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Several authors have considered the possibility of increasing the reli-
ability of large and complex binary digital systems by iniroducing some
redundancy in the system. In a companion paper, Armstrong' proposes a
scheme for applying error correction to a synchronous digital system. I'n
this paper we develop a general mathematical theory for generating mini-
mally redundant error-correcting codes for the scheme in question. This
results tn what are called “minimally redundant reliable systems.” The
problem of constructing minimally redundant reliable systems whose out-
put is free of error when there is a fault in at most one block of the system
is completely solved. An example is considered in detail showing how the
mathematical theory can be actually applied.

I. INTRODUCTION

In complex binary digital systems employing a large number of blocks
of electrical equipment it often is difficult to ensure a sufficient level of
reliability of each single block of equipment. An attempt to attain the
desired degree of reliability by improving the reliability of each block
may prove to be uneconomical. On the other hand, by introducing some
redundancy in the system, it is possible to construct highly reliable
complex systems, even though each single block is not as highly reliable.
Moore and Shannon,” Tryon,” Von Neumann,' Lofgren® and Armstrong'
have considered the problem of constructing reliable system designs.
In this paper a general mathematical theory has been developed for the
construction of minimally redundant reliable system designs, based on
the scheme outlined by Armstrong.' This theory is closely related to the
theory of error-correcting codes. The problem of constructing minimally
redundant system designs whose outputs will be free of error whenever
there is fault in at most one block of the system is completely solved in
this paper.
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II. FORMULATION OF THE PROBLEM

Suppose there are m binary input variables X;, X,, ---, X, . Let B,
denote the set of 2™ m-place binary sequences. Every set of values of
the m binary input variables will be regarded as an element of B,.. Any
mapping of B, into B; will be called a Boolean function of the m input
variables X, X», - -+, X,, . For the sake of brevity, the collection of m

input variables will be denoted by X. Let
fllafl‘l)""flps f‘-’lafﬂﬂr"'a.f'lp) .f’-'lafi"-!a"'a.fkﬂ

be pk Boolean functions of the m binary variables X;, Xy, --+, X,,.
Our problem is to construct a system which will synthesize the pk
Boolean functions with a high degree of reliability. The system uses blocks
of electrical equipments each of which can synthesize p Boolean func-
tions. For the sake of brevity, a collection of p Boolean functions, will
be called a Boolean p-function. Thus f; = (fa, fi, -+, fip) i8 & Boolean
p-function. Any Boolean p-function is a mapping of B, into B,. Each
block of our system synthesizes a Boolean p-function. Fig. 1 is a sche-
matic diagram for the original nonredundant system.

The blocks act as units in the system. If there is a fault in a block,
then so me or all the p outputs of the block are erroneous. In other words,
in the case of a fault a block will synthesize the corresponding Boolean
p-function wrongly. Let V,' denote the set of 27 binary p-tuples. Then
any Boolean p-function takes values on V,'. Let V 2" denote the set of
k-vectors @« = (a1, @2, -+, @), where each a; is an element of V',
i=1,2---,k Let f= (f1,f2, -+, fi). Then f can be regarded as a
mapping of B, onto V,*. We shall define the addition of p-tuples as the
usual mod 2 addition. For example, if p = 3, @; = (001) and a, = (101),
then a; + a» = (100). Let @ and «’ be two elements of V,* given by

a = (a1, ar, -, ) and &' = (o, @', -++, &'). The sum a« + o'
; fu
]
i
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Fig. 1 — Original nonredundant system.
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is defined to be the element (a1 + a1, ---, ax + «’). The p-tuple
(00 -+ 0) will be called the null element of V,*. The weight w(a) of
the k-vector « is defined to be the number of nonnull elements among
@y, as, -+, ap . For any particular value X’ of the input variables
f(X’) is a vector in V . Suppose there are faults in ¢ ({ < k) blocks.
Then ¢ of the functions fi, fa, - - -, fir will be synthesized wrongly. Hence
the output will be the vector f(X’) + ¢, where e = (&, €, -+, &) isa
vector in V,* with weight ¢. While designing a system to synthesize the
Boolean function f, one might require that whenever the number of
faulty blocks is ¢ or less, the output is error-free. One can achieve this by
introducing some redundancy in the system, i.e., by synthesizing (k + r)
Boolean p-functions and adding a logical corrector unit to the system.

