waves continuously supplied from an external source, the
internal fields may be essentially those of uniform plane waves. In an
oscillating maser where power is supplied only from within the inter-
ferometer, the recurring loss of power from the edges of a wave due to
diffraction causes a marked departure from uniform amplitude and phase
across the mirror.

The purpose of our study is to investigate the effects of diffraction on
the electromagnetic field in a Fabry-Perot interferometer in free space.
The conclusions can be applied equally well to gaseous or solid state
masers provided the interferometer is immersed in the active medium,
i.e., there are no side-wall discontinuities.

II. FORMULATION OF THE PROBLEM

2.1 General Formulation

Our approach is to consider a propagating wave which is reflected back
and forth by two parallel plane mirrors, as shown in Fig. 1(a). [This is
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equivalent to the case of a transmission medium comprising a series of
collinear identical apertures cut into parallel and equally spaced black
(perfectly absorbing) partitions of infinite extent, as in Fig. 1(b).] We
assume at first an arbitrary initial field distribution at the first mirror
and proceed to compute the field produced at the second mirror as a
result of the first transit. The newly calculated field distribution is then
used to compute the field produced at the first mirror as a result of the
second transit. This computation is repeated over and over again for
subsequent successive transits. The questions we have in mind are: (a)
whether, after many transits, the relative field distribution approaches a
steady state; (b) whether, if a steady-state distribution results, there
are any other steady-state solutions; and (c¢) what the losses associated
with these solutions would be. While it is by no means obvious that
steady-state solutions (corresponding to normal modes) exist for a sys-
tem which has no side-wall boundaries, it will be shown that such solu-
tions do indeed exist.*
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Fig. 1 — The Fabry-Perot interferometer and the transmission medium analog.

* Sehawlow and Townes! suggested the possibility that resonant modes for a
parallel plate interferometer might be similar in form to those for a totally en-
closed cavity.
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We shall use the scalar formulation of Huygens’ principle to compute
the electromagnetic field at one of the mirrors in terms of an integral of
the field at the other. This is permissible if the dimensions of the mirror
are large in terms of wavelength and if the field is very nearly transverse
electromagnetic and is uniformly polarized in one direction. Later, we
shall show that these assumptions are consistent with the results of our
solutions and therefore are justifiable. We shall also show that other
polarization configurations can be constructed from the solutions of the
scalar problem by linear superposition.

The Fresnel field u, due to an illuminated aperture A is given by the
surface integral®

—jk R

_Jk €
up = [ e (1 + cos 8) dS, (1)

where u, is the aperture field, k& is the propagation constant of the me-
dium, R is the distance from a point on the aperture to the point of ob-
servation and 6 is the angle which £ makes with the unit normal to the
aperture. We now assume that an initial wave of distribution wu, is
launched at one of the mirrors of the interferometer and is allowed to be
reflected back and forth in the interferometer. After ¢ transits the field
at a mirror due to the reflected field at the other is simply given by (1)
with w, replaced by ug41 , which is the field across the mirror under con-
sideration and u, by wu, , which is the reflected field across the opposite
mirror giving rise to g4, .

It is conceivable that after many transits the distribution of field at
the mirrors will undergo negligible change from reflection to reflection
and will eventually settle down to a steady state. At this point the fields
across the mirrors become identical except for a complex constant;

that is,
q
Uy = (1') v, (2)
Y

where v is a distribution function which does not vary from reflection to
reflection and v is a complex constant independent of position coor-
dinates. Substituting (2) in (1) we have the integral equation

v=7LdeS (3)

in which the kernel of the integral equation, K, is equal to (jk/4wR)
-(1 4 cos 6)e **. The distribution function », which satisfies (3), can
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be regarded as a normal mode of the interferometer defined at the mirror
surface, and the logarithm of v, which specifies the attenuation and the
phase shift the wave suffers during each transit, can be regarded as the
propagation constant associated with the normal mode.

The integral equation (3) can be solved numerically by the method of
successive approximations (Ref. 5, p. 421). It is interesting to note that
this iterative method of solution is analogous to the physical process of
launching an initial distribution of wavefront in the interferometer and
letting it bounce back and forth between the mirrors as described in the
foregoing paragraphs.

We have studied and obtained numerical solutions for several geo- .
metric configurations of the interferometer. These are (a) rectangular
plane mirrors, (b) eircular plane mirrors and (¢) confocal spherical or
paraboloidal mirrors.

2.2 Rectangular Plane Mirrors

When the mirror separation is very much larger than the mirror di-
mensions the problem of the rectangular mirrors reduces to a two-
dimensional problem of infinite strip mirrors. This is shown in Appendix
A. The integral equation for the problem of infinite strip mirrors, when
a’/b\ is much less than (b/a)’, is

U(-Te)

v [ K, enta) o (4)

with
K(r2,7,) = G e (4a)
’ V/Ab
The various symbols are defined in Fig. 2 and Appendix A.

