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In the present paper general formulas for the electrical admitiance of a
piezoelectric crystal, in lerms of ils resonant frequencies and static and
motional capacitances, are derived and applied lo the investigation of the
effect of electrode shape on the spectrum of resonances and the capacitance
ratio of the crystal. Particular attention is given in two cases of practical
importance, namely, small piezoelectric coupling and thin crystal plates.

I. INTRODUCTION

Piezoelectric erystals are often used as eircuit elements in filters and
oscillators. Ifig. 1 shows a typical admittance curve for such a erystal
and Iig. 2 shows the corresponding equivalent circuit. At very low fre-
quencies the crystal behaves like a capacitor, with a capacitance ap-
proximately equal to the static capacitance between the driving elec-
trodes. Due to the piezoelectric effect, an applied alternating electric
field causes the erystal to vibrate and, at certain natural frequencies of
free vibration, it is driven into mechanical resonance by the applied
voltage.

In the neighborhood of such natural frequencies, the admittance of
the crystal is closely approximated by the simple equivalent circuit of
Tig. 3. This is the equivalent circuit commonly used in the applications.
It is a good approximation over a frequency range proportional to the
spacing between the resonant frequency, at which the admittance is
infinite (in the absence of dissipation), and the antiresonant frequency,
at which the admittance vanishes.

For small electromechanical coupling this spacing is proportional to
the capaeitance ratio (', /Cy. It is desirable to make this ratio as large
as possible. Bechmann and Parsons’ have shown how this may be done
in various simple cases.
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Fig. 1 — The equivalent electrical admittance of a piezoelectric erystal.

At high frequencies, where many resonances may occur within a nar-
row frequency range, the simple equivalent cireuit of Fig. 3 may cease
to be applicable. However, it is always possible, at least in principle, to
find an electrode configuration which does not excite one or more of
these resonances. A simple example is a symmetric electrode configura-
tion, exciting only symmetric modes of free vibration. Vormer® has
shown theoretically and experimentally what the appropriate electrode
shape is for the longitudinal vibrations of a piezoelectric bar.

In the following, we consider both the question of capacitance ratio
maximization and that of resonance suppression in some detail from the
theoretical point of view. The investigation is divided into three parts.

In Sections IT through VI we consider the general problem of steady
vibrations of a piezoelectric body. The principal tools used in these sec-
tions are the piezoelectric analogs of various integral theorems of clas-
sical elasticity, found, for instance, in Love." We prove, for example,
that the material particle displacements corresponding to two different
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Fig. 2 — The equivalent electrical circuit of a piezoelectrie erystal.
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Fig. 3 — The equivalent electrical circuit near resonance.

modes of free vibration of a piezoelectric body are orthogonal just as
they are for an ordinary elastic body.

The principal results of these sections are general expressions for the
equivalent electrical admittance of any piezoelectric body and for the
motional capacitances. The latter expression indicates how the electrode
configuration must be chosen to suppress a given resonance.

Section VII is devoted to the case of small piezoelectric coupling, in
which, to a first approximation, we may separate the mechanical and
electrical problems completely, thus making it possible to obtain more
explicit results than in the general case. A sample result states that the
capacitance ratio (',/C is equal to the square of that portion of the
input electrical energy which goes into exciting the nth mode, divided
by the product of the electrostatic energy of the driving field and the
strain energy of this mode of free vibration. As incidental by-products of
our calculations, we obtain upper and lower bounds on the change in
resonant frequency produced by a change in electrode configuration
and an upper bound on the capacitance ratio.

Finally, in Sections VIIT and IX, we make use of the simplifications
possible when the piezoelectric body is a thin plate, in particular obtain-
ing an explicit relation for the electrode configuration maximizing the
capacitance ratio. As a simple although somewhat artificial example,
we consider the low-frequency longitudinal vibrations of a piezoelectric
bar (the example treated by Vormer®) in some detail, using this example
to point out some of the advantages, as well as the difficulties, in the
practical application of the foregoing techniques.

Before commencing our discussion of these problems, a few general
remarks may be appropriate. In order to apply the techniques presently
proposed, considerable detailed information about the modes of free
vibration is required. Until recently, such information was available
only for a few special cases. However, at least for erystal plates, it ap-
pears that such information may be obtained by the approximate theo-
retical techniques developed by Mindlin and his co-workers* over the

" * The out?ut of Mindlin and his coworkers in this field is so extensive that a

complete bibliography is impossible here. Refs. 4, 5, and 6 are most closely con-
nected with our work.
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last decade. Experimental methods using an electric probe which may
be moved over the surface of the crystal, such as the methods developed
by Van Dyke’ and by Koga, Fukuyo, and Rhodes,’ may also yield the
desired information. Conversely, measurement of the electrical admit-
tance of a given crystal for various electrode configurations and driving
frequencies may yield considerable information about mode shapes.

II. THE BASIC EQUATIONS

The equations governing the steady vibrations of a piezoelectric
crystal at angular frequency « may be written in the form

Tij; + po'ui = 0, (1)
D;; =0, (2)

where T';; is the stress tensor, p the mass density, u; the material particle
displacement vector, and D; the electric displacement vector. Here and
in the following, we use Cartesian tensor notation (see, for example,
Jeffries’), in which commas denote differentiation with respect to the
Cartesian coordinates (x;, s, 2;) and a repeated subscript indicates
summation over all possible values of that subscript. Thus, for example,
(2) is just the usual quasistatic electric field equation, stating that the
divergence of the electric displacement vector vanishes. The symbols
used for stress, strain, etc., are those used by Mason."

