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Multimode resonators of high quality factor will very likely play a sig-
nificant role in the development of devices, such as the maser, which operale
in the millimeter through optical wavelength range. It has been suggested
that a plane-parallel Fabry-Perot interferometer could act as a swilable
resonator. In this paper a resonator consisting of two identical concave
spherical reflectors, separaled by any distance up to twice their common
radius of curvature, is considered.

Mode patterns and diffraction losses for the low-loss modes of such a
resonator are oblained analytically, using an approvimate method which
was suggested by W. D. Lewis. The results show that the diffraction losses
are generally considerably lower for the curved surfaces than for the plane
surfaces. Diffraction losses and mode volume are a minimum when the
reflector spacing equals the common radius of curvature of the reflectors.
For this case the resonator may be termed confocal. A further property. of
the concave spherical resonator is that the optical alignment is not extremely
erttical.

I. INTRODUCTION

Schawlow and Townes' proposed that coherent amplification could
be achieved in the infrared through optical regions of the frequency
spectrum by maser techniques. At such frequencies multimode resonators
are necessary to achieve reasonable dimensions and high @. They and
Prokhorov® and Dicke® have suggested as a resonator two plane-parallel
reflecting planes, known as a Fabry-Perot interferometer, or etalon.’

In Fabry-Perot resonators the major factors contributing to the @
(i.e., resolving power) are reflection losses and diffraction losses. Reflec-
tion losses result from absorption in the reflectors, and from transmission

489



490 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1961

through them. At optical frequencies a very good layered dielectric
reflector” can have a 991 per cent reflection coefficient. Diffraction
losses result from the finite aperture of the reflectors and from im-
perfections in their ‘“flatness.”

Fox and Li have shown in the accompanying paper’ that modes, in
the sense of a self-reproducing field pattern, exist for an open structure
such as a I'abry-Perot interferometer. They also have recognized that
the diffraction losses of a plane-parallel Fabry-Perot are very much less
than those obtained by assuming a uniform intensity distribution over
the reflector and the Fraunhofer far field diffraction angle. They have
made numerical self-consistent field calculations based on Huygens’
principle to determine the actual diffraction losses and mode patterns.

In interferometry using a Fabry-Perot resonator, one normally ex-
cites a systemi of plane waves traveling at certain discrete angles to the
axis. Constructive interference at each of these discrete angles, as is
appropriate to ring order, wavelength and spacing, results in a pattern
of concentric bright rings. Schawlow and Townes indicated that each
ring of the interference pattern is not a pure mode of the resonator but
an infinite sum of such modes, each representing a different field pattern
over the reflector. This idea has been given much substance by the work
of Fox and Li.

The plane-parallel Fabry-Perot is not necessarily ideal, however, as a
high-frequency multimode resonator. A resonator formed by two
spherical reflectors of equal curvature separated by their common
radius of curvature is considered in detail in this paper. The focal length
of a spherical mirror is one-half of its radius of curvature. Therefore the
focal points of the reflectors are coincident and the resonator is termed
confocal. G. W. Series, Fox and Li® and Lewis’ have also suggested the
confocal resonator. Lewis has recognized that it would have lower
diffraction losses than the plane-parallel Fabry-Perot and has described
the analytic solution presented here.

The use of confocal reflectors as an interferometer has been described
by Connes.® The adjustment of the spherical Connes interferometer is
trivial compared to the Fabry-Perot. Parallelism between the reflectors
is not a strict requirement, the only fine adjustment therefore being the
spacing between the surfaces. Parabolic surfaces may also be used, but
they have an axis and thus lose the advantage of ease of adjustment.