Equation (4) is a homogeneous linear integral equation of the second
kind. Since the kernel is coentinuous and symmetric [K(x,, ) =
K(xy, 1)), its eigenfunctions v, corresponding to distinet eigenvalues
v, are orthogonal in the interval ( —a,a); that is (Ref. 5, p. 413),

-l:u v (). (2) de = 0, m # n. (5)

It should be noted that the eigenfunctions are in general complex and are
defined over the surface of the mirrors only. They are not orthogonal in
the power (Hermitian) sense as commonly encountered in lossless systems.
Here, the system is basically a lossy one and the orthogonality relation is
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Fig. 2 — Geometry of rectangular plane mirrors.

one which is generally applicable to lossy systems, such as lossy-wall
waveguides.

The eigenfunctions are distribution funetions of the field over mirror
surfaces and represent the various normal modes of the system. The nor-
mal modes for rectangular plane mirrors are obtained by taking the
products of the normal modes for infinite strip mirrors in 2 and y direc-
tions; that is,

U,-,,u(ﬂ:,y) = Uz,m(ﬂ:)vy.n(y)' (6)

We designate this as the TIEM,,, mode for the rectangular plane-mirror
interferometer. In view of (5) we see that the normal mode distribution
functions »,,, are orthogonal over the surface of the rectangular mirror.

The logarithms of the eigenvalues represent propagation constants
associated with the normal modes. The propagation constant for the
TEM,,, mode of rectangular plane mirrors is given by

]0g Ymn = log Yz,m + Ing Yy.n » (7)

The real part of the propagation constant specifies the loss per transit
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and the imaginary part the phase shift per transit, in addition to the
geometrical phase shift, for the normal modes.
2.3 Cireular Plane Mirrors

It is shown in Appendix B that the solutions to the integral equation
for circular plane mirrors (Iig. 3) when a*/bx is much less than (b/a)®,
are given by

v(rge) = Ra.(r)e " (n = integer), (8)
where R, (r) satisfies the reduced integral equation
Rn(r2)\/r_2 = Tn f I\,n(r‘larl)Rn(rl)\/;l drl: (9)
0
with
Kﬂ{?‘2 ) 'rl}

n ]..' " ——  —jk(r T 2
i o (%2,) N 6 a1/ 3 (92)

where J,, is a Bessel function of the first kind and nth order. As in the
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Fig. 3 — Geometry of circular plane mirrors.
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problem of infinite strip mirrors, (9) is a homogeneous linear integral
equation of the second kind with a continuous and symmetric kernel.
Its eigenfunctions corresponding to distinct eigenvalues are orthogonal
in the interval (0,a); that is,

f: R Run(r)rdr = 0, (L5 m). (10)

Therefore, we see that the distribution functions v,m(r,¢) = Rum(r)e "
corresponding to distinct eigenvalues v,. are orthogonal over the sur-
face of the mirror; that is,

2r a
f f Vom (10 02(r,0)r dr dp = 0 (either n = korm =1). (11)
(1] 0

The set of eigenfunctions R,, describes the radial variations of field
intensity on the circular mirrors, and the angular variations are si-
nusoidal in form. We designate a normal mode of the circular plane
mirrors as the TEM,,,, mode, with n denoting the order of angular varia-
tion and m denoting the order of radial variation. The propagation con-
stant associated with the TEM,,, mode is simply log vnm» , which must
be obtained from the solution of (9).

2.4 Confocal Spherical or Paraboloidal Mirrors

A number of geometries other than plane parallel mirrors have been
suggested, and it is believed that most of these can be studied using the
same iterative technique. One of the geometries we investigated is that
of a confocal spherical system.® In this geometry the spherical mirrors
have identical curvatures and their foci are coincident, as shown in
Tig. 4. One of the possible advantages of such a system is the relative
ease of adjustment, since the mirrors are no longer required to be parallel
as in the case of the parallel plane system. Another is that the focusing
action of the mirrors might give rise to lower diffraction losses.

A spherical mirror with a small curvature approximates closely a
paraboloidal mirror. In the case of confocal spherical mirrors, the condi-
tions that its curvature be small is equivalent to saying that the separa-
tion between mirrors is large compared to the dimensions of the mirrors.
It is shown in Appendix C that the solutions to the integral equation
for confocal paraboloidal mirrors, when a’/b\ is much less than (b/a)®,
are given by

v(re) = Su(r)e ™ (n = integer), (12)

where S,(r) satisfies the reduced integral equation
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Sur)Vm = 0 [ Kl m)Su v/ drs, (13)
with
- n+1 ]\' e —
K.(re,m) =7 BJ" (fc T) V. (13a)

Again, we see that (13) is a homogeneous linear integral equation of
the second kind with a continuous and symmetric kernel. Therefore,
general remarks concerning the normal modes of circular plane mirrors
given in the foregoing section are also applicable to confocal spherical
or paraboloidal mirrors.
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A;=b-b*-rs

Tig. 4 — Geometry of confocal spherieal mirrors.
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IIT. COMPUTER SOLUTIONS

3.1 General

An IBM 704 computer was programmed to solve the integral equa-
tions for the various geometries of the interferometer by the method of
successive approximations. As mentioned previously, this is analogous
to the physical process of launching an initial distribution of wavefront
in the interferometer and letting it bounce to and fro between the
mirrors.

