Winding Tolerances in Helix Waveguide

By H. G. UNGER
(Manuseript received September 29, 1960)

In a perfect heliz waveguide the circular electric wave loss is increased
by eddy currents, finite pitch of the helix, radiation through the wire spac-
ing and effects of the wire coating. Only the contributions from eddy cur-
rents and pitch are large enough to limit wire size and spacing.

Experimental heliz waveguides have tilted turns. These tilts cause cou-
pling between circular electric and unwanted modes. From the coupling
between modes in curved and in offset helix waveguide, the coupling in a
heliz waveguide with tilled turns is found. For helix waveguide with slightly
irreqular winding of arbitrary form, generalized telegraphis’s equations
are derved.

Tilts and other irregularities in the winding increase the circular elec-
tric wave loss. The average increase is a function of the covariance of irregu-
larities. Winding tills with an exponential covariance and an rms value of
0.6° increase the TEy loss in 2-inch inside diameter waveguide at 55 kme
at the most by 10 per cent of the loss in a perfect copper pipe with smooth
walls. Present fabrication procedures insure a smaller wire tilt than this.

I. INTRODUCTION

Helix waveguide consisting of closely wound insulated copper wire
covered with an electrically absorbing or reactive jacket is a good trans-
mission medium for circular electric waves.' In long distance communica
tion with circular electric waves it is useful as a mode filter, for negotiat-
ing bends or particularly as transmission line proper instead of a plain
metallic waveguide.

As in metallic waveguide, the loss of circular electric waves decreases
steadily with frequency only in a perfect helix waveguide. Any devia-
tions from a round and straight guide and from a uniform and low pitch
will add to the loss of circular electric waves.

Deviations from straightness and deformations of the cross section of
helix waveguide have heen analyzed before and their effect on cireular
eleetric wave transmission has been determined.”” When these imperfec-
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tions are caused in the manufacturing process they are statistically dis-
tributed over the guide length with a small correlation distance. Then
they add nearly the same average loss to the circular electric wave
as they do in a plain metallic waveguide.® Manufacturing tolerances for
straightness and for cross-sectional deformations are therefore the same
for helix waveguide as they are for metallic waveguide.

Deviations of the winding from a low-pitch uniform spiral are imper-
fections peculiar to the helix waveguide. Their effect on circular electric
wave transmission will be analyzed here and tolerances on the winding
of the helix waveguide for low-loss transmission will be determined.

1I. WIRE SIZE AND PITCH

This section reviews results of earlier work.

Helix waveguide is usually wound from round wire with an insulating
layer. Even when such a helix is perfectly accurate and uniform its differ-
ences from a smooth metallic waveguide add to the circular electric
wave loss. The various effects can be listed as follows:

2.1 Eddy Current Losses in the Spaced Wiresb:®

The circumferential wall currents of circular electric waves are uni-
formly distributed in a smooth wall. In the spaced wires of the helix
waveguide their distribution is nonuniform. The heat loss is therefore
increased over the smooth wall loss. In Fig. 1 this loss increase is plotted
over the spacing for a wire size small compared to the wavelength, using
Morrison’s ealculations.
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Fig. 1 — Eddy current losses in spaced helix wires (Ref. 5).
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2.2 Piteh!

If the helix of radius a is closely wound from a single wire of insulation
diameter D, then the pitch angle  is given by

D
t-ﬂ.nlp=‘)'7m.

If for a faster manufacturing process n wires are wound simultaneously,

nD
tan ¢ = 5ra (1)
The wall currents of circular electric waves are strictly circumferential.
In the helix waveguide their path is disturbed by the finite pitch. Power
of circular electric waves is dissipated into the wall impedance Z, which
the surrounding jacket presents to the waveguide interior. The added
circular electric wave loss due to finite pitch is

nli'-m2 Z .9
= — — 9
ap Thodb Re (r:") sin” ¢, (.4)

where Z, = \/y/e is the wave impedance and k = wv/ue the propaga-
tion constant of free space. k,, is the mth root of Ji(z) = 0, and h,, =
V2 — (kn?/a?) the phase constant of the TE, wave.