II. RESONATOR QUALITY FACTOR
Resonator quality factor, or @, is defined as

energy stored
Q=0 8y (1)

energy lost per second
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Consider an interferometer consisting of two reflecting surfaces separated
by a distance d which is large compared to the wavelength in the medium
A. By considering waves bouncing back and forth between the surfaces,
one may derive an approximate @ as

Q= 2xd
aX’
where « is the fractional power loss per bounce from a reflector and is
the sum of diffraction and reflection losses: This is to be compared to
the resolving power derived in opties’ as

Q'ME\/;‘ .
R=sa=n )

where the power reflection coefficient per bounce is r = 1 — a. Resolving
power is thus synonymous with @ within the small loss approximation
of (2).

If diffraction losses are small compared with reflection losses, then
resonator @ is proportional to the spacing between the reflecting surfaces.
For a given reflector aperture size, the resonator @ will continue to
increase with the spacing d between the reflectors until the diffraction
losses become roughly comparable with the reflection losses. Further
increase in spacing then decreases the Q because of increasing diffraction
losses.

1I1. MODES AND DIFFRACTION LOSSES OF A CONFOCAL RESONATOR

All resonator dimensions are assumed large compared to a wavelength;
the modes and diffraction losses of the confocal resonator are therefore
obtainable from a self-consistent field analysis using Huygens’ principle.”
A confocal resonator is considered, with identical spherical reflectors
of radius b, as shown in Fig. 1. Assume the field to be linearly polarized
over the P’ surface in the y direction and given by Eofn(2")g.(¥'),
where £, is a constant amplitude factor and f.(z') and g,(y") are the
field variations over the aperture. At point () on the other surface,
one computes the electric field by summing over contributions from
the differential Huygens sources at all points P’(a’,y"). The result is

£, = f' tk(1 4+ cos 8)
S

1 P- 'lkaOfm(-v’}gu(yf) dS’ . (4)
TP

Here p is the distance between P? and I, 9 is the angle between the line
P’P and the normal to the reflector surface at P/, and k is the propaga-
tion constant of the medium between the reflectors. Note that & =
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Fig. 1 — Confocal resonator with spherieal reflectors.

27 /A, where A is the wavelength in the medium. The electric field in the
rz plane is approximately zero. The reflector is assumed square and of
dimension 2a, which is small compared to the spacing b (since the con-
focal spacing is under consideration d = b), and thus ¢ is very nearly
zero. The medium is assumed to fill all space.

The normal modes or eigenfunctions of the confocal resonator are
obtained by requiring that the field distribution over a'y’ reproduce
itself within a constant over the ay aperture, and thus E, = Eifu(2)g.(y),
where E, = on0.Fq.. The proportionality factor ene, is generally com-
plex, giving both amplitude and phase changes. The resulting integral
equation is

te ik — ik ’ ’ I
Umdnfm(x)gn(?f) = ffﬂ L?p e’ me(m )gn(y ) dx dy . (5)
The distance p varies only a small amount for small apertures and thus
may be replaced by the separation b except in the exponential phase
term. For x and y small compared to b one can show that

P zx’ + gy | ww” (
b= T T T 6)
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where w* = 2* 4 % The third term makes a negligible contribution to
the phase when a’/bA << b°/a’. Note that in this approximation one
cannot distinguish between spherical and parabolic surfaces. In terms
of some dimensionless variables

_d'k a’ . a\Ve e
”=?—2”(a) X=7 Y= O

and with F,.(X) = f.(x) ete., (5) becomes

ik b/ .
U‘,,.O',,F,,,(.\')G,,(I'r) = © f Fﬂx(X,)8+M“ (IX’
27 -7
++¢ (8)
f G.(Y")e"™ ay’.
—Ve

Slepian and Pollak' have considered the following integral equation:

Fu(X) = — 1 fm Fo(X')eH ™ gx’. (9)
V 27xm d-vE

This is a homogeneous Fredholm equation of the second kind with X
as the kernel. It is often referred to as a finite I'ourier transform. They
have shown solutions to be

F,,.(C,'f)) « Sﬂm(c;’!): (10)
Xm = /‘//26 ’imR[Jm(I) (C’l)) m = 0; 1) 2) Y (11)
™

where Sp.(¢,n) and Rg,,,m(c,l) are respectively the angular and radial
wave functions in prolate spheroidal coordinates as defined by Flammer,"
and where n = X/+/¢ = 2/a and n = Y/v/¢ = y/a respectively for
F.(X) and G,(Y). There is an infinite number of eigenfunctions and
corresponding eigenvalue solutions to (9) for any value of c. Flammer"
gives values of these functions for ¢ £ 5 and Slepian and Pollak""
have computed the eigenvalues x, for the important region of ¢ > 5.