3.2 Infinite Strip Mirrors

The first problem put on the computer was that of a pair of infinite
strip mirrors, having the dimensions 2a = 50\, b = 100A. Equation (26)
was employed for the computation, using an initial excitation of a uni-
form plane wave at the first mirror. A total of one hundred increments
was used for the numerical integration. After the first transit the field
intensity (electric or magnetic) had the amplitude and phase shown in
Fig. 5. In these and subsequent amplitude and phase distributions the
curves are normalized so that the maximum amplitude is unity, and the
phase at that point is zero. The large ripples are due to the fact that the
initial wave front contains 6.25 Fresnel zones as seen from the center of
the second mirror. Therefore, in passing from the center to the edge of
the second mirror there is a change of 3 X 6.25 I'resnel zones, and this
agrees with the number of reversals in curvature seen in the amplitude
distribution.

With subsequent transits, these ripples grow smaller, the amplitude
at the edge of the mirror decreases, and the relative field distributions
approach a steady state. By the time the wave had made three hundred
bounces, the fluctuations oceurring from bounce to bounce were less
than 0.03 per cent of the final average value. The amplitude and phase
for the 300th bounce are also shown in I'ig. 5.

We regard this field distribution as an iterative normal mode of the
interferometer. In other words, if this distribution is introduced as an
initial wave at one mirror it will reproduce the same distribution at the
other mirror. Indeed, this is what the computer is verifying when we
compute the 301st bounce.

Once the solutions have reached a steady state, we can pick any point
on the wavefront, say the center of the mirror, and examine how the
absolute phase and amplitude change from bounce to bounce. In this
way we determined that the power loss of this mode is 0.688 per cent
per transit and the phase shift per transit has a lead of 1.59 degrees.
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Fig. 5 — Relative amplitude and phase distributions of field infensity for in-
finite strip mirrors. (The initially launched wave has a uniform distribution.)

Since phase shift is measured relative to the free-space electrical length
between the mirrors (360 b/ degrees), this means that the mode has an
effective phase veloeity which is slightly greater than the speed of light,
just as for a metal tube waveguide.

In Fig. 6 is shown how the field intensity at an arbitrary off-center
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Fig. 6 — Fluetuation of field amplitude at z = 0.5 as a function of number of
transits. (The initially launched wave has a uniform distribution.)

point (x = 0.5a) approaches its steady-state normalized value after a
start from a uniform plane wave. After the 100th transit the plot ap-
pears to be a damped sine wave. We interpret this damped oscillation
as the beating between two normal modes having different phase veloci-
ties. The mode with the lower attenuation, of course, survives the
longest, and this is the one shown in Fig. 5. We regard this as the dom-
inant mode of the interferometer. We believe the other mode which
beats with the dominant mode to be the next-higher order, even-sym-
metric mode. Prior to the 100th transit, the curve is irregular, indicating
that a number of still higher order modes are present which are damped
out rapidly.

The next step in the infinite strip problem was to repeat solutions of
the above type for other sets of dimensions. However, if a’/b\ is very
small compared to (b/a)’, the actual dimensions of the mirrors and their
spacing are no longer important, the only parameter of importance being
the Fresnel number N = a*/bx. This is approximately equal to the
number of Fresnel zones seen in one mirror from the center of the other
mirror, and as pointed out earlier, it determines the number of ripples
in the field distributions. Amplitude and phase distributions for the
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dominant mode obtained by solving (27) are shown in Fig. 7 for differ-
ent values of N. The larger the N, the weaker is the field intensity at the
edge of the mirror, and the smaller is the power loss due to spill-over.
The plot of power loss per transit as a function of N is approximately a
straight line on log-log paper and is shown as the lowest line in Fig. 8.
The phase shift per transit as a function of N is given by the lowest
line in Fig. 9.

A uniform plane wave excitation can never give rise to a mode with
odd symmetry. In order to investigate the possibility of modes of this
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Fig. 7 — Relative amplitude and phase distributions of field intensity of the
lowest order even-symmetric mode for infinite strip mirrors.
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plane mirrors.

type, the problem was re-programmed for an initial wave for which the
field intensity over one-half the strip (0 to 4+a) was equal but opposite
in sign to the field intensity over the other half of the strip (0 to —a).
Steady-state solutions did indeed result, and odd-symmetric normal
modes therefore exist. The amplitude and phase distributions are shown
in Fig. 10 for several values of N. The amplitude is zero at the center,
as expected. While shown for only one half of the strip, it is the same in
the other half, but with a reversal in sign. Note that for the same values
of N, the amplitude at the edge is higher than for the dominant mode.
The spill-over loss should be higher and this is confirmed by the loss
curve in I'ig. 8 labeled “infinite strip odd-symmetric mode.” The cor-
responding phase shift curve is shown in Fig. 9.