Suppose o1 , @2, - - *, ¢a are n Boolean p-functions and €' is a mapping
of V," onto V,*. We shall consider ¢ = (@1, ¢2, -+, ¢.) as a function
from B, to V,". For every value X’ of X, ¢(X) is an element of V,".
Suppose the functions ¢ and €' possess the property P stated below:

For every vector e belonging to V," with w(e) not exceeding { and
every value X’ of the input variable X,

Cle(X") + €) = J(X). (1)

The functions ¢ and €' enable us to construct a system which will
synthesize the k Boolean p-functions fy , fa, - - -, fi free of error whenever
the number of faulty blocks in the system is ¢ or less. The n Boolean
p-functions ¢1 , ¢z, - - -, a can be considered asa collection of np Boolean
functions of m input variables. Therefore we can easily obtain the
logical design of a system which will synthesize these np Boolean func-
tions. This system will be called the encoder subsystem. Similarly, the
function €' can be considered as a collection of pk Boolean functions of
np binary input variables, and therefore we can obtain a system which
will synthesize these pk functions. This system will be called the cor-
rector subsystem. The np outputs of the encoder subsystem will be the
inputs of the corrector subsystem. Now it is easily seen that, because
of the property P of the functions ¢ and €', whenever the number of
faulty blocks in the encoder subsystem is ¢ or less and the corrector unit
is free of error, the pk outputs of the corrector subsystem will be

JX) = h(X), [ X)), fel X))
= {f]l(aY),fl'.!(X),' ' "-'rlﬁ(‘\7)’.r2](X)1f22(X))' ) 'lf‘-’JP(X)y' T (2}
Fin(X) fiea( X, - - fiep (X1,

A schematic diagram for the whole system is given in Fig. 2. In view of
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Fig. 2 — Whole system.

the above discussion, the following two definitions given below are
meaningful:

Definition 1: The functions ¢;,¢2, -+, ¢, and C possessing the
property P stated in (1) will be called a reliable system design of order
t and redundancy r = n — k for the k Boolean p-functions fy, fa, <« -, fir .

Definition 2: A reliable system design of order ¢ and redundancy r,
for the k Boolean p-functions fi, fa, - - -, fir will be called minimally re-
dundant if the redundancy r of any other reliable system design of order
{ for the same functions is not less than 7, .

In the present paper we have given a method of obtaining a minimally
redundant system design of order 1 for any set of &k Boolean p-functions
for arbitrary & and p. System designs of higher order will be given in a
subsequent paper.

We have used the redundancy r as a measure of the extra amount of
equipment which has to be used for making the system reliable. And
hence we seek the system which has minimum possible value of the re-
dundancy r. It should be pointed out that we assumed that the corrector
subsystem does not make any error at all. Therefore, to make the whole
development practically feasible, it is imperative that either the amount
of equipment necessary for the corrector subsystem is small in com-
parison to the amount of equipment necessary for the whole system, or
that other steps be taken, such as are suggested in Ref. 1, to ensure
reliability of the corrector system. We have not used any mathematical
criterion to incorporate this requirement in the development of the
theory.

III. LOWER BOUNDS ON THE REDUNDANCY 7 OF A RELIABLE SYSTEM
DESIGN OF ORDER {

Consider two vectors « and &’ belonging to V,". The distance d(a,a’)
between these two elements of V," is defined to be w(a + «'). Thus if
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a = (a,0, - a)and o = (o, @&/, -+, @), then d(a,&’) is equal to
the number of integers ¢ for which oy # &/, 7 = 1,2, - - n. For example,
ifp=2n =3 and a = (01,11,10) and o’ = (01,10,00), then « + o' =
(00,01,10) and d(e,e’) = 2. It can be easily checked that the distance
defined above satisfies the three conditions of a distance function. We
have seen that Boolean p-functions as defined in Section IT can bé con-
sidered as mappings of B, into V,'. A Boolean p-function f; will be
called a nondegenerate Boolean p-function if for any element a; of Vo,
there is a value X’ of the input variable X for which fi(X") = a;. We
shall assume that all Boolean p-functions appearing in our discussion
are nondegenerate. In the following we have s = 2 and n = k + r.