The eigenfunction solutions of (8) are thus the spheroidal wave
functions Syn(e,x/a)Su(c,y/a). The eigenfunctions are real; therefore,
the reflecting surfaces are of constant phase. The eigenvalues are

. kb
TpmOn = XmXal € - (12)

The phase shift between the two reflecting confocal surfaces equals the
phase angle of ¢nc,. For resonance the round-trip phase shift must
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equal an integer ¢ times 2. From (11) and (12), one finds therefore
2-,,-(_,=27§r-—kb—|—(m+n)12r. (13)

Since &k = 2x/A, one obtains for the condition of resonance

4%=2q+(1+'m+n). (14)
The confoeal resonator is seen to have resonances only for integer values
of the quantity 4b/\. If 40/ is odd, (m + n) must be even, likewise if
4b/\ is even, (m + n) must be odd. Note that considerable degeneracy
exists in the spectrum; increasing (m + n) by two and decreasing ¢
by unity gives the same frequency. The degenerate modes are or-
thogonal over the reflector surface since they satisfy the integral (5)
with different eigenvalues. The modes have negligible axial electric
and magnetic fields and thus will be designated by TEM g, where
m and n equal 0, 1, 2, ---, and refer to variations in the x and y di-
rections, while ¢ equals the number of half-guide wavelength variations
in the z direction between reflectors.

The fractional energy loss per reflection due to diffraction effects is

given by
&p = 1 - |U'mﬂ'ﬁ |2 =] - |XmXH F- (15)

The function 1 — | xm |* versus ¢ is shown in Fig. 2 for m = 0, 1, 2.
It can be shown that Fig. 2 also gives the diffraction losses for an infinite
cylindrical reflector strip of width 2a and radius of curvature b. The
diffraction losses for various TEM,,,, modes are shown in Fig. 3. Note
that TEM,,, and TEM,,, {(« £ v) have the same diffraction losses;
also that the diffraction losses of the TEMg, and TEMi,, are so nearly
equal that they can be plotted as one curve. As indicated previously,
these last two types of modes cannot both be resonant at the same
frequency. Note that the losses are primarily determined by the higher
of the transverse mode numbers m, n, regardless of the field polarization.

In Fig. 3 the results of Fox and 1i° for the plane-parallel resonator
with circular reflectors are also shown. The diffraction losses for the
confocal resonator are seen to be orders of magnitude smaller than for
the plane parallel resonator. Fox and Li have also obtained numerical
results for the confocal resonator with circular cross section of radius a.
These are in good agreement with the results presented here, allowing
for the fact that in this paper the reflectors have a square cross section
of width 2a.
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Fig. 2 — Eigenvalues of integral equation; also the diffraction losses of an in-
finitely long eylindrieal reflector of width 2a.

If one approximates the diffraction loss eurve by a function e, =
A X 107%™ "one may then show for a given reflection loss and re-
flector radius a that the resonator @ is a maximum as a function of the
confocal spacing b when the reflection loss equals [2.30B(a2/bN) — 1]
times the diffraction loss. For the TEMyy, mode, 4 = 10.9 and B =
4.94; thus, if @®/bN = 0.8, then the diffraction loss is approximately one-
eighth of the reflection loss.