3.3 Circular Plane Mirrors

The feasibility of obtaining the normal mode solutions for the infinite
strip mirrors having been established, programs were next set up to
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investigate the modes for plane circular mirrors. The first case considered
was that for uniform plane wave excitation of the system. Once again,
the polarization was assumed to be everywhere parallel to the same axis,
and this results in a scalar wave solution having circular symmetry [(9)
with n = 0]. That is, the amplitude and phase of the field intensity is
the same for all points at the same radius from the center. The transverse
field distributions for the lowest order mode of this type are shown in
Iig. 11 for various values of N. The loss and phase shift are shown in
Figs. 8 and 9 under the title “circular disc (dominant mode, TEMgy).”
One hundred increments along the radius were used for the numerical
integrations involved.

Next we examined modes of the odd-symmetric type for circular
plane mirrors. The equation we used was (9) with n = 1. Iig. 12 shows
amplitude and phase distributions for the lowest order mode of the odd-
symmetrie type for cireular plane mirrors. Again the loss and phase
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lowest-order odd-symmetric mode for infinite strip mirrors.

shift are given in I'igs. 8 and 9 under the title “circular disec, TEM;q
mode.”
Normal modes with higher orders of angular variation (n = 2) and

radial variation (m = 1) have greater losses and phase shifts than those
of TEMy and TEM;; modes. The mode with the least attenuation is
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therefore the lowest order, of TEMg mode, which we designate as the
dominant mode for circular plane mirrors.

3.4 Confocal Spherical Mirrors

Before (13) was programmed for solutions on the computer a more
general method for solving the problem of the confocal spherical mirrors
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was tried — a procedure that can be used to solve problems involving
mirrors with rather arbitrary but small curvatures. In this method the
field at each mirror is calculated using the equation for circular plane
mirrors and then a phase distribution corresponding to the curvature of
the mirror is added to this field before it is used in the next iterative com-
putation. The results from this general method of solution and from
solving (13) are in perfect agreement.

The problem of confocal spherical mirrors has also been solved by
Goubau® and Boyd and Gordon.” The results of their analyses are in
good agreement with our computed results.

Amplitude distributions of the field intensity for TEMg and TEM,p
modes are shown in Figs. 13 and 14. The phase distributions are all
uniform over the surface of the mirrors and therefore are not plotted.
The loss and phase shift per transit are given in Figs. 15 and 16. We
note some rather remarkable differences between these solutions and
those obtained for circular plane mirrors. First, the field is much more
tightly concentrated near the axis of the reflector and falls to a much
lower value at the edge than is true for plane mirrors; also the am-
plitude distribution does not have ripples in it, but is smooth. Second,

RELATIVE AMPLITUDE

' J

o] 04 0.2 0.3 04 05 06 07 08 09 1.0

Fig. 13 — Relative amplitude distribution of field intensity of the dominant
(TEMgs) mode for confoeal spherical mirrors. The relative phase distribution on
the surface of the mirror is uniform.
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Fig. 14 — Relative amplitude distribution of field intensity of the TEM,,
mode for confocal spherical mirrors. The relative phase distribution on the surface
of the mirror is uniform.

the surface of the reflector coincides with the phase front of the wave,
making it an equiphase surface. Third, the difference between the phase
shifts for all the normal modes are integral multiples of 90 degrees.
Fourth, the losses may be orders of magnitude less than those for plane
mirrors.

The result that the mirror surface is an equiphase surface should not
be surprising, but ean be deduced from integral equation (13). If we
associate the factor j "*! with v, the kernel becomes real. Since the eigen-
values and eigenfunctions of a real symmetric kernel are all real,” we
see that the field distribution is of uniform phase over the surface of the
mirror. Furthermore, since (j"*'y,) is real, the phase shift for the normal
modes belonging to a set of modes with a given angular variation must
be an integral multiple of 180 degrees and the difference between the
phase shifts for the normal modes with different angular variations but
the same radial variation is an integral multiple of 90 degrees; that is,
the phase shift is equal to [180m 4+ 90(n -+ 1)] degrees. Therefore, if
the mirrors are adjusted for the resonance of a particular normal mode,
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half of the totality of all the modes are also resonant. However, the
resonant mode with the lowest loss would persist longest in the resonator.
Just as in the case of plane parallel mirrors, the mode with the lowest loss
is the TTEMg mode.

IV. DISCUSSION OF RESULTS

The results of machine computation have shown that a two-mirror
interferometer, whether of the plane or concave mirror type, can have
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Fig. 15 — Power loss per transit vs. N = a?/b\ for confocal spherical mirrors.
(Dashed curves for circular plane mirrors are shown for comparison).
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normal modes of propagation which are self-perpetuating or self-repro-
ducing in the distance of one transit. We use the term mode of propaga-
tion rather than mode of resonance to emphasize the fact that these
steady-state solutions are the result of multiple transits whether or not
the plate separation happens to be adjusted for resonance. An analog of
the plane mirror interferometer is a transmission medium consisting of a
series of periodic collinear apertures, as was shown in Fig. 1. The same
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solutions apply, and here it is clear that the reproduction of a normal
mode field at suceessive apertures does not depend on any eritical rela-
tion between b and \.

