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A general method is presented for applying error correction to synchronous
binary digital systems to improve reliability. It includes the familiar scheme
of triplication and “‘vole taking” as a special case. In principle, the method
permits the system lo operate continuously, even when a fault is present or
maintenance s being performed. An efficient mainienance routine, including
rapid repair of faults, is an essential adiunct to the scheme if the potentially
large increase in reliability made possible by error correction s to be realized.

The percentage redundancy needed to realize the scheme decreases as the
complexity of the system to which it s applied increases, but may amount
to triplication of equipment even for moderately large systems. The paper
describes some error-correcting codes to implemenl the scheme, discusses
error-correcting circuils in a general way, indicates how to estimale the
redundancy, and presents a formula for determining the reliability improve-
ment oblainable with a particular maintenance rouline. In a companion
paper,! D. K. Ray-Chaudhuri develops a general theory of minimally
redundant codes for this applicalion.

I. INTRODUCTION

This paper describes a general method of applying error correction to
synchronous digital data systems. It includes, as a special case, the well-
known scheme of triplication with vote taking.? Since the scheme employs
error-correcting codes, it is capable of detecting errors as well as correct-
ing them. Hence, maintenance personnel can be alerted as soon as a
fault occurs. Also, it has the property of enabling the system to which
it is applied to continue to function correctly even when faults are
present and maintenance is being performed, provided all the faults
are confined to any one of the several subunits which comprise the sys-
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Fig. 1 — Error correction by triplication and vote taking.

tem. Therefore, if faults are found and repaired quickly, so that they
do not accumulate to the point where the resulting errors are beyond
the error-correcting capabilities of the scheme, the system may be kept
in continuous operation for much longer periods than could the equiva-
lent system without error detection and correction.

In this regard, it is estimated that the “mean life”’* of the system
with error correction can be made several thousand times as long as
that of the equivalent nonredundant system, provided faults are re-
paired sufficiently soon after their occurrence. Such potentially vast
increases in reliability depend of course on the availability of rapid
diagnostic and fault-repair facilities. Conversely, in the absence of
maintenance the mean life of the redundant system will in general be
less than that of the nonredundant system. Hence the scheme is not
usefully applicable to a system which must operate in an environment
where rapid fault repair is impossible — in such situations some other
method of building in reliability, such as microlevel redundanecy,® would
be necessary.

In comparison with triplication and vote taking, our procedure will
permit more precise localization of faults. Also, for large systems it
should result in less over-all equipment redundancy. For small systems,
however, an equipment advantage may not always be realized. Since
the triplication scheme is fairly well known, we shall start by deserib-
ing it, but from a slightly different point of view, which shows how it
appears as a special case of our procedure.

Ilig. 1 shows a system, A, with m inputs and = outputs, and two exact
replicas of the system, B and c. Corresponding output wires from A, B
and ¢ are fed to “majority’ circuits, or vote takers, each of whose out-

* The mean life of a system is here defined as its mean time to failure, assum-
ing it is in perfect condition at the start.
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puts agrees with the majority, i.e., with any two or all three, of the
inputs which are in agreement. Thus, the system corrects for errors
which are confined to the outputs of any one of systems A, B or c.

We may consider the outputs from 4 to carry information bits, and
those from B and ¢ to carry check bits, which generate Hamming?!
single error-correcting codes, in the following manner. The matrix be-
low displays the output bits from 4, B and ¢ in a matrix consisting of
three rows, each row having n entries:

output output butput output

#1 #2 #3 #n

l | | 1
A, —0 O 0 .-+ 0O <« outputs from system A
B, —- X X X -+« X « outputs from system B
¢, - X X X -+ X « outputs from system ¢

O = information bit
X = check bit

Alternatively, the matrix may be thought of as displaying n columns,
each with three entries consisting of one information bit and two check
bits. For example, the first column contains the information bit A, , and
check bits B, and ;. Two parity checks are constructed from this
column; bits A; and B, satisfy the parity relation

A, ® By = 0,

where @ represents the sum modulo 2. Bits 4, and C satisfy the parity
relation

A ¢, = 0.

These relations merely state that, when the complete system is operating
correctly, both By and C; will have the same value as A, .