Theorem 1: A necessary and sufficient condition that there exists a
reliable system design of order ¢ and redundancy r for the & Boolean
p-functions fy , f2, - - -, fi is that there exists a subset A of V" contain-
ing s elements such that d(a,e’) = 2t + 1; a,@’ € A, a # o'

Proof: Necessity. Suppose there exists a reliable system design of
order ¢. Let the encoder functions be ¢ = (1,09, - -, ) and the corrector
function be (. For every value X’ of the input variable X, ¢(X’) is a
vector of V,". Consider the set

4 = le(X") [ X" € Bu}.

Using the fact that the Boolean p-functions fi,f., ---,fx are nonde-
generate fun(tloncs, it follows easily that the set 4 contains at least s
vectors of V,". Consider two distinet vectors a and & of the set A. If
possible, suppose d(a,a’) < 2t. Since d(a,a’) = 2t, we can find a vector
eof V," such that @« + ¢ = & + e and w(e) = £ Since w(e) = ¢, we
have

Cla+€) =0 +6€) =a=ad. (3)

Equation (3) econtradicts the assumption that e and o' are distinet
vectors of A. This completes the proof of necessity.

Sufficiency. Suppose A is a subset of V" containing s elements and
having the property that d(a,2’) = 2t + 1; aa £ A, a # a. We set
up a one-to-one correspondence between the s xectors of V,* and the

¥ vectors of A. For every value X’ of the input variables X, f(X’) =
[fl{X’),fg(X’),- -« fe( X")]is a vector of V,F and there is a corresponding
vectora of V," belonging to 4. Theencoder function g = (1,2, - - -, ¢a)
is defined by

p(X') = [e(X"),ea( X'), - - u(X7)]
= (al,a-_:,---,ot,.) (4)

= a,
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where « is the vector of V," belonging to A and corresponding to the
vector f(X') of V,*. The corrector function ' is defined in the following
manner. Let ¥ = (y1,7vs, - -+, ¥,) be an arbitrary vector of V,". First
we choose a vector a belonging to A such that d(yv,e) = d(y,&),
aa’ € A. Let 8= (81,8, - - -, B:) be the vector of V,* which corresponds
to @. Then we define

Cly) = 8. (5)

Thus € is a mapping of V," onto V. It is easy to check that the en-
coder function ¢ and the corrector function €' defined above possess the
property P stated in Section II. This completes the proof of sufficiency.

Theorem 2: If there exists a reliable system design of order ¢ and re-
dundancy r for & Boolean p-functions, then

rzi+(De-0+(@)e-v+ (e, ©

where n = k 4+ rand s = 2",
Proaf: From Theorem 1, it is necessary that there exists a subset A of
V," with the property that
dla,a’) = 2t + 1, a €A, a # . (7)

Let S. denote the set of vectors ¥ of V," with the property that
d(v,a2) = t. It follows easily from (7) that, for any two distinct vectors
a and &' of A, the sets S, and S, do not have any common element.
Let S.* denote the set of elements of V," which have distance k from
a, k = 0,1,2, - ,t. Obviously S, is the union of the (¢ + 1) sets S.*';

k=0,,"--t 8.* contains
()
elements. Hence S, contains
+(’i‘) (s — 1) +(";)(s — 1) 4 +(’f) (s — 1)*

elements. There are s* such nonoverlapping sets and the total number of
elements of V," is s". Hence we have

s = sk[l +(T;)(s - 1) +(g) (s —1)% 4 -+~ +(:L)(s —1)‘]- (8)

Theorem 2 follows from (8).
Theorem 2 gives a lower bound on the redundancy r of a reliable
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system design of order { for k Boolean p-functions. Theorem 2 is actually
a generalization of a result of Hamming.*

Let n,(r) denote the maximum integer n for which there exists a
reliable system design of order ¢ and redundancy r for k = n — r Boolean
p-functions. For ¢t = 1, the inequality (6) becomes

§ < (’;) (s — 1).

Hence we have

mir) £ Sl 1.
s — 1
In Section V we shall show that
m(r) = 5§ = 1.
s—1

If there exists a reliable system design of order ¢ and redundancy » for k&
Boolean p-functions, then n,(r) = k + r.
Lemma 1:

n(r 4+ 1) 2 n(r) + 1.