In Fig. 17 is shown the way in which a number of square-plate modes
can be synthesized from the infinite-strip modes. Diagram A shows
schematically the field distribution for the dominant square-plate mode
obtained as the product of the field distributions of two even-symmetric
strip modes crossed at right angles and with polarization as shown.
Since the eigenvalue for the square plate is the product of the eigen-
values for the two strips, the phase shift per transit is the sum of the
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Fig. 17 — Synthesis of normal modes for square mirrors.



476 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1961

phase shifts for the two strips and, if the loss is small, the loss per transit
is essentially the sum of the losses for the two strips. Diagram B repre-
sents an odd-symmetric square-plate mode formed by taking the prod-
uct of an even- and an odd-symmetric strip mode; B’ is the same mode
but with the polarization rotated 90°; c is a circular electric type of
mode formed by adding two modes of the type B. This addition is per-
mitted because the two components are degenerate. It follows that the
circular electric mode c is degenerate with B and has the same loss and
phase shift per transit. By taking the difference between the same two
B modes as shown, the mode b is obtained, resembling the TEs; mode in
circular waveguide. We give all the patterns B, B’, ¢ and p the same
designation, TEM,, (or TEM), since they are composites of the one
basic mode type. Similar syntheses can be performed for circular mirrors,
either plane or concave. It is interesting that degeneracies of this type
are common for the interferometer because the electric vector ¥ is at
liberty to be parallel or perpendicular to the mirror edges. In a metal
waveguide they are uncommon because the polarization of £ at the
boundaries is restricted.

The dominant mode and a number of higher-order modes for square
and circular mirrors are depicted in Fig. 18, in which electric field vectors
are shown. This classification of modes applies to plane as well as con-
focal spherical mirrors. In the case of rectangular mirrors, the x axis
may be taken along the longer dimension, in which case the first sub-
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Fig. 18 — Field configuration of normal modes for square and circular mirrors.
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seript always denotes the number of field reversals along the longer di-
mension.

In formulating the problem we have assumed that the waves were
almost transverse electromagnetic. The solutions for the flat mirror are
consistent with this assumption. At the edges of the mirror there is a
phase lag of approximately 45 degrees relative to the center, but this is
only one-eighth of a wavelength out of many wavelengths for the mirror
diameter. Thus the curvature of the wavefront away from the transverse
plane is exceedingly small, and the assumption appears justified. For
higher-order modes such as B’ of Fig. 17, it is clear that the field lines
must have longitudinal components. This is illustrated by an edge view
in Fig. 19. However, provided the width of a cell ¢ is much greater than a
half-wavelength, the longitudinal field intensity should be negligible
compared to the transverse. Only for very high-order modes should this
approximation begin to fail. Because the low-order modes of importance
are essentially transverse electromagnetic, they are designated as TEM
modes.

The plane mirror modes have a phase which is not constant over the
mirror. This does not mean that it is impossible to space the mirrors for
resonance of the entire field pattern. Actually, the phase delay for one
transit is the same for every point on the wavefront. Therefore, if the
plates are separated by the distance b plus an additional amount for the
phase shift per transit of the mode desired, that mode should resonate in
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Fig. 19 — Field configuration of the TEMi, mode for square mirrors.
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the interferometer. Other modes should not be resonant for this separa-
tion because they have different phase shifts per transit.

Since the field configurations of many of the normal modes of the
interferometer are very similar to those of metal tube and parallel-plane
waveguides, it is not surprising to find that simple waveguide theory can
be used to predict certain characteristics of the interferometer modes.
One of these characteristics is phase shift per transit. For instance, the
field distributions of the normal modes for infinite strip mirrors are very
similar to those of the TE modes of parallel-plane waveguide; also, by
adding two orthogonally polarized TIEM;y modes for circular plane mir-
rors, one obtains a field configuration which is very similar to that of the
circular electric (TEy ) mode of circular waveguide (Fig. 20). Thus the
amount of phase shift per transit computed for these modes of the
interferometer agrees well with the phase shifts obtained for TE modes
of parallel-plane waveguide and TEy mode of circular waveguide. This is
illustrated in Fig. 21. We see that agreement becomes better for larger
values of N. This is because the similarity between field configurations
becomes closer for larger values of N.

If we regard a uniform plane wave as being resolvable into a set of
normal modes, there can be no such thing as a resonance for a uniform
plane wave. Why then does it appear that there is such a resonance in
passive optical interferometers? It is because for the usual optical case
a’/bx is in the thousands. The phase shifts per transit are extremely
small, hence the mode resonances lie very close together in frequency.
At the same time, the reflection coefficients of the best optical mirrors
are so poor, and the @ of the interferometer is so low, that the resonance
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Fig. 20 — TE modes in a parallel-plane waveguide and circular electric mode in
a circular waveguide.
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line width contains hundreds of normal mode resonances. Thus the uni-
form plane wave undergoes very little decomposition when resonated.
Nevertheless, in the case of an active interferometer, the decomposition
may be complete.

