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Helix waveguide, composed of closely wound insulated copper wire cov-
ered with an absorptive or reactive jacket, transmits circular electric waves
with low loss. Mechanical imperfections, such as cursature and deforma-
tion, cause mode conversion and degrade the transmission. Generalized
telegraphist’s equations describe propagation in an imperfect helix wave-
guide with coupling belween the many propagating waves. The coefficients
of coupling depend strongly on the outside jacket. However, the sum of the
squares of the coupling coeflicients is independent of the jacket for eircular
eleelric waves. As a consequence, the average circular electric wave loss in
a heliz waveguide with random imperfections is also nearly independent
of the jacket and the same as in a metallic pipe.

1. INTRODUCTION

Helix waveguide consisting of closely wound insulated copper wire
covered with an electrically absorptive or reactive jacket (Fig. 1) is a
good transmission medium for circular electric waves.! In long distance
communication with waveguides it is useful as a mode filter, for nego-
tiating bends or particularly as the transmission line proper instead of a
metallic waveguide.”

The loss of circular electric waves decreases steadily with frequency
only in a perfect metallic waveguide.”* A similar situation prevails for
helix waveguide. Any deviations from a round and straight guide will
add to the transmission loss. At such imperfections power is converted
from the circular electric wave into other propagating modes and re-
converted. The mode conversion-reconversion effects increase the loss
and degrade the transmission characteristies.

* Parts of this paper were presented at the I.R.E. Professional Group on Mi-
erowave Theory and Techniques Symposium, San Diego, California, 1960.
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Fig. 1 — Helix waveguide and boundary conditions.

II. GENERALIZED TELEGRAPHIST'S EQUATIONS AND MATRIX REPRESEN-
TATION

Wave propagation in imperfect helix waveguide is most conveniently
described with generalized telegraphist’s equations.’ This is a representa-
tion in terms of the normal modes of the perfect waveguide. The solu-
tion of the perfect waveguide is perturbed in the imperfect waveguide.
Physically the perturbation appears as coupling between the normal
modes of the perfect waveguide.

In the perfect metallic waveguide, wave propagation is completely
deseribed by a set of independent first-order differential equations

dAn
dz
where A, are the amplitudes of the TE,, or TM,, modes normalized

with respect to power and «,, are their propagation constants. z is the ax-
ial coordinate. A square matrix with only the diagonal terms kp, = jhn ,

jhe 0 O
0 jh O .-
K - , (2)
0 0 jhy ---

= — i, (1)

describes the perfect metallic waveguide completely.
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The perfect helix waveguide may be considered a perturbed metallic
waveguide. The boundary conditions for the tangential electric field

E,=0 and E. =0 (3)
are replaced by
E,=0 and }i = —Z, (4)

where Z is the wall impedance that the jacket of the helix waveguide
presents at the helix interface.

To describe wave propagation in the helix waveguide with metallic
waveguide modes, off-diagonal terms have to be added in the diagonal
matrix of the metallic waveguide and the diagonal terms are perturbed:

o 0 0 0 ]
0 Kin K12 e
K = . (5)
0 K12 K22 =t
0

Only the propagation constant ke = jho of the circular electric wave
stays unperturbed, and its off-diagonal terms remain zero. In other
words, to describe wave propagation in helix waveguides with normal
modes of metallic waveguide, coupling has to be introduced between
these modes, and their propagation constants are modified. Only circular
electric waves stay unchanged.