Proof: Suppose n.(r) = n. Then there exists a reliable system design
of order ¢ and redundancy r for k¥ = n — » Boolean p-functions. Hence
by Theorem 1 there exists a subset 4 of V," containing §* elements
with the property that d(e,e’) = 2t + 15 a0’ € A, a #* . To every
vector @« = (a1, a9, -+, @), we associate the vector

a = (0’1,(12,"‘,€¥n,0)

of V,"*. Thus we have a subset A of V,""" containing s" elements and
also possessing the property that d(&a) = 2t + 1;aa € A, & = @.
Hence, by Theorem 1, we can obtain a reliable system design of order ¢
and redundancy » + 1 — k = r 4 1. It follows that

mir+1)zk+r+1=n+1=n(r)+1

Theorem 3: If for a reliable system design of order ¢ and redundancy
r for k Boolean p-functions we have

nfr—1) — (r—1) <k En(r) —r, (M

then the design is minimally redundant.
Proof: If possible, suppose the system is not minimally redundant.
Then there exists a reliable system design of order ¢ and redundancy
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r — ¢ for & Boolean p-functions where ¢ is some positive integer. Then
we have n(r —¢) =2 k + (r — ¢). By Lemma 1,

n(r — 1) Zn(r —e)+ (¢ —1)
=2k+ (r— 1) (10)

The inequality (10) contradiets the inequality (9); hence the theorem
is established.

I[V. LINEAR SYSTEM DESIGNS

In this section we shall consider a particular subclass of system de-
signs called the linear system designs. To define the linear system de-
signs, we have to use the theory of finite fields. Let K be the finite field
of characteristic 2 containing s = 2” elements and x denote a primitive
element of K. Any binary p-tuple (ap, a1, -+, ap_1) will be made to
correspond to the element ay + aa + --- + a,_2"" of K and
vice versa. An element & = (e, @, * -+, @,) of V," now will be con-
sidered as an n-vector with elements in K. The weight w(a) of « is
equal to the number of nonnull elements among o , a2, + -+, @, . The
sum of two vectors @ = (@1, @, -+, a,) and &' = (', @, -, @,') is
defined to be

at+ad =g+ a',eo+ o, @ + ).

Obviously V," is a vector space over K. Consider a system design for &
Boolean p-functions. Suppose the encoder function is’
© — (‘1911?72; "',Wn}-
Tor every value X’ of the input variable X,
e(X') = [e(X), @2 X7), -, @u(X")]
is a vector belonging to V,". Let ;
A = le(X) | X € B} (11)

Definition 3: A system design for & Boolean p-functions is said to be
a linear system design if the subset A of V," defined by (11) is a vector
space over K.

Lemma 2: A necessary and sufficient condition that a reliable linear
system design for & Boolean p-functions is of order ¢ is that the weight

of any nonnull vector of the set A defined in (11) is not less than

(2t + 1).
Proof: Beecause of Theorem 1, it would be sufficient to show that

dleya') = 2t + 1; ae’ € A, a#d. (12)
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By definition d(a,e’) = w(a + '), Since A is a vector space, a + o
is an element of A and also & + ' is a nonnull element of 4. Hence it
follows that (12) will hold if and only if w(a) = 2¢ 4+ 1 for every non-
null element e of 4.

Definition 4: A matrix M with elements in K will be said to have the
(P?,)-property if no ¢ rows of the matrix are linearly dependent.

Theorem 4: A necessary and sufficient condition for the existence of a
reliable linear system design of order ¢ and redundancy r for £ Boolean
p-functions is that there exists a matrix M withn = (k + ) rows and r
columns with elements in K which possesses (P, )-property.