We now make use of the formula for the @ of a resonant waveguide
cavity to compute the @ of an interferometer system. The @ of a reso-
nant waveguide cavity is given by

B |R1RLC—2"” _(217_6) (lq)ﬂ _
V= — [RRae— |\ X, /] \N/ "’ (14)

where « is the attenuation constant of the waveguide and A, is the guide
wavelength. For the interferometer we assume that a is zero and that A,
is equal to A, the free-space wavelength. The voltage reflection coefhi-
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cients R; and R, for the two reflectors are given by
|Ri| = |R:| = V1 — 5 — &a, (15)

where 6, is the power loss in reflection and §; is the power loss due to
spill-over. When these losses are very small, ¢} reduces to

~ 1 b
Hence
1 1 1
- = __ 4 —, 17
"o ta an
where
27b 27h
Qr = ‘XS:: Qd = ?\_fsd. (18)

The resonance line width at half-power points given as the change in
electrical length of the resonator, Ag, is

b = 2r G) (%) (19)

= §, + 8 radians,

where we have substituted (1/Q) for (AA/A).

Let us consider an interferometer having circular plane mirrors with
2a = lem,b = 20cm, A = 5 X 107" cm and a reflection loss of 3, = 0.02.
In this case N = a’/bx = 250. Extrapolating the loss and phase shift
curves of Figs. 8 and 9, we obtain diffraction loss 8; = 9 X 107° and
phase shift for the dominant (TEMg) mode ¢4 = 0.11 degree. The dif-
fraction loss is thus negligible compared to reflection loss, which limits
the Q to a value of 1.25 X 10°. The phase shift for the next higher order
(TEMyy) mode is 0.30 degree and therefore it is separated from the
dominant (TEMg) mode by 0.19 degree or 0.0033 radian. The resonance
line width, as given by (19), is 0.02 radian. Thus we see that TEMg,
and TEMj, modes are not resolved. As the mirror separation is reduced
or mirror size increased, more and more normal modes will become
unresolved and a uniform plane wave will suffer less decomposition when
resonated.

When an interferometer is filled with an active medium, the medium
can compensate for the mirror losses and yield an enormously increased
Q. Under these circumstances, the modes may be clearly resolved, and
their ¢’s will be determined by the diffraction losses. If the gain of the
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medium is increased until it compensates for mirror losses plus the dif-
fraction loss of the lowest order mode, that mode will become unstable
and oscillation can result. All higher-order modes will be stable and
have positive net loss. If the gain of the medium is further increased,
then many modes may become unstable. In starting from a quiescent
condition, spontaneous emission can initiate a large number of charac-
teristic waves in the interferometer. These may then start to grow, but
the dominant mode will always grow faster and should saturate first.
At saturation the steady-state field distribution will be considerably
altered. The relative field at the edges of the mirrors should increase,
thereby increasing the relative power loss. This can be described as a
coupling of power into other modes as a result of the nonlinearity of the
medium. No attempt has yet been made to analyze this situation. The
linear theory is at present of most interest because it allows the com-
putation of the starting conditions for oscillation.

With the development of the normal mode picture of interferometer
operation and the computation of the losses for these modes, we may
now ask if there is an optimum geometry for a maser interferometer
which will permit oscillation for the lowest possible gain in the medium.
We know that the power gained from the medium can be increased by
increasing length. For very great lengths corresponding to the far-field
region (N < 0.1), the power gained from the medium increases more
rapidly than transmission loss as length is increased, and there must
always be some length beyond which oscillations can occur. However,
these lengths are too great to be of practical interest. In the near-field
region (N > 1), represented by the curves of Fig. 8, the diffraction
loss increases more rapidly than the medium gain. Therefore, if the
reflection loss is sufficiently small, an optimum length may exist which is
most favorable for oscillation.

To be more specific, let us consider a circular plane mirror interferome-
ter. From Fig. 8 we find that the loss for the dominant mode may be
represented by the expression

1.4
6a = 0.207 (2%) . (20)
In order to find the optimum value of b to give a maximum @, (20) and
(18) are substituted in (17) and the resulting equation is differentiated
with respect to b. For the optimum b, the diffraction loss is 2.5 times the
reflection loss, and not equal to it, as might be supposed. Moreover, this
result is general and holds for all modes and all shapes of plane mirrors
represented in Fig. 8, provided the optimum falls on the straight-line
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portions of the loss curves. Since the power supplied by the medium is
proportional to the stored energy in the interferometer, while the power
loss of the passive interferometer is just w/Q times the stored energy,
oscillation is most likely to occur when @ is a maximum. Fig. 22 il-
lustrates the way the interferometer dimensions affect Q. If a given mir-
ror diameter is chosen (as represented by the dashed line A), there is
clearly an optimum distance b which will produce a maximum ¢ (inter-
section of lines A and B). However, if the distance b is held constant,
there is no optimum value for a. The larger a, the higher will be @,
although it will approach a limiting value beyond which there is nothing
to be gained by further increase of a.
As an example, let us assume a case where

A = 10" cm,
2a = plate diameter = 2 em,
6, = power reflection loss = 0.001.