It is now expedient to transform from the normal modes of metallic
waveguide A, to the normal modes of helix waveguide F, :

A = LE. (6)
The so-called modal matrix L of K transforms K to its c]iago;m.l form I';
VL_]KL =T. (7)

Since K is symmetrical the modal matrix L is orthonormal. It obeys:

L= L7 (8)

Its transpose is equal to its inverse. The diagonal terms v, of T are the
propagation constants of normal modes in helix waveguide. The circular
electric wave remains unaffected by this transformation:

Yoo = Koo = jhn .
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It is now possible to consider an imperfeet helix waveguide, perturbed
by curvature or cross-sectional deformations in the same terms. The
matrix K’ then has off-diagonal elements also in the row and column
associated with the circular electric wave:

Koo Kot Ko2
, KoL K11 K12 e
K = . (9)

Koz K12 Koo

These new off-diagonal elements represent coupling between the circular
electric wave and other modes in an imperfect helix waveguide. They are
the coupling coefficients of generalized telegraphist’s equations. When
Maxwell’s equations for the imperfect helix waveguide are converted
into generalized telegraphist’s equations, it is found that the coupling
coefficients xp, in K’ for curvature and cross-sectional deformation are
independent of the wall impedance and the same as in metallic wave-
guide. Generalized telegraphist’s equations for deformed helix waveguide
are found in the Appendix.

The independence of the «p,’s from the wall impedance has an impor-
tant bearing on the coupling coefficients between the normal modes in
helix waveguide. If the new K’ for the imperfect helix waveguide is trans-
formed by the previous modal matrix L, there results

LK'L =T (10)

The new matrix I' has off-diagonal elements ¢g, which are caused by the
imperfection. They are the coefficients of coupling between the normal
modes of the perfect helix waveguide. In terms of the elements of K’
and L they are:

Con = Z Kﬂmlmn . (11)
m=1

If this expression is squared and summed over all n, then, since the s
are elements of an orthonormal matrix, the resulting expression does not

contain any U’s:
Z cﬂu2 = E Kﬂmz- (]2)

It is recalled that the ko, are coupling coefficients between normal
modes in an imperfect metallic waveguide. Consequently, the sum of the
squares of the coupling coefficients co, in an imperfect helix waveguide is
independent of the wall impedance and the same as in metallic wave-
guide.
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III. AVERAGE MODE CONVERSION LOSS FROM RANDOM IMPERFECTIONS

The following statement will be proved: The average mode conver-
sion loss of certain kinds of random imperfections in helix waveguide
depends only on the sum of the square of all coupling coefficients.

To determine mode conversion, first of all, generalized telegraphist’s
equations have to be solved. With the elements of the perturbed I'
matrix the coupled line equations are

dE,

= _‘YHEH - Z cnmEm- (13)
dz m
When only a circular electric wave of unit amplitude, Ey(0) = 1, is

incident and the imperfections are small, a first-order solution at z = Lis:

L—u

| Bo(L) | = l 1- 2 fﬂL PR dufﬁ con(8)Con(s + ) ds|. (14)

The coupling coeflicients are proportional to the geometric imperfec-
tion §:

cl}u(z) = C[),,B(Z). (15)
Let the imperfections be a stationary random process with covariance
plu) = (3(2)é(z + u)) (16)
and spectral distribution
+= _
S(¢) = f plu) e ™" du, (17)

where £ is the spatial frequency of the geometric imperfection. Then,
as Rowe first pointed out,’ the average output amplitude { | Ey(L) | ) can
he expressed in terms of the covariance p(u):

L
QB )= 1= 2 0t [ (L = w) ™ ™p(w) du.
If, furthermore, the correlation between imperfections any appreciable
distance apart is small the covariance drops off very rapidly with in-
creasing argument. Then in the expression for { | Ey(L) | ) the exponential
and the factor (L — u) are constant for any weight of p(%), and one
obtains:

<|E0(L>1>=‘1—Lf:p(umu;cu:. (18)

The average mode conversion loss {(a) can now be written in terms of
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the spectral density S of the random imperfections § and the coupling
factors Cy, :

(@) = 15(0) Re [ €] (19)

With (12) and (15), it may be concluded from (19) that the average loss
for circular electric waves in an imperfect helix waveguide is independent
of the wall impedance and the same as in metallic waveguide that has
the same geometrical imperfections.