The diffraction loss for the plane-parallel case assuming a uniform
field and phase distribution and a diffraction angle of 8 = \/2a is also
shown. This diffraction angle corresponds to the first Fraunhofer mini-
mum in far field theory. For a square (or cireular) reflector of side 2a
the diffraction loss is approximately

2y —1
au?-‘::'(g—)\) ) (16)
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Ilig. 3 clearly demonstrates the inadequacy of the assumption of uniform
intensity distribution.

Though the eigenvalues given by (12) must be known accurately the
eigenfunctions are only of approximate interest. Flammer" shows that,
in the approximation of n° < 1 (near the center of the reflector), (10)
becomes

(g
Fm(X) ~y —r H,,.(X)c_i‘ﬂ
I'(m+ 1)
(17)
r (T’ + 1)
= —2_ (_l)me-{»gx! dm e*x’
T'(m+ 1) ixm .

The mode shape is thus approximately a Gaussian times a Hermite
polynomial H,,(X). The gamma function is arbitrarily chosen as normal-
ization such that F,.(X = 0) = =1 for m even:

Fo(e,n) = e,
Fi(en) = V/men e ™, (18)
Fu(en) = (204" — 1)e,

The approximation involved in (17) fails away from the center of the
reflector. For reasonably large values of ¢, however, the field is weak
there, and of little interest. The diffraction losses were previously ob-
tained from (15). Curves representing (18) for various values of ¢ are
shown in Fig. 4. The dotted curves for ¢ = 5 are the true eigenfunctions
Son(c,m) as obtained from Flammer.”

The exponential dependence of the electric field on en®, which is
independent of the reflector half-width a, leads one to define a “spot
size” at the reflector of radius w = w, , where w* = 2* 4 3*, at which
the exponential term falls to ¢ ':

w, = 23 (19)
m™
The only effect of increasing the reflector width 2a is to reduce the
diffraction losses; the spot size is unaffected.

If one allows the reflectors to be somewhat lossy or partially trans-
parent, then thé resonator @ is reduced over that implied by diffraction
losses alone, The field distribution, i.e., the mode pattern, is not seriously
affected so'long as the losses are small and fairly uniform over the plates,
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Fig. 4 — Approximate field amplitude variation versus normalized radius for
various modes. The exact dependence given by the angular prolate spheroidal
function Sym(c, ) is shown by dashed lines.
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The electric field patterns derived thus far have all been linearly
polarized. Fox and Li’ have recognized that, by superimposing the
TEMy, mode linearly polarized in the x direction and the TEM,,
mode linearly polarized in the y direction, the lowest-order circular
electric mode can result, and it has the same diffraction losses as the
linearly polarized TEMg, mode. Many other polarization configurations
can be obtained in this manner.

IV. FIELDS OF THE CONFOCAL RESONATOR

The field over the confocal aperture has been obtained in the preced-
ing section. The field over an arbitrary plane z = z;, as in Fig. 1, is also
obtainable by a straightforward application of Huygens' principle as
stated in (4). The arbitrary plane z, may be placed outside the confoeal
geometry as well as inside provided one takes into account the trans-
mission loss of the reflector. The field distribution over the confocal
surface is given by F,(ex/a)G.(c,y/a). For large ¢ the spheroidal
functions may be approximated by the Gaussian-Hermite functions.
The integral can be evaluated in the limit of ¢ — o,

Within these approximations, the traveling wave field of the confocal
resonator resulting from the field at one of the reflectors is given by

R (0 IS

1+£ T'(m + H)l(n + 1) 1+ &
( ) [ fw® ] (20)
1/1+52 Pl T+ B
of —ilk I T_
.e)\p( I,{’] l+£3b:| (1+m+n)(2 )}),

where
2 2 2
w =x +y,

2z,
= (21)
tan ¢ = %-;—E

When the reflecting surface is made partially transparent, as will be the
case with optical or infrared masers, the field of the transmitted wave
will be a traveling wave as given in (20) reduced by the transmission
coefficient of the reflector. Within the resonator, the field will be a
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standing wave. The transverse standing wave is as given in (20) except
that the exponential phase function is replaced by the sine function.