The optimum proportions require that 8, be 0.0025, and for this, b is
435 em and the resulting @ is 7.8 X 10°. The length of 435 cm is prob-
ably impractically large for a maser. If b is reduced to a more reasonable
value of 50 em, the @ will drop to 3.14 X 10°, which is the limiting value
due to reflection loss. (The value assumed here for §, is already much
lower than can be obtained from evaporated metal films and would
require the technique of multilayered dielectric films.) In order to os-
cillate, the active medium would have to have a power amplification
factor in excess of 1.00002 per centimeter of path.

In the case of confocal paraboloidal mirrors of 2 em diameter, the
optimum length turns out to be 8900 em. If the diameter is reduced to
0.5 cm, the optimum length is still 530 cm, and for these proportions ¢
is 3.1 X 10". It is clear that with confocal mirrors the diffraction losses
are negligible for any reasonable proportions of the interferometer.

One question of importance is whether there is an optimum set of
dimensions which will discriminate against unwanted modes. It has
sometimes been suggested that by making the mirror diameter small
relative to the mirror spacing, “‘slant rays’”’ will be more rapidly lost from
the system. However, from Fig. 8 it can be seen that the ratios of the
losses for the several modes is independent of N provided N is greater
than 1. Thus, if diffraction losses predominate, there is no way of dis-
criminating against unwanted modes by juggling dimensions. The limit-
ing amount of discrimination is merely governed by the ratio of the
losses for the different modes, which is independent of the dimensions.
However, if reflection losses predominate, the discrimination between
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Fig. 22 — Interferometer dimensions for constant . (Circular plane mirrors,
reflection loss = &, = 0.001.)

lower-order modes would be almost nonexistent and it would be ad-
vantageous to increase mirror separation and/or decrease mirror dimen-
sions so as to make diffraction losses predominate. In the case of the
confocal mirrors, the loss ratios between modes are not constant (Fig.
15) although, for values of N larger than those shown, they may become
so. At any rate, for values of N close to unity, a small amount of in-
creased diserimination against higher order modes can be obtained by
making the mirrors larger.

V. CONCLUSIONS

Diffraction studies carried out on the IBM computer have led to the
following conclusions:

1. Fabry-Perot interferometers, whether of the plane or concave
mirror type, are characterized by a discrete set of normal modes which
can be defined on an iterative basis. The dominant mode has a field
intensity which falls to low values at the edges of the mirrors, thereby
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causing the power loss due to diffractive spillover to be much lower than
would be predicted on the assumption of uniform plane wave excitation.

2. Uniform plane waves are not normal modes for a flat-plate inter-
ferometer. Consequently, interferometer resonances do not exist for
“slant rays,” i.e., plane waves traveling at an angle with respect to the
longitudinal axis.

3. The losses for the dominant mode of the plane mirror system are
so low that for most practical geometries performance will be limited by
reflection losses and seattering due to aberrations. For confocal mirrors
the diffraction losses are even lower.

4. There are no higher-order modes with losses lower than the dom-
inant (lowest-order) mode.

5. The ratio of diffraction losses between the modes investigated for
the plane mirror system is independent of the interferometer dimensions
in the range of interest. Therefore, if diffraction losses predominate, there
is no way of proportioning the interferometer so as to favor any one
mode.

The computer technique we employed is general and versatile. It can
be used for studying mirrors having rather arbitrary but small curva-
tures. With little modification, the same technique can be used to study
the effects of aberration and misalignment.

APPENDIX A

Rectangular Plane Mirrors

The geometry for rectangular plane mirrors parallel to the xy plane is
shown in Fig. 2. According to (1), the iterative equation for computing
the field at the surface of mirrors is

. ¢ a —jkR
b
e, 1) = [ [t ) S (14 %) amn, 1)

where

R =/ 4+ (27 — z2)* + (1 — y2)>
If b/a and b/c are large, (21) can be reduced to

« — jkb

¢ ¢ pa T 3
Ugia(@a, yo) =1 .[ f gy, ) ¢ ORI g gy (22)

Ab

which is valid for (a*/bA) < (b/a)® and (¢*/bA) < (b/c)*.* The cor-
responding integral equation is

* Actually, the stringency of this requirement can be relaxed somewhat for
lower-order modes in which field intensities near the edges of the mirror are rather
low. We have made check computations for the case a?/bh = 5 and (b/a)? = 25
and have found that the results based on the exact equation and on the approxi-
mate equation are in essential agreement.
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v(xe, y2) = ‘Y_[ | K (s, @15 9, y)o(an, ) dedy,,  (23)

where

3 ] —jk — 2 —ya)2]/2b
K(xs, 21552, 1n) = %}e Elm—=all el (23a)

and the factor ¢ * is absorbed in 5.
Here, the kernel of the integral equation is separable in x and y. If

the distribution function » is assumed to be of the form

v(2y) = vax)o,(y) (24)

it is possible to separate (23) into two equations, one involving x only
and the other involving y only; that is,

v(22) = 72 _[ K. (2, 2)v:(1) day, (25a)
vu(yﬂ) = Yy [ Ky(y‘l ) y1)vy(yl) dyl, (25b)
with
Ci('f!] R )
K, = ‘\/A_b 373*111 3)11_1,, (250)
and
I( _ (’.J’('f-) efj.k-(y‘,vg)!,lz[, (25d)
EVAY/ .
The product of the eigenvalues v, and v, is equal to the eigenvalue v in
(23).