A reactive jacket will not dissipate any power. A helix waveguide,
designed for transmitting the circular electric wave around bends, has a
quarter wave jacket with a very large wall impedance.” In this case, to
keep a, low, ¢ has to be chosen small.

2.3 Power Dissipation Through Wire Spacing

Even though the helix is closely wound the wires are spaced by the
wire insulation. With the electric field of circular electric waves parallel
to the wires, the space between acts as waveguide below cutoff. Being
short, this cutoff waveguide will transmit some circular electric wave
power, which is then absorbed by the jacket. The circular electric wave
loss caused by this power absorption has been investigated for various
forms of wire cross section.” For round helix wires this loss is so small
compared to the eddy current losses of Fig. 1 that it may be entirely
neglected for any wire spacing. Consequently the increase in eddy current
losses, rather than the power dissipation through the gaps, limits the
wire spacing.

2.4 Effect of Wire Insulation

The insulating layer of the helix wires adds to the circular electric
wave loss in two different ways. [ts dielectric constant tends to concen-
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trate the electric field into the layer. Thus the wall currents and the wall
current losses are increased. In addition, the finite loss factor of any
insulating material causes dielectric losses in the small but finite electric
field of the circular electric wave. Both of these effects can be calculated
with a sufficient approximation from attenuation formulas for the round
waveguide with a dielectric lining.®

Again, it is found that the effects of the insulating layer are so small
compared to the eddy current losses that they may be neglected.

Number of wires, wire size, and wire spacing through insulation are
therefore determined by the pitch effect of (2) and the eddy current loss
of Tig. 1. To speed the winding the numbers of wires should be large.
To increase the effects of a reactive or resistive jacket on unwanted
modes the wires should be widely spaced.” The increase in circular elec-
tric wave loss from T'ig. 1 and equation (2) sets a limit, however, to num-
ber of wires and their spacing.

III. TILTED WINDING

The preceding discussion has considered only the loss in a perfectly
wound helix waveguide. A practical helix will not have perfectly uniform
windings. One imperfection in particular has been most notable in re-
search models of helix waveguide made by Bell Telephone Laboratories.
This imperfection is tilts in the winding.

Aside from the finite pitch, a single turn of the helix is usually not in a
transverse plane, but is slightly inclined and forms a small angle 8 with
the axis. Even an improved winding method with an automatic feed
control has not entirely eliminated this inclination.’

Such inclined helix turns give rise to mode conversion. There is a simple
way to analyze circular electric wave propagation in helix waveguide
with nonuniformly tilted winding, in which the results of previous cal-
culations are used. Consider a perfect helix waveguide, a section of
which between z = 0 and z = L has been deflected in an arbitrary
manner by x(z), as shown in Fig. 2. With this deflection is associated a
change of guide direction dx/dz and for gentle deflections a curvature
1/R = d*x/d?".

One way to caleulate propagation through this deflected section is to
use the formulas for wave propagation in the curved helix waveguide®
and evaluate them for the curvature distribution d*x/dz’. Thus, when
propagation is described by generalized telegraphist’s equations,” there
is curvature coupling between a circular electric mode m and the modes n
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Fig. 2 — Curved helix waveguide as superposition of offset and tilted winding.

of first order circumferential dependence (i.e., TE,;, and TM,,). The
coupling coefficient is

dv
= .93, (3)

with

\/;r //F ]\ ( hm hn + h )
= n B ]‘n 1 7 ' 4 in . -
RT3y x EAL G W ey o) R
where k, k,, and &, have the same meanings as in (2). k, is the radial
propagation constant of the coupled mode n and h, = VIR = (kz2/a?)
is the axial propagation constant of the coupled mode n. N, is a normali-
zation factor for the coupled mode n [given by (35) helow] and

2 = PLalk)
C k) (ka)’
where p = 1in the present case.