The surface of constant phase which intersects the axis at z, as ob-
tained from (20) is given approximately by

£ wt
— R - — 22
4 20 1 + 52 b ] ( )

neglecting the small variation in ¢ due to variation in z. This surface is
spherical, within the approximations of this paper, and has a radius of
curvature b’ given by

’ 1+ ¢ .
b = i oF h. (23)
At £ = =1 it coincides with the spherical reflector as expected. Also note
that the symmetry or focal plane (¢ = 0) is a surface of constant phase.

The field distribution throughout the resonator is given by the modulus
of (20). The complete field distribution within the confocal resonator is
shown schematically in Fig. 5 for the low-loss TEM o, mode.

The field distribution over the focal plane is less spread out than over
the spherical reflectors. The field spot size over the spherical reflectors
was defined by (19). In any arbitrary plane z, the exponential term in
the field distribution falls to ¢~ at a radius

w, = VW (24)

The smallest achievable spot size is in the focal plane at £ = 0.

To obtain the radiation pattern angular beam width of the TEMgq,
mode spherical wave, one takes the ratio of the spot diameter from (20)
or (24), as £ — =, to the distance from the center of the resonator. The
beam width between the half-power points is given by

m2, /x o)
=2 1/ - 1/ b 0.939 1/ 5 radians. _ (25)

V. RESONATOR WITH NONCONFOCAL SPACING

Since the surfaces of constant phase of the confocal resonator are
spherical, it is apparent that (20) also represents approximately the
field distribution between two spherical reflectors of arbitrary spacing.
That is, any two surfaces of constant phase may be replaced by re-
flectors. The frequencies at which such a resonator will be resonant will
of course be determined by satisfaction of the phase condition.
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Fig. 5 — Field strength distribution within the confoeal resonator for the
TEM yo, mode.

Consider two identical spherical reflectors of radius of curvature b’
spaced a distance d. The only restriction is that &’ = d/2. The confocal
geometry of spacing b of which this resonator is a part is [set £ = d/b in
(23)]:

b=2db —d', bz

(26)

ol =

The spot size at the reflectors in the nonconfocal resonator may be
immediately obtained from (24) with £ = +d/b. It is

@@ -

Note that the factor [2(d/b") — (d/b")?] achieves a maximum of unity,
as a function of o', when b’ = d. Thus, for a given spacing between re-
flectors, the spot size is a minimum for the confocal resonator.

One may estimate the loss of a nonconfocal resonator of square cross
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section of dimension 2a’ on the assumption that this loss is equal to that
of its equivalent confoeal resonator with reflector dimensions scaled up
by the ratio of their spot sizes. The equivalent confocal resonator has
spacing b, and its aperture is

%2 = 2a’% = 24 (2 - g) ) (28)

The important parameter in determining losses is

a a”’ d d\' 7
= — 2= —=15 . 2
DA dX l: b’ (b') :I (29)

For given values of @’ and d, the loss parameter is maximized, and thus
losses are minimized, when b = d. But this is just the confocal case.
Thus the cexifocal geometry gives minimum spot size and minimum
losses for a given spacing. If one defines the mode volume as the spot
size at the reflector times the spacing, it is clear that the minimum mode
volume also results from the confocal geometry. The mode volume, so

defined, is
- 19 2 d (i U
V =qw, d =N QF— o . (30)

It is important to note that the results of this section are valid only
when the diffraction losses derived from the “equivalent” confocal
geometry are small, that is, when the reflector dimension a’ is somewhat
larger than the spot size. In an exact solution for the nonconfocal case
one should again start from the integral (4), and clearly the field dis-
tribution and losses so derived will depart from that obtained from the
equivalent confocal case if the confocal field is not substantially all
intercepted by the nonconfocal reflectors. Conversely, so long as the
spot size is small compared to the reflector dimension a’, one expects the
field distribution and losses to be very nearly correctly given by the
equivalent confocal solution.