The above derivation has assumed the covariance to drop off fast or
the correlation distance to be small, This is the case for any imperfection
created in the manufacturing process of the waveguide. Any manufac-
turing imperfections some reasonable distance apart are hardly corre-
lated to each other. The effects of manufacturing imperfections for helix
waveguide are therefore the same as in metallic waveguide. It is rela-
tively easy to determine tolerances for metallic waveguide.® The above
rule lets these tolerances be valid for helix waveguide and the very in-
volved calculations for helix waveguide are not necessary.

Before accepting this rule the range of correlation distance for which
it is valid must be examined. As a typical example, the covariance has
been assumed exponential:

p(u) _ <62>6—21r(|u!1'1'.g)- (20}

The average TEy loss at 55 kme has then been calculated for various
helix waveguides of 2-inch inside diameter as a function of the correla-
tion distance L, .” Fig. 2 shows for deformed helix waveguide the rms of
elliptical diameter differences which increase the TEq, loss by 10 per cent
of the loss in a perfect copper pipe. Up to a correlation distance of one
foot the curves almost coincide and indicate independence of the wall
impedance.

For a curved helix waveguide the range is even larger. Fig. 3 shows for
a curved helix waveguide the rms curvature under the same conditions.
Random curvature of up to a 10-foot correlation distance causes nearly
the same average TEy, loss in helix waveguide and in metallic waveguide.
-+ TFor a correlation distance larger than 10 feet there is an ever growing
dependence of curvature loss on wall impedance. But such curvature
distributions do not occur in the manufacturing process. They are, how-
ever, representative of laying tolerances when the waveguide is installed
with long bows to follow right of ways or the contour of the landscape.
A properly designed helix waveguide can tolerate much more laying
curvature than can metallic waveguide.
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APPENDIX

Generalized Telegraphist’s Equation for Noncylindrical Helix Waveguide

Maxwell’s equations have been converted into generalized teleg-
raphist’s equations for curved helix waveguide elsewhere.” They have
been represented in terms of normal modes of the metallic waveguide as
well as in terms of normal modes of helix waveguide. In the former repre-
sentation the coefficients of curvature coupling between circular electrie
waves and the modes of metallic waveguide were independent of the wall
impedance and the same as in metallic waveguide.

The same is true for any cross-sectional deformation in helix wave-
guide. To prove this, Maxwell’s equations will be converted into gen-
eralized telegraphist’s equations in terms of modes of metallic waveguide
for the deformed helix waveguide. This representation is different from
another analysis, where the equations are written in terms of the normal
modes of helix waveguide.®

If the radius of the deformed guide is

a; = a{l + &),
where @ is the nominal radius and the deformation § is for the moment

assumed to be only a function of ¢ of eylindrical coordinates (rgz), then
the boundary conditions at » = a, are

B+ 5% (21)
de
—Z ds
E,=——F——\H H,—1].
ds 2( ¢t dsa) (22)
14+ {+
de
The deformation is assumed to be small and smooth:
K1 and ds & 1. (23)
de

The fields at » = a, can by series expansion be written in terms of the
fields at r = a. The boundary conditions then take the approximate
form:

_ 9B, s

E, = 5 ad — E’@’ (24)
_ 9B, , oH, ds
B.=—Stas— 7 (H¢ + St as + 1, dp). (25)
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Maxwell’s equations in eylindrical coordinates for exponential time de-

pendence ¢** are
% % = —juuH,, (26)
Ei 6£z = —jouH,, (27)
;a(gf.p) _ % %-"E;r = —juuH, (28)
;%_"B_’?’=jm£},, (29)

where u and e are permeability and permittivity of the waveguide
interior.