A mode m of unit amplitude incident at z = 0 converts power in the
deflected section to the coupled modes n. For gentle deflection the ampli-
tude and phase of mode n at z = L is given by
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A, = —J-rlﬂ d £€r ﬂ(h m—hg)z dz. (6)

Another way to calculate propagation through the deflected section
is to consider it as a continuously offset waveguide with a continuously
varying tilt 6 of the winding. Both the offset x and the tilt § = dx/dz
will then cause coupling between a circular electric mode m and modes n
of first-order circumferential dependence. The coupling coefficient for
offset has been calculated® before:

Cy = CD.L', (7)

o AT SRy ks
Co=Nu 5" A/ 120 Ji(k,) d,.. (8)

The coupling coefficient for tilted winding is still unknown:

_ th“ (9)

with

Amplitude and phase of a coupled mode n are now given by
L | )
Ay = —je ™ [ (C'fw + C, d_l) ¢ 1t de. (10)
0 dz
Equation (10) should give the same result as (6). Integrating by parts

brings (10) into a form that can be directly compared with (6):

L 2
- Co C &z i,
A, = —je ™" j; ((h —t +Jh : A ) d;e A=) gz (11)

Equations (11) and (6) can only given identical results when

G . G
o — 7o)t 7 by — b’

C. = —

Hence the coupling coeflicient for tilted winding is

5= (b = ha)Cot 2 (12)
Substituting from (4) and (8) into (12), and from (12) into (9):
N YT Tk e, (13)

-
s 2 inhha

With these coupling coefficients, generalized telegraphist’s equations
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can be written down for the helix waveguide with tilted winding. Their
solution describes propagation in the obliquely wound helix waveguide
completely. For example, if a mode m of unit amplitude is incident on a
length L of helix waveguide with nonuniformly tilted winding 6(z), then
the output amplitude and phase of this mode m is given to second
order by

L L—z
A, = ¢ Mnb [1 -3 f o hm—hnz (]zf eo(w)em(u + 2) du]. (14)
n 0 0

The summation in (14) is to be extended not only over all the modes n
but also over their two polarizations according to the orientation of 6;
8 may not only be in the plane of Fig. 2, it can also be perpendicular to
that plane.

From (14) the loss which is added to the mode m by a tilted winding
may be calculated. With

j(h"" - h,,) = Aa, + jABu
and
(‘lrr2 = Prz + jer )

the added loss is to second order in 8 is

L
@ = IE > f 2 (P, cos AB.z — Q. sin AB,z) dz
n 0
i (15)
f 0(w)8(u + z) du.
0

IV. IRREGULAR WINDING

The obliquely wound helix of the preceding section is just a special
case of a general irregular winding. In Fig. 3 a turn of such an oblique
helix has been drawn in more detail. Aside from a small pitch the wire
follows the curve

z = atan 8(1 — cos ¢) (16)

around the circumference. Its direction deviates by ¢ from the trans-
verse direction, where

tan ¢ = tan 6 sin ¢
or, to first order for small tilt,

Y = fsine. (17)
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Fig. 3 — Tilted turn in helix waveguide.

A general irregular winding can be described by a Fourier series
¥ =2 6,sin pe. (18)
r

A summation of cos pe would only add identical terms with different
polarization; it has been omitted from (18). The boundary conditions
at this irregular helix are

I, = —F, tan ¢, (19)
E, = —-ZH,+ (E, — ZH.) tan ¢, (20)

where Z is the wall impedance which the outside jacket presents through
the helix to the waveguide interior.
Wave propagation in such an irregular structure is best analyzed by
converting Maxwell’s equations:
LoE. _ of,
7T dp dz
oF, ok,

P S L (22)

Il

_jUJ]J.H,-, (21)
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1a 10F

s oy 1B = 250 = —daut. (23)
}af‘:é - a‘i" = Jwell,, (24)
L2 i) = 10 = jue. (26)

into generalized telegraphist’s equations™ for the boundary conditions
(19) and (20).