The phase shift between the two reflecting nonconfocal surfaces may
be obtained from (20). The condition of resonance may then be shown
to be

4d 4 ab—d

— =2 14+ m+ 1—-t — . 31
X g+ (1 + -l-n)( _tan b+d) (31)
In the nonconfocal case 4d/\ is no longer necessarily an integer at
resonance. It is more important, though, that the modes are no longer
degenerate in m + n. The spectral range or mode separation for the
nonconfocal resonator is given hy
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N 1T 4, b o
A(Q _“[m+( - tan b+d>Mm+nq (52)

Note that in the confocal case the set of modes mng = 00q, Olg are
maximally split in frequency, whereas if the parameter in parenthesis
equals § (when d/b = 0.414) then the mng = 00q, 01¢, 11¢, 12¢ modes
are maximally split in frequency.

When b & d, (31) becomes

-lilzllq-lr(1+m+-n)|:1—g(l—g)i|, (33)
A T b

where m and n are small integers and ¢ a large integer. In the confocal
case (b = d) note that equations (31) and (33) reduce to (14).

The theory of this section does not extend to the limit of plane-parallel
reflectors, i.e., infinite radii of curvature. Let the spacing d remain fixed
while b’, and consequently [by (26)] the confocal radius b, approaches
infinity. The spot size, as seen from (27), keeps increasing with b’, and,
as has been noted above, this results eventually in the breakdown of
the whole idea of an equivalent confoeal resonator. The relations for
the nonconfocal resonator are valid as long as the reflector aperture
radius a’ is somewhat larger than the field spot size radius given by (27).
That is, one must require

a* 1. d d\' T
— 192 — (= Y.
m>rﬂw QJ}' (34)

VI. RESONANT MODES OF THE PLANE-PARALLEL RESONATOR

For comparison purposes, consider the resonances of a rectangular
: . e o 1
conducting box in the manner of Schawlow and Townes.” Let the
dimensions be 2a X 2a X b:

() =)+ () + () ()

where ¢, r, and s are integers. Modes where ¢ > r,s can be thought of
physically as waves bouncing predominantly back and forth between
the reflecting end plates of the rectangular box. The spectral range or
mode separation is given by

A (i) = 1’ I:A + ! (i—?) (2rar + Ar° 4 2sAs + ASQ):I, (36)

where ¢ &~ 2b/X forr, s = 1,23, -+ .
Removing the conducting side walls causes large diffraction losses for
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the r = 0 or s = 0 modes since they have a strong field at the edge of
the reflectors. Large r or s modes represent waves traveling at a con-
siderable angle to the normal between the reflectors and thus these
modes have such large diffraction losses that they are eliminated as
resolvable resonant modes. Modes with 7, s = 1,2,- -+, have small dif-
fraction losses, and are approximations to the actual modes which can
exist in the resonator without the conducting side walls. Fox and Li’s’®
work shows that for ¢*/bA greater than unity the mode separations of a
plane-parallel Fabry-Perot are given apprommately by (36), the ap-
proximation improving rapidly with increasing a */bX.

The mode separation corresponding to Ar or As = 1 has, to the writers’
knowledge, never been resolved at optical frequencies due to the large
values of a’/bx and low values of reflectance used. Calculations show,
though, that<for reflectance coefficients of about 0.99 and a /N ~
such that diffraction losses are comparable with reflector losses, the
resonances should be resolvable.

The mode separation due to Ag = 1 is easily resolvable and is given by
A(1/N) = 1/2b. This is the spectral range as normally stated for the
plane parallel Fabry-Perot interferometer. It corresponds to changing
the number of half wavelengths between the reflecting surfaces by one.