It remains to be shown that (25a) through (25d) represent integral
equations for infinite strip mirrors. Let us consider a pair of infinite
strip mirrors of width 2a and separated by b. The iterative equation
for computing the field at the mirrors can be derived from (1). It is

pilxlt) pa e—ike b
Ugpr(Wa) = -3\/—?_\ B wg(2y) \/—; (1 + ;) dxy, (26)
where
< p =V + (1 — x)*
For (a*/b\) < (b/a)’, (26) reduces to

e/llri9—ol - e —jie( )22
f a, (@) e T dx;. (27)
—a

'”qH(-'E’.!) = ‘\/Xb



AN

486 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1961

The corresponding integral equation is

o) = v [ Ko, o(w) da, (28)
where
it
K(.L‘z,.v;) — ‘\/ﬁ) ¢ 2)2/2b (28&)

and the factor ¢ is absorbed in y. We see that (25) and (28) are
identical in form.

APPENDIX B

Circular Plane Mirrors

Assuming approximately plane waves propagating normally to the
circular plane mirrors (Iig. 3), the iterative equation for computing the
steady-state field distribution can be written as

. pa p2r —jkR
e b
th+1('n‘"2 ’ 992) = 2%; fu ./:J 'Mq(?‘l, 101) L—R— (1 -+ R) 1 d§01 d?’l, (29)

where

R =0+ re+ r’ — 2rr2cos (o1 — ¢2) -
If b/a is large, (29) simplifies to

o —jkb

a 2x
e
uq+1(7'2,902) = J b ju fﬂ uq(?‘l,wl)

— ik [(r24r2?) /26— (ryralb) -
e Jk[(ry24ra?) /26— (ryra/b)cosle) wz}]rl d§91 d?‘;,

(30)

which is valid for (a*/b\) < (b/a)®*
The integral equation corresponding to (30) is
v(rs,@2) = ‘rfu f" K(ry, o, e0)v(r, @) deydry,  (31)
with

i —k[(ry24ra2)/20—(ryralb)cos(e—ya)] (31&)

K(T31§92; 1 ﬂal) = b

* Comments in Appendix A regarding the stringency of this requirement are
also applicable herein.
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—gkb . . .
and where the factor ¢ is absorbed in y. Making use of the relation™

A Lr) e rirs 1 . e
C.ml(vfﬁ) -r.lJ" (.l.'. %3) — CJﬁ(FH’E-’b)cUE(Pl @a)—ingy d\al (32)

27 Jy
and integrating (31) with respect to ¢, , it is seen that
v(re) = R.(r)e ™, (n = integer) (33)

satisfies (31). The function R, (r) satisfies the reduced integral equation

Ru("ﬂ)\/;z = Yn f l{n(-rﬂ y J’.IV)I?JJ("I)‘V?TI drl » (34)

with
-n+lk

Ko(rs,m) = JT J. (if ’%) N Ty @ IR (34a)

where .J, is a Bessel funetion of the first kind and nth order.
APPENDIX

C'onfocal Spherical or Paraboloidal Mirrors

For confoeal spherical mirrors of circular cross section (Tig. 4), the
iterative equation corresponding to (29) is

. a 2 ) ._ij b
'H,q+1(‘r2 , (pg) = '_)JX f; j; 'H.q{?'l f gal) P—R— (1 + ﬁ) ry dlpl d’l"1 (35)

where

R = /b 4+ i + r — 2rira cos (@1 — ¢2)-
The distance b, is given by
by=b— A — Ay (36)
where, for confocal spherical mirrors,
Ar=b—AbF—r2 i=12 (36a)
If b/a is large, the distance A; is given approximately by
Ar=ri/2h 1= 12, (37)

which is exact for confoeal paraboloids. In this case (35) simplifies to
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— Jkb

2
Uga (72, @2) = f f (11, @) e raeoster—en, g dry, (38)

which is valid for (az/b}\) & (b/a)’.
The integral equation corresponding to (38) is

v(re, @2) = v f f K(ra o0 ;m,e)v(r,e)r dpydry,  (39)
0 0

with

J eJ'f\‘-fnfz."b)COE(v’l—w‘Pz) (40)

K(rayeriri,o) = D

— kb . . . .
and where the factor e ™" is absorbed in v. Just as in the case of circular
plane mirrors, it can be shown that

o(re) = S.(r)e ™ (n = integer) (41)

satisfies (39). The function S,(r) satisfies the reduced integral equation

Su(r)V/re = 'y,.fo K, (ra, )8, (r)V/ 1y dry (42)
with
f”lk ir2 —
I{n{r2 ) rl) = ‘b— Jn (k _b—) '\/Tsz . (423)
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