This coding has the ability to detect any single error in column 1,
and moreover tells us which bit is in error, so that corrections can be
performed. Therefore, in particular, this scheme permits the correction
of any pattern of errors which is confined to a single row of the matrix.
Since faults which are confined to one of the systems A, B, or C can
cause errors on the outputs of that system alone, this error-correcting
scheme will permit the over-all system to operate correctly even when
any one of the three systems comprising it is faulty, or is disabled for
maintenance purposes.

Obviously, this particular coding is inefficient, because two check bits
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are needed for each information bit. It is to be hoped that the use of
more efficient codes will result in less equipment redundancy, primarily
because fewer check bits will have to be generated. The problem then
is to find a way of organizing a system so as to permit error correction
with more efficient codes. A scheme for doing this will now be described.

II. A GENERAL SCHEME FOR ERROR CORRECTION

Suppose system A of I'ig. 1 is designed so that it breaks down into a
number, say r, of electrically independent subunits, each subunit ecarry-
ing not more than p of the n system outputs, as shown in Fig. 2.

A fault or faults that is confined to any one subunit can at most cause
errors on the outputs of that subunit. Therefore, consider the following
matrix, in which the outputs of each subunit are displayed in a separate
row, with p entries per row. There are (¢ — r) additional subunits shown
in IMig. 2; these provide k& check bit outputs:

, 0O O --. O « outputs from subunit 1
g WS 1o o ... 0 «— outputs from subunit r
rows X X ... X« outputs from subunit r + 1
(g—r4{: : : :
rows |X X .-+ X « outputs from subunit ¢

Since faults in a single subunit affect only a single row of the matrix,
we may, for example, apply Hamming single error-correcting codes on a
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Fig. 2 — Breakdown of system A into subunits.
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per-column basis. Thus, if r = 4, we need only three check bits per
column to provide Hamming single-error correction, and the code re-
dundancy is much less than in the triplication scheme (§ instead of ).

Actually, Hamming codes are not the most efficient that could be
used for this error-correcting scheme, because they do more than is
required. Specifically, they permit correction of any single error per
column of the matrix, even though these errors may not be confined to
a single row. If we apply the further restriction that all errors be con-
fined to a row, then more efficient codes are possible and are deseribed
later.

We now wish to show how it is possible to break down a system into
electrically independent subunits. Digital systems may be classified into
two types: those which perform only combinational logic (have no
memory), and those which perform sequential logic (have memory).
The latter type is of more interest, but it is useful to deal with the former
first. We assume throughout that the data on the input wires are not
in error, and that faults in the system do not cause errors on the input
wires.

Suppose then that the r subunits in Fig. 2, which produce the n
system outputs, consist entirely of combinational logic. It is evident
that the system can be broken down into such subunits because, for
example, each output can be realized by designing a separate combina-
tional logic circuit which generates the appropriate Boolean function of
the m input variables. Alternatively, some savings in logic elements
may be possible by designing multifunctional logic circuits, each generat-
ing only the p outputs of a single subunit.

To provide check outputs, additional subunits are needed, and are
designated (r 4+ 1) through ¢ in Fig. 2. To design these, it is necessary
to be able to express each check output as a Boolean function of the m
input variables. This ean be done because the structure of the error-
correcting code will specify each check output to be the sum modulo 2
of some set of information outputs, and since the latter are known
funections of the inputs, we can therefore express the check outputs
directly as functions of the inputs. We may, of course, work with truth
tables instead of functional representations.

In the case of sequential logic, a complication is introduced which
may be explained with the aid of Fig. 3. In this figure, a sequential
system is represented as consisting of two major units. Unit 1 consists
entirely of ecombinational logic and unit 2 consists entirely of memory.*

* Some authors replace the memory elements by unit delay elements. See for
example, Fig. 1 of Unger.® His paper deals with asynchronous circuits, whereas
we are treating synchronous circuits of the type designated “PP’’ by Cadden.®
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Fig. 3 — A possible configuration for a finite-state sequential system.

The combinational logic generates two sets of outputs:

(a) The n system outputs;

(b) s “feedback” outputs which provide the inputs to the memory
unit,

The s outputs of the memory unit, in conjunction with the m system
inputs, comprise the inputs to the combinational logic unit.