The confocal resonator is resonant for integer values of 4b/A. The
mode separation due to Ag = 1is A(1/A) = 1/2b. The modes are de-
generate in frequency in that for a given integer 4b/x all TEM,,,, modes
are resonant such that m + n remains even or odd according to whether
4h/\ is odd or even. The modes of the plane-parallel Fabry-Perot are
not degenerate, except for rsq and srg. A possible advantage of this de-
generacy of the confocal modes will be discussed in the next section.

VII. CONFOCAL RESONATOR APPLIED TO OPTICAL MASERS

A type of solid state optical maser has recently been demonstrated by
Maiman™ and by Collins et al.”” It consists of a fluorescent crystal ma-
terial (ruby) a few centimeters in length and a few millimeters in diame-
ter. The crystal material should be optically homogeneous. The ends of
the crystal are optically flat and parallel. The ends are silver-coated for
high reflectance. One of the reflecting surfaces must be slightly trans-
parent, as the output of the optical maser is obtained through the
reflecting surfaces. Thus far, silver has been used to prov1de the reflec-
tion, but for ultimate performance multiple-layer dielectrics® should be
used to obtain low transmission loss as well as high reflectance. The
pump power enters the fluorescent crystal from the side.

It is seen in (2) that, if diffraction losses are small compared to re-
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flection losses, then the resonator  is proportional to the spacing be-
tween the reflecting surfaces. Consider a confoeal resonator and a
plane-parallel resonator each of spacing b and of equal Q. The energy
distribution in the former is more concentrated on the axis and thus the
confocal resonator has a smaller effective mode volume. The volume of
maser material required will thus be less for the confocal than for the
plane parallel resonator. For maser oscillation the required excess density
of excited states depends only on the eavity  and in no other way upon
the resonator shape.' The pump power is proportional to the volume of
maser material times the density of excited states divided by the natural
lifetime of the excited state. Thus, assuming equal @, the confocal
resonator with its smaller volume of material requires less pump power
than the plane parallel resonator by the ratio of their cross-sectional
areas. Snitzer'® recently pointed out this relation between mode volume
and pump power with regard to the use of optical fibers in maser
applications.

The minimum volume of maser material is limited by diffraction losses.
If diffraction losses are to be considerably less than 1 per cent for the
lowest-order mode so as to be small compared to achievable reflection
losses, then a’/bA = 1. The minimum volume of maser material is then

Vo = ma'h =~ wb°A. (37)

If b = 4 em and A = 107" em, then the rod of maser material should be
approximately 0.4 mm in diameter. A rod of larger diameter would waste
pump power in that the field of the confoecal resonator would be very
weak outside this minimum diameter of material.

The analysis of the confocal resonator assumes a uniform dielectric
material between the spherical reflectors. Ifor reasons of minimizing the
pump power, it is necessary to use a small diameter of maser material.
Therefore, to prevent internal reflection of energy from the sides of the
maser material, it may be advisable to grind rough the sides of the rod
of maser material or to immerse it in a surrounding medium of equal
dielectric constant. If this is not done, the energy assumed lost due to
diffraction effects would not escape and the electrie field pattern will not
be as computed herein. A more important effect of internal reflection
from the side walls would be to increase the @ of the transverse modes
which would increase the spontaneous and stimulated emission power
to these undesired modes, and thus increase the over-all pump power
required.

The natural linewidth of the material used in an optical maser will,
for reflector spacing d of a few centimeters, be large compared to the
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mode separation determined by integer changes in r,s for a plane-
parallel resonator. Hopefully, the natural linewidth of the maser ma-
terial will be less than the mode separation corresponding to integer
changes in ¢. Thus, there is the possibility that a plane-parallel resonator
optical maser may frequency wander between low-order 7,s modes.