An appropriate form of representation is in terms of normal modes of
the perfect helix waveguide. With two sets of wave functions

T, = N,J,(x.r) sin pe,

(27)
T.," = N.J,(xar) cos pe
which satisfy the wave equation
Vﬂ?‘n = _XHQT‘H (28)

the normal mode fields of the perfect helix waveguide are the individual
terms of the sums:

_far, d,aT.
E’*.Z.‘"(WJF? a¢)’
aT,.’)
ar, (29)

el (1‘6 -
Hr=zfn( 1 i ]”)s

n

"I’ ar

6? T k2 a:,:
and by substituting from (29) into (23) and (26) and using (28):
H. = jwed V,d X T

" T
(30)

I,

Jop Z 1, x"

FFrom I/, = 0 at the perfect helix:
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p Jp(k )
d, = 7,7 (k) (31)
and from . = —ZH, again for the perfect helix:
p (b, _1\_ J
k. (_AE n dn) T weaZ (32)

Equation (32) is the characteristic equation for the perfect helix wave-
guide. Its roots k, = x,a determine the propagation constants

=K — x.' (33)

of the normal modes of the perfect helix waveguide.
The transverse fields of the normal modes are orthonormal in that

1 f , _ .
m B (Efn x Hlm) dS - 6r|m (34)
when the normalization factor N, in (27) is' chosen so that
\/é [h1|2 2
A’rn = —\ 55 W — d
'\/‘JT Jp(k‘n) k* ( P ) + d"2

(35)

2 -}
+ Icnz(l — sz) + 2p(d d,,):l .

The integral in (34) extends over the cross section of the guide; §,,, is
the Kronecker symbol.

The z-dependence of the voltage and current coefficients in (29) is
found by substituting the sums of (29) for the transverse field com-
ponents into Maxwell’s equations.

Add
(o b
r dp "k 9r :

T w 10T,

ar + d"‘ A2 r o

times (22) and integrate over the cross section of the guide. Using (34),
the result is

dVoam
dz

times (21) and

+ Pom. I,,, f(gradE)(gradT ) dS

2
+ d, T"; ]; (grad E.)(flux T,,') dS — jup gnv_‘, I, ’;c—’; (36)

h 2

-fq[(gra.d Tw)(grad Ty) + d. (grad T.)(Aux T, ):l
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where the gradient and flux of a scalar are defined by:

aT 1T
glad,T—E, glad"’T_;d—qa'
14T aT (37)
ﬂux,T=Ta‘p ﬂuwaz—BF.
After partial integration on the right-hand side of (36),
AV | ha' f L (8Tn | dn hmgaTml)
dzf+";1m o E: (ar T de ade
[ BTwdS — jou T 1% (38)
S8

o o b 3T ) gf
.[-,-[) T n ( a It‘ a(p a d‘P + Xm s TuTm dS] .

In the line integral along the boundary, E. from the boundary condition
(20) is substituted. In the surface integral over the cross section, (30) is
substituted for E, . Subsequently the boundary conditions of the perfect
helix waveguide may be used to simplify (38) to first order in y:

AV B N j o .
4&;— + J e Il"l = - ; T n drl kz 3 Tn Tuu‘pdw (39)

FFor the other set of generalized telegraphist’s equations add

0w . dwdT,
_(ar +T 6‘50)

(1aT p aT.,.
r do " ar

times (25) and integrate over the cross section. The result is

ti + jweV,, = —f (grad H.)(flux T.,.) dS

times (24) and

+ d, f (grad H.)(grad T,') dS + jwe > V.d, )i'; (40)
S n

.j'[(grad 7.))(flux T) — dn (grad T.')(grad T»')] dS.
S

After partial integration on the right-hand side of (40):
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[l + JweV

(41)

dmx,,.sz,T,,,'dS— joe T Vo do d x"x'" fT 7. ds.
S

Expression (30) for H, holds only for the normal modes of the perfect
waveguide. It has been obtained by differentiating the sum (29) for ¥,
in (23). The individual terms of this sum vanish at r = a, while in the
present case according to (19) £, has a finite value there. Hence the
sum (29) for £, is nonuniformly convergent and differentiation makes it
diverge. To replace H. in (41), substitute in (23) E, from (29), multiply
(23) by T,’, and integrate over the cross section