Suppose that unit 1 is designed as » electrically independent subunits.
In general, the (m + s) inputs to unit 1 will feed all » subunits. A fault
in a single subunit will cause errors on the output of that subunit, and
these will feed back via the memory unit to the inputs of some or all
of the other subunits. Hence, in a few cycles of operation it is possible
that the outputs of all subunits will be in error because of a fault in
just one subunit. This situation can be remedied by applying error
correction to some or all of the s feedback wires in addition to the n
system output wires. These additional corrections should be made be-
tween the outputs of unit 2 and the inputs of unit 1, in order to correct
errors caused by faults in unit 2 as well as in unit 1.

Alternatively, it is possible to design the system so as to avoid cor-
recting the internal feedback wires, and yet insure that a fault affects
not more than p of the » system outputs. For example, instead of break-
ing down the system into r subunits, one could replicate the system r

times and utilize only outputs 1, 2, -+ , p, from the first replica, out-
putsp + 1, p + 2, -+, 2p, from the second replica - -- and outputs
n—p+1,n—p+2 -, n, from the rth replica.

No doubt this alternative realization could be achieved without using
r complete replicas of the system. However, the necessary design pro-
cedures are not well formulated and the resulting equipment redundancy
is difficult to estimate. In contrast, the design procedure for the first
mentioned method is straightforward, its redundancy is easier to esti-
mate and, at least with present devices and techniques, it appears to
result in considerably less over-all redundancy. Therefore, in the re-
mainder of the paper we shall assume that the first method is to be used.
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Accordingly, the correction of a sequential system requires that unit 1
of Tig. 3 be designed as r independent subunits and that it be augmented
by a combinational logic unit which generates k check outputs, where
k is large enough to provide the necessary parity checks for correcting
(n 4+ s) wires (we assume that all s feedback wires may require correc-
tion). As in the purely combinational case, each check bit can be ex-
pressed as a sum modulo 2 of an appropriate subset of the n outputs of
unit 1 and the s outputs of unit 2, and since these are known Boolean
functions of the (m + s) inputs to unit 1, each check bit output can
likewise be expressed as a Boolean function of these same inputs.

It is of course necessary that the check bit logie circuits also be de-
signed as independent subunits with not more than p outputs per sub-
unit.

I11I. ERROR-CORRECTING CODES

Before discussing specific eodes, we wish to establish lower bounds on
the number of check bits, &, needed to fulfill our error-correcting re-
quirements. Specifically, referring to the matrix above for the outputs
from r subunits of system A, we ask what minimum value of k is required
to permit correction of every possible pattern of errors in any single
row of the g rows.

Actually, two lower bounds are applicable. The first bound, which is
also the larger of the two when ¢ > (27 + 1), p being the number of en-
tries per row, is easily derived as follows: Observe that the number of
possible error patterns in a single row is (27 — 1), if we exclude the no-er-
ror pattern. Therefore, the total number of error patterns in all ¢ rows is
¢(27 — 1). Ohviously, k must be large enough to permit as many “‘parity
failure” patterns as there are error patterns. This requires that k satisfy
the inequality

@ — 1) 2 g2 — 1).
That is,
k =z llogs (427 — q + 1)), (1)
where the square bracket denotes the smallest integer which is
=logs (27 — g + 1).

The second lower bound, which is larger than the first when ¢ =
(27 4+ 1), and which is therefore of greater practical significance, is:

I = 2p. ()

It is derived by determining the maximum number of code words that
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can be chosen out of a set of 277 binary words of lengths pg, and which
fulfill the specified error-correcting requirements. Its derivation is
relegated to the Appendix.

Surprisingly, it was found not too difficult to construect codes for
most values of p and ¢ in the range 2 < p < 10, 3 < ¢ < 9 which
achieved the appropriate lower bound.

Subsequent to the work described here, Ray-Chaudhuri! developed a
general theory of minimally redundant codes for this application. How-
ever, it will not be out of place to exhibit here some of the codes pre-
viously derived, since they are also minimally redundant, and since the
error-correcting equipment required to implement either them or the
Ray-Chaudhuri codes is of the same general character and complexity.
Three families of codes* are exhibited below in matrix form, correspond-
ing to three values of p, as follows:

Family 1: p = 2; ¢ = 3,4 and 5.
Family 2: p=3; ¢=25,6,7,8and9.
Family 3: p=4; ¢=4,5,6and7.
Familyl (p = 2) Family 2 (p = 3) Family 3 (p = 4)
1 2 1 56 24 1 5 23 46
X X X (0] 0 X O 0
3 4 3 15 25 2 6 38 57
X X X 0 0 X X 0 0]
14 23 5 146 36 3 7 14 58
(0] 0 X 0 O X X 0 O
13 124 6 34 2 4 8 12 67
0 O X 0 X X X 0 0
24 123 4 126 35 18 25 36 47
0 0 X O 0 0 O 0 0
13 46 1245 16 24 58 378
(0] (0] 0 0 0 0 (0]
16 456 23 13 27 56 478
0 0 0 0 0 0 0
14 125 236
0 0 0
45 136 256
0] 0 (0]

* These codes were constructed by George Allen at Bell Telephone Labora-
tories in Summer, 1959.
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The set of digits beside each bit position indicates the parity groups
which that bit enters. For example, in family 1, the digit set attached
to the last bit in the last row is 123, indieating that this bit enters parity
check groups 1, 2 and 3. As a further illustration, the bits in family 1
that are labeled 1, 14, 13, 124 and 123 enter parity group 1; their sum
modulo 2 is zero when there are no errors. The bit positions which carry
only a single digit are check bit positions. They are denoted by X’s and
the information bits are denoted by O’s. The matrix displayed for family
1is a2 X 5 matrix; however, if a 2 X 4 or a 2 X 3 matrix is desired,
one omits respectively the last row or the last two rows. Similar remarks
apply to families 2 and 3.

Several remarks should be made at this point. First, observe that in
the original matrix we represented the check bits as being located en-
tirely in the last (¢ — r) rows. However, this is not necessary; the check
bits may appear along with information bits in some or all rows, as is
the case in the three matrices above. The arrangement is dictated by
the structure of the code, but bits may be permuted within each row
with impunity.

Secondly, it is possible to delete information bits from any row with-
out destroying the utility of a code; in such cases, the deleted bits will
be omitted from the parity checks in which they would normally par-
ticipate.

Finally, we observe that the three matrices above provide only for
values of p £ 4and ¢ £ 9. If for any reason we wish to form matrices
with p > 4, or ¢ > 9, this may be done by building up the over-all
matrix, either vertically or horizontally, or both, from several of the
above matrices. Thus a wide variety of equipment arrangements can be
accommodated. However, if we build up vertically, we will sacrifice
minimal code redundancy. For example, if we form a matrix with 3
columns and 18 rows by using two matrices of family 2, we shall have
included 2 X 6 = 12 check bits, whereas the minimum is given by
bound 1, namely

llogs (18 X 2¢ — 18 + 1)] = 7 bits.

1V. ERROR-CORRECTING CIRCUITS

A discussion of error-correcting circuits is included here to indicate
roughly the amount of equipment involved in error correction, and to
provide a basis for a maintenance routine which is proposed later.

It was explained in Section IT that, with the present scheme, it is
necessary to apply error correction either to the n system outputs of a
purely combinational system, or to the (n + s) outputs and feedback
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connections of a sequential system. To do this, & parity check bits must
be generated, where k is determined by the structure of the error-cor-
recting code employed. Therefore, the inputs to the error-correcting
circuits consist of (N + k) wires, where N = n + s (s = 0 for a purely
combinational system) and & wires carry the check bits. The output of
the error-correcting circuits consists of N wires which carry the cor-
rected versions of the corresponding N inputs.

We shall want to distinguish between the correcting circuits and the
circuits which are ecorrected or correctable. The latter comprise the set
of ¢ subunits which generate the (N 4 k) outputs; for example the
circuits in Fig. 2. Therefore, we shall hereafter refer to the ¢ subunits

s “the system,” without modifier.

The error correcting-circuits may be considered to perform the fol-
lowing three functions:

1. Reconstruct the parity checks to determine which, if any, have
ffLiled. Y

. I'rom the pattern of parity check failures, determine which of the
(N + k) input wires are carrying erroneous bits.

3. Correct that subset of the N wires which are carrying erroneéous
bits. Erroneous check bits do not require correetion.

Circuits to perform the above tasks may be realized in several ways,
and with varying degrees of redundancy to assure reliability. At one
extreme, the error-correcting eircuits could be nonredundant, in which
case an efficient preventive maintenance routine would be required to
insure that they perform for long periods without error. Alternatively
they could be built with microlevel redundancy, in which case preventive
maintenance would again be necessary but would be applied less fre-
quently. A third alternative would be to make some or all of the error-
correcting circuits “‘self-error-detecting.” Those parts which were self-
error-detecting would be subjected to maintenance only when a fault
was deteeted ; the parts which were not self-error-detecting would require
preventive maintenance.