The electromagnetic field is derived from two sets of wave functions,
Ty tor TM waves and 7', for TE waves of metallic waveguide:

B aT.. 7T 1)
E, =2 V(,.)—‘—’ + Vi 6‘ ]
no | L4

[ aT. T n
Ew = Z V(n) w V[n] : ]:I 1

n | Tafp ar
B T aT (32)
H, =2 I(n) (") + [n] a["]:l,

[ T a7
}[@= Z I(n) ()+Iu ?'Bip]:l'

The transverse field distribution is described by T'(r) while the voltage
and current coefficients V(z) and 7(z) are funections of the coordinate z.
The T-functions satisfy the wave equation

1] 0 aT aT 2
[a( $)+ a¢(ra¢)] —xT, (33)

where x is a separation constant, which takes on discrete values for the
various normal modes. The T-functions are normalized so that
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f (grad T) (grad T') dS =

’ (34)
f(ﬂux T) (flux T) dS = »* f T ds = 1,
S S

where S is the nominal cross section of the guide and the gradient and
flux vectors of T are defined by:

arad, T = % grad, T = 2L

7 ’
T awl (35)
E) . _6”
ﬂll.\, T = @ ) H\L\w T = '——ar .

Various orthogonality relations exist among the 7" functions:

fT(u)T(m) dsS = fT[,,]T[m! dsS = 0,

S S

f (grad T) (grad Ton) dS = f (flux Ty) (flux Temy) dS = 0, (36)
S S

f (gl'ﬂd T[,,]) (gl'ud T[m]) dS = f (ﬂllX T[”]) (ﬂux T[m]) dS =90
8 8
if m # n, and

fs (grad To) (flux Tpm) dS = fs (grad Tpny) (Aux Tm) dS
(37)
= f (grad T'¢y) (lux T'y) dS = 0
S

for all m and n.

To transform Maxwell’s equations into generalized telegraphist’s
equations the series expansions (32) are substituted for the field com-
ponents in (26) through (31). Certain combinations of the equations
are integrated over the nominal cross section, and advantage is taken of
the orthogonality relations (36) and (37).

For example, adding — 97T (n/rde times (26) and 87 () /dr times (27)
and integrating over the nominal cross section:

AV | o 0T
—m + Jwi I(m} = a f E. )
dz 0 ar

d‘P + X(m)2 j;Ez T(m) ds. (38)

In the first term on the right-hand side of (38) the boundary condition
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(25) is substituted for E. . In the second term (31) is substituted for . :

”‘I.(”‘} + J hl”‘) [(m] - ’J Z [ (n)a'f (1 6) a‘T(”) aT(m)
dz ar

a ol 0 ar ar
where 1* = o’pe — X'

Add aTm/dr times (26) and 87T (. /rd¢ times (27) and integrate
over the nominal eross section:

dy

@

(39)
Ty 9T oy
do Or

+-[[n] j;- (1 - 6)

a

ﬂ/ - GT m
‘ l ! + Jw# I[m] f E Ll dcp. (4:0)
The boundary condition (25) is substituted for £, :
dV[m] . _ fﬂr LEz BT[m]
7R Al N mir vl
-z [I(n) f (1 —8) Ty T i tly (41)
n 0 ar aqa a
1 — 8T, oT
I, f 2] 97" tm) :I
+ L 0 a do do ad¢

Add — 8T (my/0r times (29) and — a7 (., /rde times (30) and integrate
over the nominal cross section:

dlom .
f + jwe Vimy = 0. (42)

Add — 0T ) /rde times (29) and 47T, /dr times (30) and integrate over
the nominal cross section:

(II[m]
4

+ jwe Vinl = Ximl' f H. T dS. (43)

For the right-hand side of (43) integrate 7', times (28) over the nom-
inal cross section: ‘

\ 2
—jw,ufl[: T dS = r[m] + af E, T'im
s 0

de. (44)

Substitute the boundary condition (24) for £, and perform the partial

integration:
i
f F T[m] d‘p = _f ( aT[m])
0 f dp

de. (45)

a
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With (44) and (45), (43) reads:

dI [m]

g’ _
e + I o Vim =

- aT,,. 27
ja XimL (f 3B, = - UEV[nIXInlzj; 8T (w1 T' a1 d‘P)-

Equatlons (39), (41), (42) and (46) describe coupling between all
modes. For the present consideration, all terms must be retained which
contain the wall impedance Z, because in practical helix waveguide the
wall impedance may be quite large. The deformation, however, is small,
and to analyze circular electric wave transmission only & terms need be
retained that describe direct coupling between ecircular electric and
other waves. The above equations then reduce to:

(46)

AVimy | Py 9Ty 0T (m
()+J—(—)I(m1=“ZZ(I(n)ﬂf =0 = o
dz we ® o Odr or
' ap o (47)
+ I[n] fn} a(m) d‘P) ]
r
AV . . T AT oy 0T [m
d[ ! + Jw.uI[m] = 4é Z (I{n) f —(2 _'[_'] d
2 n 0 ar Bgo
1 {* 0T 8T (48)
- [n] [m]
+ Iy [ G Bl d«o)
al m . _
7 + Jwe Vimy =0 (49)

dI[m] . h[m]2 7 . (12 Z 2 2 o
0 T Vm = =7 Vi1 Xtm1 Xtn) 8 T'tmy Ty de. (50)
. L W =n 0

All the integrals are taken along the nominal circumference.

Alternatively, in terms of voltages and currents the equations are
more conveniently written in terms of amplitudes A of forward- and B
of backward-traveling waves. The mode current and voltage are related
to the mode amplitudes by

= \/f (A, + B,
(51)
= (A, — B,),
\/ ( )
where K, is the wave impedance:
hn
Kw="2, Kyu-= }:L# (52)
we [n]

If the currents and voltages in the generalized telegraphist’s equations
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are represented in terms of the traveling wave amplitudes, the system of
coupled equations ecan be written in matrix notation as

a4 _ _ gy, (53)
dz

The column matrix
[ A

A= (54)

represents the amplitudes of metallic waveguide modes. The square

matrix
Koo Koo Kozttt
K = Koy  Kn o K1z .

= (55)
LKUE Kiz Ka32 e

describes the deformed helix waveguide. To calculate the elements of K’
the wave functions of normal modes of metallic waveguide are intro-
duced. The customary double-subseript notation will be used, but TM-
waves will still be denoted with parentheses and TE-waves with brackets:

_J (X( n)r) sin Py
Ty = /ip " Xen7/ 5 F¥
() 1/ ™ k(pn)Jp—l(k(pn))

(56)
p" 7 (kpn® — pa)iJﬂ(klpn])’
where
k(pn) = X(pm, Jp(k(pn)) = Or
k[pﬂ] = X[pnl@, J,,’(k[ml) =
and

e = 1 if p=0,
€ = 2 it p=0.
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Let the first element of A be the amplitude Ao of a circular electric
wave, The propagation constant of this wave is
ko = Jhiom) = JV wue — xpom®-

The elements of the first row and column,

- Z 2
Ve, K om1pn) ,
Komltpn] = J = 3 8 cos ppdyp
Kon = ! 2r a ‘\/h[gm]hlp,‘] '\/k[pnla — p2 0 ’ (57)

Komipmy = 0,

describe the coupling between the circular electric wave and other
modes as it is caused by the deformation of the helix waveguide. The
kon are independent of the wall impedance and the same as in metallic
waveguide.

The other diagonal elements of K’ are propagation constants of other
modes:

B . & Z
Kipny(pn) = Y(pn) = jh(pri) + % I_{T;;u_)’

knn = (58)

€ P A

. » /

Kipnllpnl = Yipnl = Jhipn) Sy A T
220 kipn)* — P Kipn

The off-diagonal elements describe coupling between the other modes:

€ VA
K(pn)(pm) — m= —F——————
20 /K s K omy
pn pm
€ P Z
Knm = 9 K(pn)(pm)] — K[pml(pn) = _Oi = = 3
=a '\/k[pml“ = P ‘\/K(pu)K(pm]
2
) P Z
Klpnllpm] — % 2 > > 5 .
= \/k[pfi] - P \/kIPMI" - P \/K[prl]KIPMI

They all depend on the wall impedance of the helix waveguide.
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