Proof: Sufficiency. Suppose the matrix M is given by

’_mu Mya My -‘
mo Moa =~ Mo

J[ = . N -r .
l,mnl M2 Myr J

Let A denote the vector space orthogonal to the vector space generated
by the 7 rolumn vectors of }M. A contains at least s* elements. It would
be sufficient to show that the weight of any nonnull vector a of A is at
least (2t 4 1). If possible, suppose A contains a nonnull vector with
weight less than (2¢ 4 1). For simplicity of writing assume that the
vectora = (ay, an, -+, , 0, --,0) belongsto A wherea, , as, - - -, an
are nonzero elements of K. Then we have

(13)

iy + aama; + o0 F @amen = 0, i= 12, (14)

Equation (14) implies that the first 2¢ vectors of the matrix M are
linearly dependent which is a contradiction. This completes the proof
of sufficiency. Necessity can be proved by exactly similar arguments.
The reader acquainted with the literature on error-correcting linear
codes would recognize from Theorem 4 that a reliable linear system de-
sign of order ¢ for k& Boolean p-functions exists if and only if a t-error
correcting linear code in s( = 27) symbols with n places and & informa-
tion places exists. Lemma 1 and Theorem 4 given above are not new
results; they were proved by Bose” and Zierler® in a different form. We
have included short proofs for these results for the sake of completeness.

V. MINIMALLY REDUNDANT LINEAR SYSTEM DESIGNS OF ORDER 1

In this section we shall give methods for construeting minimally re-
dundant linear system designs of order 1 for k& Boolean p-functions for
any arbitrary value of & and p.
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Theorem &:

s —1
nl(r):s_l.

Proof: In Section III we proved that

§ -1
s—1"

nlr) =

Hence it would be sufficient to show that

s =1
s —1°

ny(r) (15)

v

To prove (15) we shall construct a matrix M with 7 columns and n =
(s* — 1)/(s — 1) rows which has (P.)-property. We shall denote the ele-
ments of K by 0,1,a2, -+ ,a;,—1, where 0 is the null element and 1 is the
multiplicative identity. Consider the matrix M given by

M,
" { ] (16)
I,

where I, is the identity matrix with r rows and r columns and M, is a
matrix with 7 columns and & (= n — r) rows given below:

[0 0.0 1 1]
0 00 1 awm
0 0---1 1 0
M=1o 01 e aal (a7

I 1.0 0 0

_1 g1 Qg1 Xy Qg1 _|

It can be easily checked that the matrix M has (I’;)-property; i.e., no
two rows of M are linearly dependent. This completes the proof of
Theorem 5.

It should be observed that Theorem 5 enables us to construet mini-
mally redundant system designs of order 1 for any arbitrary values of k
and p. For given k, we find out the integer r for which

m(r—1) — (r — 1) <k £ n(r) — 7

If ny(r) — r = k, we construct the matrix M with r columns and n,(r)
rows as defined in (16) and then obtain the system design as illustrated
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in the proof of Theorem 4. If ny(r) — r > k, then we delete m(r) —
(k 4 r) rows from M, and thus obtain a matrix M with (P;)-property
which has 7 columns and (k + ) rows. From Theorem 3, is follows that
the resulting system design will be minimally redundant. Now we shall
give explicitly the encoder function of the minimally redundant system

designs of order 1. Let
B = Ty
(nxk) ]lflf !

where I, is the identity matrix with & rows and k columns and M, is
the transpose of the matrix M, . It can be verified that the k column
vectors of B are orthogonal to each of the r column vectors of M. The
k column vectors of B generate the vector space A and every nonnull
vector of A has weight greater than 2¢. For the sake of convenience of
description, we write

mi Mz - Mk
M, =
Mr Mz =t My

To define the encoder function ¢, we must set up a one-to-one cor-
respondence between the s* vectors of v,k and the s* vectors of A. We
make the vector (eq, @, -+, ar) of V,* correspond to the vector
(g, s, ar,arp, ", a,) of A, where

g1 = oMy + ey + oo+ awug

a, = oMy + sl + 0 oame.

Hence, if

JIX') = [IW(X"), o X7), -, [(XT)]
= (a11a2! “'1a*')s
(X)) = (X)), @a( X)), -y @l X7), @ (X7), -5 en(X7))]

= (Ql s Oy 0ty Oy Oyl , ° "sau)-
Therefore it follows that we have

a(X) = fi(X)

pu(X) = Ju(X),
een(X) = mufi(X) + mufe(X) + - 4+ mufi(X)
H . . . (]8)

'Pn(j() ’mrlfl.(X) + m‘r‘lf;(x) + o+ m,;.-:fk(X).
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It should be pointed out that in (18), for any particular value X’ of X,
fe(X')y and my; (7 = 1,2,---r;7 = 1,2,---,k) are elements of K and
the operations of addition and multiplication are as in K. The corrector
function can be built up, from the vector space A by the method already
described in connection with the proof of the sufficiency part of Theorem
1. In the following, we shall give an alternative simpler method of
building up a corrector subsystem which will correct one error in the
encoder subsystem.