As a fourth alternative, it might be attempted to make the error-
correcting circuits completely self-error-correcting. However, a simple
heuristic argument can be given which indicates that it is impossible to
achieve this goal.

Fig. 4 shows a block diagram of a proposed error-correcting ecireuit,
designed according to the third alternative above. Box 1 in Fig. 4 con-
tains the units which perform functions 1 and 2 above. Box 2 performs
function 3 above, and also an error-sensing and alarm function. For
simplicity, sets of wires in this figure are represented by single directed
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Fig. 4 — A proposed error-correcting circuit.

lines with an associated symbol indicating the number of wires. Box 1
is designed to be self-error-detecting, but box 2 is not. A detailed descrip-
tion of the operation of the ecircuits in Fig. 4 does not contribute sig-
nificantly to an understanding of the over-all scheme, and so is omitted.

V. RELIABILITY ANALYSIS

We shall first deseribe a maintenance routine which is appropriate to
the particular mode of error correction realized by the cireuits of Fig. 4.
We shall then apply an approximate formula which indicates the im-
provement in reliability of the redundant error-correcting system over
the original nonredundant system when our particular maintenance
routine is employed. For brevity, derivation of this formula is omitted.

The maintenance routine is as follows. If a fault oceurs in some sub-
unit of the system, unit b under control of box 1 corrects the resulting
errors. Simultaneously, box 1 operates alarm 1. The faulty subunit is
then located and repaired as quickly as possible. In principle, the system
can continue to operate correctly even when the faulty subunit is being
replaced or repaired, provided a fault does not develop in another sub-
unit or in the error-correcting circuits during the repair of the original
fault.

If box 1 fails, alarm 2 is operated, and possibly alarm 1 also, and
simultaneously relay  is switched to the bypass position, thus causing
essentially no interruption in system operation. Box 1 must also be
repaired quickly, because if a fault oceurs in the system during the
repair of box 1, the system will fail, since it is not now being error cor-
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rected. If units ¢ or p fail, they do not operate an alarm since they are
not provided with error detection. The probability of failure of these
units must, therefore, be minimized by a preventive maintenance routine.
To minimize the outage times of units ¢ and b, two copies of each could
be provided, one operating and one standby. They would be interchanged
at regular intervals 7', and preventive maintenance would be applied
to the units currently in the standby condition. In this way, the system
would not lose its error correcting capability during preventive main-
tenance. Relay E must be switched to the bypass position to permit
continuous operation while unit ¢ or b is being replaced. We assume that
the relay switching time is short enough so as not to interrupt system
operation.

We now wish to determine a quantitative measure of the reliability
improvement of the maintained error-correcting system over that of the
nonredundant system. A useful measure is the ratio of their respective
mean lives; namely, B, = L,/L;, where L, is the mean life of the re-
dundant system and L; is the mean life of the nonredundant system.,
In general, the derivation of Ry is quite complicated, but by making
suitable simplifying assumptions we can obtain an approximate formula
which is useful. These assumptions are:

1. All components have an exponential survival probability function
and the same mean life, which is taken to be the time unit. Therefore,
the survival probability of any component is exponential (—¢).

2. Components fail independently.

3. Failure of any component in the nonredundant system causes that
system to fail.

4, The bypass relay has zero probability of failure.

5. The times taken to repair faulty circuits are assumed constant.
These and other parameters are now defined:

A; = repair time of a subunit of the system,

A, = repair time of box 1,

Ay = time that unit ¢ or unit p is removed from ecircuit when
being exchanged with its standby,

T = time interval between successive replacements of unit ¢ or o
by its standby

n, = number of components in each subunit of the system,

n, = number of components in box 1,

n3 = number of components in box 2,
total number of subunits in the system,
r = number of subunits which provide the N system outputs.

e
Il

From these assumptions plus some others concerning the relative
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values of the above parameters, we can obtain the following formulas:

— My ‘
Ry 25’ (3)

where

0 = %naT + Tnl%‘} + qnl[(q — 1)mA; + na(A, + A?)]- (4)

As an application of (3) and (4), consider a system having parameter
values as follows:
time unit = mean component life = 1000 years,
A, = A; = one-half hour = 3 X 1077 units (time to repair a
system subunit or box 1),
A; = 8 seconds = 2 X 107'° units (time to replace unit ¢ or
unit o by its standby),
T — one month = 10~ units (maintenance interval for units
¢ and n),
n = ng = 333 components,
ny = 666 components,
q =0,
r = 4.