—jou [ I 8 = [ BTade + X Vedoxt [ 1048 (42)
8 0 n s

With (42), the boundary condition (19) for E,, and (30) for E., the

second set of generalized telegraphist’s equations is

‘“’"+ joVn = T 1 do k;f3

2T
f 7.7,y do. (43)

These equations represent an infinite set of coupled transmission lines.
I'or the present purpose it is more convenient to write these transmision-
line equations not in terms of currents and voltages but in terms of the
amplitudes of forward and backward traveling waves A and B. The cur-
rent and voltage of a typical mode are related to the wave amplitudes

by

= VK (4 + B),
1
= ;7§§(:i-— B),
where K is the wave impedance
Ko ==
we

If the currents and voltages in (39) and (43) are replaced by the
traveling wave amplitudes, the following equations for coupled traveling
waves are obtained:

li’lm + ]hm‘ m = Z (Knrr=+-4ri - K’""ﬁB")’

(44)

% - jhmBm = Z (Krm;-I—Bﬂ — K"m"A ")l
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The coupling coefficients are given by

ku‘.’l\.mz },_R " !
-'\'nm:t = ok (r{m /‘/i ju Tnj mw diﬂ
+ d, g/ M th’T \bd'p).
n /1 h”I D n m

If m represents a circular electric wave:
Tw=0,
Tm’ = 4\Tu|']0( er);
k
\/;r hmkm' D(".m) ’
and for the coupling coefficients,
N F‘.mi\.ﬂz 27 ' :
Y oy Sy el Ty de. (46)

For a tilted winding with  from (17),

(45)

dl’ll“\r"i =

+ _ .

Knm = Jct -
In this case circular electric waves interact only with modes of first
circumferential order (p = 1). Helix irregularities of higher order in ¢
will cause coupling to modes of correspondingly higber circumferertial
order. In general,

£ _ '\/;r ]n‘,,,f\'nﬂxv,;lfp(’\'n)
26N/ hyh,, @'

by . (47)

Knm

V. TOLERANCES

The design of a helix waveguide is started by selecting wire size and
spacing. A tolerable amount of added TEy loss is specified, and with
Fig. 1 and equation (2) wire size and spacing are determined.

If, for example, eddy current losses in the helix should not be more
than 10 per cent of the loss in a guide with smooth walls, then from Fig. 1
the ratio of wire diameter to insulation diameter should be

d
— > 0.775. 48
: (48)
To determine the actual wire size with (2) the wall impedance has to
be specified. Different applications of the helix waveguide require differ-
ent values for the wall impedance. A typical and also very critical ex-
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ample is the helix waveguide for intentional bends, In this case, by sur-
rounding the helix with a quarter-wave jacket and a metallic shield the
wall impedance is made very high.

The ggcneral formula for the wall impedance of the shielded helix wave-
guide is

e

Z =37 Fin tan k,°s, (49)

we A

where ¢, is the permittivity of the jacket, k,° = av/wue, — h,? the radial
propagation constant in it, and § the relative thickness.

For a quarter-wave jacket of a low-loss material the wall impedance is
real and approximately
Z _4(—1n

(50)

Z‘o T e’ H
with

= ¢ — je

€
Substituting (50} into (2), an equation for nD is obtained.

Fiber glass laminated with epoxy resin has a relative permittivity at
millimeter wavelengths of e./ep = 4 — j(0.04). The relative wall imped-
ance from (49) is then Z/Z, = 41.4. In 2-inch inside diameter wave-
guide with smooth walls, the TT,, loss at 55.5 kme is ega = 2.77 X 107°.
Less than 10 per cent of this figure is added to the TEy loss in the
present example when the pitch is

’L—D <4 %107 (51)

No. 37 wire (AWG) with a heavy Formex coat has d = 0.0045 and
D = 0.0054. It very nearly satisfies conditions (48) and (51) when the
helix is wound from one wire only (n = 1). Lower wall impedance values
such as are used for helix mode filters or all helix guide would not re-
quire as low a pitch as (51).