Suppose the output of the encoder subsystem is the vector vy =
(vi,72, ", va) of V,". If X' is the value of the input variable, then

= ¢(X') + ewhere ¢(X') = (pu(X"), 2(X'), -+, 0(X')) and e =
(e1,€, ", &) is the error vector. From our method of constructing
the encoder function, we have

o XYM = 0 .
(I1xn) (nxr) (1xr)

Hence
yM = €. (19)
Let
eM =86 = (8,80, -, 0.).
Then

81 = Yeq1 + My + -0+ Mmuye
: : : : (20)

Br = Ya + mry1 + e + MY -

If there is error in one block of the encoder subsystem, e will have one
nonzero element among its coordinates. Suppose the {th coordinate of ¢
is a nonzero element X of K. Then ¢ = (0,0,---\0,---,0),1 =1 = n.
Let us denote the /th row vector of the matrix M by

Ry = (en,cin, -, Cur).
Then the following equations hold:
5§ = e = AR,

(21)
6,' = ACU, ] = 1,2,"‘,1'.

Conversely, if for a given output vector v the vector § computed by
(20) satisfies (21) and there is one block of the encoder subsystem in
error, then the error vector ¢ will have X as its /th coordinate and zero
as the other coordinates.

I'rom the above discussion, it is clear that a corrector subsystem which
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observes the rules given below will accomplish the job of correcting
errors in one block of the encoder subsystem and produce the k Boolean
p-function fi(X),fo(X), -+ fi(X) as its output. The rules are
i. Compute 6 as defined in (20).
. If & is the null vector, the k outputs would be given by 8: = .,
1,2, -k

. If & is not the null vector, find out the integer [ for which the
vovtor AR, for some A € K has maximum number of common coordi-
nates with 8. If > k, the k outputs are 8; = v, 7 = 1,2,--- k. If I <k,
the k outputs are 8y = vi,8: = v2, -, B = v+ N, B = vk

VI. AN EXAMPLE

In this section we shall give an example to show how the theory de-
veloped in this paper can be applied.

Suppase m = 3, p = 2,k = 3 and ¢t = 1. I'rom Section V, we can
see that for the minimally redundant system » = 2. Suppose the three
Boolean two-functions to be synthesized are

SU(X) = [fu(X), fu(X)]
(XX, Xa ® Xa),
(X)) = [fu(X), fa(X)]
= (X2- X5, X, ® Xy),
[5(X) = [fa(X), fa(X)]

= (XI-X;;,X1 ® Xy)

where the symbols @ and - are respectively used to denote the Boolean
operations of additions (or) and multiplication (AND) between two
binary variables. Let k denote the field containing four elements. Let ¢
be a primitive element of the field. The polynomial £ +t+ lisa
minimum function and every element of the field satisfies the equation
2 = 1. The four elements are shown below in terms of the primitive
element ¢, and their correspondence with binary 2-vectors is also pointed
out:

a =0 =0+ 0t (0,0),
a=1=1+ 0t (10),
=1 =0+ 1Le (0,1),
az = £ =1+ 1t (1,1).
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In view of the correspondence between the binary 2-vectors and the
elements of K, any particular value of a Boolean 2-function will be con-
sidered as an element of K. For example, if

A(X) = (L,1),

then
J(X') = ag.

Addition and multiplication between the elements of K are shown in
the tables given below:

Addition Table Multiplication Table

Q) Q) Oaa a3 @) o) o2 oy

Qp | ap g Cp Gy
0 |Gy G Oy O3
ay |y Qs Q3 )

Q| Q3 o g

The sum of two elements a; and «; is obtained by adding the cor-
responding polynomials in { modulo 2 (7, j = 0, 1, 2, 3). The product
of two elements is obtained by multiplying the corresponding poly-
nomials modulo 2 and modulo (£ + ¢ + 1). From Section V we have
My = Mpp = Mz = o) and Mo = o1, Moz = and Moy = . There-
fore the five encoder Boolean 2-functions are given by

ei(X') = [i(X"), =123

e X') = [i(X') + fo(X") + fo(X')
and

es(X') = fi(X') + aafo(X') + agfy(X).