Substituting these values in (3) and (4) results in K. equal to 2900.
That is, the mean life of the redundant system is 2900 times that of the
nonredundant system. Actually, this figure could be improved if we
reduced the repair times A, and A; from one-half hour to, say, five min-
utes. Such a reduction would be possible if the system were built of small
modular packages and a highly automated diagnostic routine were
available to locate faults in the order of a minute or less. Thus, a fault
could be pinpointed to one or two particular packages, and these pack-
ages could be replaced immediately by good standby packages, thus
permitting correction of the fault in minutes. The faulty packages could
then be tested and repaired in more leisurely fashion, and this latter
time would not be chargeable to A; or A, .

Therefore, it appears that, with an efficient maintenance routine, the
mean life of the error-correcting system ean be several thousand times
that of the nonredundant system.

VI. REDUNDANCY AND SPEED PENALTIES

It would be desirable to estimate the amount of equipment redundancy
in the scheme described, and any attendant reduction in the operating
speed of the system. The equipment redundancy cannot be specified
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in simple terms, but the contributing sources can be delineated and
roughly evaluated. They are:

(a) the circuits which generate the check bits;

(b) the eircuit redundancy which results from designing the system
as ¢ independent subunits;

(¢) the error-correcting circuits.

The redundanecy contribution of item (a) can reasonably be estimated
to be in the ratio &/N to the amount of equipment in the original non-
redundant system. That is, if the amount of equipment in the non-
redundant system is treated as one ‘‘unit’”’ of equipment, the amount
of equipment needed to generate the check bits would be roughly &k/N
“units.” As indicated by the codes in Section ITI, values of k/N as
small as { are achievable for N = 18. The assumption underlying this
estimate is that the amount of eircuitry required to generate each check
output is the same as the amount required to produce each original
system output.

The redundancy contribution of item (b) is believed to be insignificant
compared to the other contributions, especially for large systems, pro-
vided optimal design techniques are employed. The contribution of
item (c) is by far the largest, and is the most difficult one to estimate.
It depends on the type of logic technology employed, on the amount of
time delay that the error-correcting function is permitted to introduce,
and to some extent on the particular error-correcting code used. The
following estimates may suggest an order of magnitude for item (c), in
the particular case of the correcting circuits proposed in Fig. 4, and
assuming the use of diode logic. Based on “paper” designs of these
circuits, the author estimated that the correcting circuits might require
roughly 60 to 70 “equivalent’’ diodes per wire corrected (the number of
wires corrected is N). Transistors were counted as equivalent to two
diodes, resistors ete. were not counted.

This estimate assumes that units A and A’ of Fig. 4 both employ
(¢ — 1) EXCLUSIVE OR circuits per parity check over ¢ bits, and that
unit B of I'ig. 4 is realized with two-stage logie. Thus, if these error-
correcting circuits were to be applied to a system which, in its non-
redundant form, was realizable with 30 to 35 “equivalent’” diodes per
wire corrected, it is evident that the correcting circuits would comprise
two “units” of equipment. This ratio is not considered to be unrealisti-
cally high.

In general, therefore, it is to be expected that the scheme in question
may introduce an amount of redundancy equivalent to at least triplica-
tion of the original equipment. However, it has the potential of being
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less redundant than the triplication and vote-taking scheme, in which
generation of the check bits alone results in triplication and the correct-
ing circuits are additional.

In this connection, it is remarked that the triplication scheme is
usually thought of as including relatively simple vote-taking circuits
which perform corrections but are incapable of detecting errors and
operating appropriate alarms. These latter features would have to be
included in order to render the scheme truly comparable to the more
general error-correcting procedure described here.

In principle, it appears that the redundancy penalty might be made
to decrease monotonically as the systems to which error correction is
applied becomes inereasingly complex, provided the following two as-
sumptions are valid:

(a) as the number N of correetions is inereased, the coding efficiency
also increases; that is, k/N becomes smaller;

(b) the amount of equipment per correction in the original system
increases faster than the amount of equipment per correction in the
correcting cireuits.