For the winding process, tolerances for irregularities must be specified.
In (15) the added loss is expressed in terms of the @ of a tilted winding.
The loss caused by higher-order irregularities can also be determined by
(15) when the corresponding coupling coefficients (47) are substituted.

In the present problem, however, the irregularities are not known, but
at best some of their statistical properties are known. Equation (15)
can then be used to express the statistics of the loss in terms of the sta-
tistics of the winding irregularities.' "
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For an oblique winding @ is assumed to be a stationary random process
with covariance R(u) and spectral distribution S(&):

R(u) = <6(2)6(z + u)>, (52)
S(¢) = _+°° R(w) ¢ du. (53)

In (52), <x> is the expected value of .
Taking the expected value on both sides of (15) the average added
loss is obtained in terms of the covariance R(u):

L
Ly = ;Z[ A R(2)(L — 2) (P, cos ABnz — Q, sin A8,z) dz. (54)
4 n 0

For a mere estimate the covariance is assumed to be exponential to
simplify the calculation:

R(z) = %£¥e“”’“”bw. (55)
)
Then the speetral distribution of 8 becomes
S
8 = v (56)

with S(£) nearly flat with spectral density S, for mechanical frequencies
smaller than & = 1/L,. Lo may be regarded as the cutoff mechanical
wavelength according to (56) or as a correlation distance according to
(55).

The average added loss is for L >> L

P,(2r — Aa,Ly) — Q.A8.Lg
a> = 78 Zﬂ: ABLe + (21 — AcnLo)?
To evaluate (57) the characteristic equation (32) of the perfect helix
waveguide has to be solved for all the coupled modes n, and propagation
constants and coupling coefficients have to be calculated.

The helix waveguide for intentional bends is again a typical and critical
example. In this case Z = o« at the design frequency and the characteris-
tic equation (32) simplifies to

(57)

d, = + (58)

The roots kuo of Jppa(2) = 0and J,1(x) = 0 are good approximations
for the roots of (58). With k, = k.o 2= x, where

= P (1 - ) .
= Fno (1 1/1 kzuz) ’ (59)
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the approximations can be sufficiently improved. The coupling coeffi-
cients in this case are given by

]"mll'nﬁp p2 P )%
Kum — T 1 1 1 — =< + > . 60
X 2k .y, @' ( e kh,a® (60)

With these relations, (57) has been evaluated for a helix waveguide
with a nonuniformly tilted winding (p = 1).

IFig. 4 shows the rms value of # as a function of the correlation distance
Ly for an added average TEy loss of 10 per cent of the loss in a copper
pipe with smooth walls. The waveguide diameter is 2 inches and the
frequency 55.5 kme. The tolerance is most critical for a correlation dis-
tance of 1 inch. But even then an rms tilt of 0.6° can be tolerated. In
experimental models of helix waveguide the maximum tilt has, with
some care, been kept below 0.3°.

VI. CONCLUSION

In a perfectly wound helix waveguide the circular electric wave loss is
significantly increased only by the eddy current losses in spaced wires.
The finite pitch contributes to the circular electric wave loss only when
the wall impedance is very high or when the helix is wound from more
than one wire,

Of all irregularities in the helix a changing tilt of the winding has
been observed to be most significant. Assuming this tilt to be randomly

v
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Fig 4. — TEy, loss in helix waveguide with random tilt of winding, 2-inch inside
diameter, at 55.5 kme. Design for intentional bends with infinite wall impedance.
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distributed along the waveguide with an exponential covariance, the
increase in eircular electric wave loss can be calculated. In a 2-inch
inside diameter helix waveguide at 55.5 kme an rms tilt angle of 0.6°
adds at the most 10 per cent of the loss in a perfect copper pipe to the
average TEq loss. In experimental models of helix waveguide the maxi-
mum tilt deviation has been kept below 0.3°.
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