Hence, 5041(X) = (X]-Xz) -+ (Xz'Xa) + (XI'X:]) and qa.m(X) —
(X, Xe) + (Xo® Xy) + (X3 @ X)), where +, @ and - respectively
denote mod 2 addition, Boolean addition (or) and Boolean multiplica-
tion (AND) between two binary variables.

The truth table for the two Boolean functions @z and gz is given
below:
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The computation of this table will be illustrated by one example. Sup-
pose X; = 0, X = 1, X3 = 1. Then fi(X) = (0,1) = as, fo(X) =
(1,1) = agand f5(X) = (0,1) = a2. 80 ¢s(X) = a2 + vz + oz =
a; = (0,1). And 50 ¢a(X) = 0 and ¢(X) = 1. The corrector sub-
system uses the outputs y: = (yayi2), 7 = 1, 2, 3, 4, 5, of the encoder
subsystem as inputs. The final outputs 8; = (Ba, Biz), 7 = 1, 2, 3 of
the corrector subsystem will be built up in several stages. From Section
V,o,=vi+m+ v+ vandd = v + v + ey: + agys. At the
first stage the corrector subsystem synthesizes n; = awyi, 7 = 2, 3. The
truth tables for (gi1, 7:2), 1 = 2, 3 are given below:

Yo Yoo a1 Na2 Ya Yae 31 Naz2
0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 0
1 0 0 1 1 0 1 1
1 1 1 0 1 1 0 1

At the second stage, the binary 2-tuples 8, , and 8, are synthesized. We
have

by = vyau +yu + v + vam,
81 = vao + ym + v + v,
8 = ya T v+ 9u + 7,
830 = ys2 T Y1z + 22 + M.

(22)

The addition between the binary variables in (22) is modulo 2 addi-
tion. At the third stage, the three binary 2-tuples, € , e and e, which
are the first three coordinates of the error vector e are synthesized as
Boolean functions of the &’s. The part of the truth table in which at
least one of the €’s takes the value 1 is given below:
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o1 LT Bt 022 €11 €12 €21 €22 €31 €32
0 1 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 1
0 1 1 1 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 0
1 0 1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0
1 1 0 1 0 0 0 0 1 1
1 1 1 0 0 0 1 1 0 0
1 1 1 1 1 1 0 0-. 0 .0,

The truth table given below is computed from the rules given in
Section V., In the case of our example, -

h _al al_
[25] (a2}

ﬂ.[ = | a o3
‘ [24] [27)]

L ay |

Suppose 811 = 0,82 = 1,8y = land é» = 1. Then §; = asand 8, = a3.
Since 8 = away and 8, = a;°, the vector § is a scalar multiple of the
second row vector of M. Therefore it follows that ¢ = ay, & = ay and
eg = ap. Hence, e = 0, 62 = 0, e = 0, €22 = 1, ey = 0 and e = 1.

In the example considered above the number of input variables was
small and the Boolean functions required to be synthesized were chosen
to be very simple, Therefore the corrector subsystem would probably
require more equipment than the encoder subsystem. However, it
should be noted that the design of the corrector subsystem is independent
of the number of binary input variables and the nature of the original
Boolean funetions. This design depends only on p and k. Therefore
when the number of input variables is large and the Boolean functions
required to be synthesized are complicated, the amount of equipment
required for the corrector subsystem may be small in comparison to
that required for the whole system. This is very desirable, since we
assume that the corrector subsystem is highly reliable. The example
shows how we can build up the logical design of the corrector sub-
system in any general case. However, the author believes that it is
possible to build up much more economical corrector subsystems using
sequential circuits. Of course, one then pays the penalty of taking a



MINIMALLY REDUNDANT RELIABLE SYSTEMS 611

longer time to correct the errors. Such economieal corrector subsystems
are discussed in the companion paper,! in which minimally redundant re-
liable systems which correet faults of more than one block are also given.
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