Assumption (a) is realizable, but (b) cannot be verified. Indeed, (b)
may be plausible only provided the correcting circuits use an increasing
number of logic stages, which can be expected to result in an increase
in time taken to perform corrections; that is, an increasingly severe
speed penalty is imposed.

In this regard, the parity check circuits referred to earlier in this
seetion require 2 X [logee] logical stages. (The square bracket denotes
the smallest integer which is equal to or greater than logee.) For the
special codes described in Section III, the number of bits per parity
check, ¢, is typically equal to g, the number of subunits in a system,
and ¢ must increase in order to increase the coding efficiency. It there-
fore follows that greater coding efficiency can be achieved only at the
expense of greater delay in the corrector, or more complex correcting
cireuits, or both, and a compromise must be reached.

Finally, a remark should be made concerning the impact of this scheme
on the over-all design of a sequential system when the method which
requires both feedback and output corrections is used. To minimize
the number of corrections necessary, the number of feedback and output
wires should be kept to a minimum. The designer usually is able to
exercise some control over both. In particular, there are roughly as
many feedback connections in a sequential system as there are binary
memory elements; therefore it would be desirable to minimize the
number of memory elements. At present, large systems are frequently
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designed with many more memory elements than necessary, presumably
because this results in simpler design procedures. It may, therefore, be
desirable to find methods which lead to designs having nearly minimal
numbers of memory elements, in order to make our error-correcting
procedure more attractive.

VII. SUMMARY

We have described an error-correcting scheme which is generally
applicable to synchronous digital systems, and which includes the
triplication and vote-taking scheme as a special case. It permits systems
to which it is applied to operate continuously even when faults are
present and maintenance is being performed. The scheme can lead to
very large increases in system reliability, but only if augmented by a
maintenance routine which effects rapid repair of faults.

Two types of error-correcting codes have been discussed, Hamming
codes and special codes. The Hamming codes are universally applicable,
but are not minimally redundant in this application. The special codes
are minimally redundant but not universally applicable, in that they
have not been developed for a large range of values of p and q.

The equipment redundancy required to implement the scheme may
be equivalent to at least triplication for moderately large systems, but
should be less for more complex systems. It is not specifiable in simple
terms and can be determined accurately only by carrying through the
detailed design of the specific systems. Such detailed applications have
not yet been made.

APPENDIX

Proof That 2p Is a Lower Bound on the Number of Check Bits

We shall derive this bound by showing that an upper bound on the
number of code words of length pg which satisfy our error-correcting
criterion is 2@ 27 words. This implies that the maximum number of
bits which can be assigned values arbitrarily is (g — 2)p bits. The re-
maining bits must be check bits; therefore, a lower bound on the number
of check bits is gp — (¢ — 2)p = 2p bits.

Proof That an Upper Bound on Number of Code Words Is 2(e—2»

It is useful to think of the pg bits which comprise a code word as being
arranged in a single row, with each successive block of p bits being re-
placed by a single symbol, D;, which can take on any one of the 27
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different values. In this alternative representation, a typical g-symbol
word would be

Di\D:Ds --- D, .

In terms of this representation, our error-correcting criterion requires
that an error in any one of the ¢ symbols be correctable. This implies
that admissible code words must differ in more than two symbol posi-
tions. For, consider the following two words which differ only in the first
two symbol positions:

word 1: DD:Dy --- D,
\VOI'd 2: D]_,szDa e Dq .

It is possible for an error in the first symbol of word 1 and in the second
symbol of word 2 to cause both to become, for example, the word

D/D:D; --- D,.

Hence, we cannot determine whether word 1 or 2 was the correct word;
therefore, admissible code words must differ in more than two symbol
positions.

Let S be the set of all g-symbol words. There are 297 such words. Parti-
tion S into disjoint subsets S;, i = 1,2, 3, - -+, such that two elements
of S belong to the same subset if they are identical in the last (¢ — 2)
symbol positions. Thus there are as many subsets as there are trun-
cated words DDy - -+ D, , namely, 2(7 subsets, and each subset con-
tains 227 elements.

Now arbitrarily choose a (g-symbol) word from subset S; to be a code
word. Then no other words from subset S; can be chosen as code words,
becauseany twowords from S; differ only in the first two-symbol positions.
By the same argument, at most one word can be selected as a code
word from S, ete. Therefore, there cannot be more code words than
subsets. Hence, an upper bound on the number of code words is 227,
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