If the diffraction losses are comparable to or exceed the reflection
losses for the lowest mode then, as can be seen from Fig. 3, the ratio of
the Qs of the lowest two modes of the confocal resonator exceeds con-
siderably the ratio of the @’s of the lowest two modes of the plane-
parallel resonator. By the lowest order mode is meant m = n = 0, and
r = s = 1, respectively, for the confocal and plane-parallel resonator.
Therefore, maser oscillation is more likely to take place in only the
lowest-order mode of the confocal than of the plane-parallel resonator.
This greater loss discrimination between modes may be one of the
significant advantages of the confocal resonator.

In the confocal resonator optical maser, if the maser oscillation wan-
ders between modes the output beam pattern will change, just as in the
plane-parallel resonator, but the frequency will remain fixed due to the
mode degeneracy. Thus, the observed linewidth of the maser output
may be narrower for the confocal resonator.

The required accuracy on the confocal condition to achieve degeneracy
may be estimated from (33) and (36). It can be shown that if

ld/b—1|~003 and  (a’/b\) = 10,

the mode splitting of the near-confocal resonator equals the mode separ-
ation of the plane parallel resonator. To achieve a significantly smaller
mode separation in the near-confocal resonator than the plane parallel
resonator would require proportionately greater accuracy in the radius
of curvature and spacing of the curved surfaces.

The plane Fabry-Perot requires accurately parallel reflecting surfaces,
The confocal resonator requires only that the axis of the confocal reso-
nator approximately coincide with the axis of the rod of maser material.
The axis of the confoeal resonator is the line passing through the two
centers of curvature. The resonator axis must intersect the two reflect-
ing surfaces near their center. Define the effective aperture radius as
the distance from the point of intersection of the axis of the confocal
resonator with the reflector surface to the nearest edge of the aperture.
The diffraction losses will be approximately determined by this distance.

If the minimum diameter of maser material is used, then the axis of
the confocal resonator must coincide with the material axis. Increasing
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the diameter of the maser material wastes pump power but relaxes the
tolerance on the resonator axis.

It is well to note that a single spherical reflecting surface and a plane
reflecting surface spaced by approximately half the radius of curvature
will have similar properties to the confocal resonator and may be ad-
vantageous if it is desired to bring the output through a plane surface,

VIII. CONCLUSIONS

A confocal multimode resonator formed by two spherical reflectors
spaced by their common radii of curvature has been considered. The
mode patterns and diffraction losses have been obtained. The confocal
spacing of the reflectors is found to be optimum in the sense of minimum
diffraction losses and minimum mode volume.

The diffraction losses are found to be orders of magnitude smaller
than those of the plane-parallel Fabry-Perot, as obtained by Fox and Li.*
It is more important, though, that a greater diffraction loss diserimina-
tion between modes occurs, and thus oscillation in other than the lowest-
order mode is less likely for the confocal resonator, assuming that
diffraction losses are comparable to reflection losses.

The modes of the confocal resonator are degenerate, in that one-half
of all the possible field pattern variations over the aperture are resonant
at any one time, This degeneracy is split if the resonator is nonconfocal,
The splitting is comparable with that of the plane-parallel resonator
(with a®/bx =~ 10) if the spacing of the reflectors is about 3 per cent
different from the common radius. The mode volume and diffraction
losses are insensitive to the confoeal condition.

The required volume of maser material is smaller for the confocal
resonator than for the plane-parallel resonator, and thus the required
pump power is less. The confocal resonator is relatively easy to adjust
in that no strict parallelism is required between the reflectors. The only
requirement is that the axis of the confocal resonator intersect each
reflector sufficiently far from its edge so that the diffraction losses are
not excessive.

The example of a confoeal resonator mentioned here was taken at
infrared-optical wavelengths; however, such resonators may be useful
down to the millimeter wave range by virtue of their low loss. In this
connection, recent work of Culshaw'™ on the plane-parallel Fabry-Perot
at millimeter wavelengths is of importance.

The writers have been informed that Goubau and Schwering" have
recently investigated diffraction losses of parabolic reflectors and that
their results agree with the work presented here.
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