In the case of a piezoelectric medium the stress T';; and electric dis-
placement D; are given in terms of the strain S;; and electric field £,
by the linear anisotropic constitutive relations

Tij = Cijim Sm — eviille (3)
Di = €i’Ex + €imSim , (4)

where S;; and E; are given in terms of the particle displacement u; and
electrical potential V' by the relations

Sij = ¥(ui; + uji), (5)
Ei=-V;. (6)
The elastic constants cijim", piezoelectric constants e;, and dielectrie
constants e;;° satisfy the symmetry relations
r E E E
Cijkm = Cjiktm = Cijmk = Ckmij ,
€rij = €kji,

8 S
€ij = €ji.
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We shall also have oceasion to use the alternate constitutive relations

Ti; = Cijim Sem — heiiDy (7)
Ei = 8Dy — hitnSim (8)
Sii = Sijem' Tem + dii;Ere (9)
D; = e’ Er 4+ dinTim (10)

where
s s (1, for 7 = 7,
Bi"ep = 0i; = . .
0, for ¢ = j,
g
hikm = ﬂr'j f’jkm 3
D E
Cijkm = Cijkm + h-pijcpﬁ'm )

= al'jakm )

E E
. Sipkq Cijpmq
E
drij = CrpgSijpa »
T S
€; = €ij + dip€ipg-
The magnitude of the piezoelectric effect is specified by the piezoelectric
. B 2 .
coupling coefficient k, where k* may be given by any one of the three
. P . 2 ] . .
dimensionless ratios, ¢*/ce, h’/cB, d’/se, with e, ¢, ¢, ete., being repre-
sentative values of the corresponding material constants. For all real
piezoelectric materials & is small compared with unity.

III. BOUNDARY CONDITIONS

The particle displacement u; and electric potential V, satisfying the
preceding equations in a piezoelectric body B, are completely determined
by the specification of certain conditions on its surface S (see Fig. 4).
We shall always assume that the body is supported in such a fashion
that its surface is free of tractions, i.e.,

Tin; =10 (11)

V’lejwt

Tig. 4 — Piezoelectric body with driving electrodes.
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on 8, where n; is the outward normal vector. This assumption is not
essential; we could consider just as well the case of a rigid (or compliant)
support. It does, however, make the subsequent algebra somewhat
simpler.

The body is assumed to be driven by an alternating voltage of con-
stant amplitude V;, applied between electrodes Sy, and S;, plated on
its surface. Thus

Vi ’ on 81 )

V= (12)
0, on Sg.

The remaining surface is assumed to be free of plating. On this por-
tion of the surface, then, one has two conditions requiring that the po-
tential and normal electric displacement be equal to the potential and
normal electric displacement in the external field. We may take this
external leakage field into account formally by simply requiring that
the equations of the preceding section hold throughout all space (except
on S, and S;), with the stress, strain, and piezoelectric constants van-
ishing identically outside B and the dielectric constant outside B being
that of free space. In the following we shall indicate that an integral is
to be taken over all space by using B, in place of B. To complete the
set of boundary conditions, we assume that V' vanishes at large distance
from B. The external field is included here only for formal logical com-
pleteness; in almost all practical problems it is of negligible importance.

IV. INTEGRAL RELATIONS FOR PIEZOELECTRIC BODIES

Suppose that «; and V are any (suitably continuous) vector and
scalar functions, defined on B 4 S. Note that, by our previous con-
vention, V is actually defined throughout all space. We shall assume
that V' is continuous across S and zero at infinity. In general, of course,
u; and V will not satisfy the equations of the preceding section. However,
by introducing suitable volume and surface forces, ¥;, T, and volume
and surface charges, g5, gs , we may construct a boundary value problem
satisfied by these functions.

First we calculate strains and electric field components, S:;, E;,
from (5) and (6) and stresses and electric displacement components
from the constitutive relations, (3) and (4). The required distributions
of volume force and charge are then given by the relations

oy = — (Tij; + pw'ui),
s = D:‘,{ ’
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where w is an arbitrary positive constant. Similarly, the distributions of
surface force and charge on S are

T,‘ = T,-,-n,- )
qs = [Dilni,

where n; is the outward normal to S and [D/] is the jump in the electric
displacement vector across S, given by

[D;] = (Di)ext - (D")B-

Now suppose we have any two pairs of such functions (u/, V'),
(u;”, V") and caleulate the corresponding stresses, electric displace-
ments, ete. Then the divergence theorem yields

f 'lt,"T;j.J'” dB = f’lt"’T;_,'?’Lj dS —_ f S,'_,"T,'_,'” dB, (13)
B S B

f V'D; " dB = — f VD In; dS + f E/D, dB, (14)
Bm s Bw

or, in terms of the equivalent forces and charges,

f o (F" + &"u")dB = — f wi' T dS + f S,/ Ty"dB  (15)
B 8

B

f V" dB
i

]

— f Vigs" dS + [ E/D/ dB. (16)
S Bw

I'or example, for the forced vibrations previously considered, with
(w/\V') = (w" V") = (u:, V), " = o, F” =T = ¢" = 0, addi-
tion and rearrangement of (15) and (16) yields

f (cr‘jkmESijShn + 61'L-SE1'EI: - pwgu.-ui) dB = V\Q, (17)

B

™

where V; is constant and the total charge on S; is

0O = f gs (S = f [Dn:dS. (18)
Sy N

Note that, by our previous convention, ¢ and u; vanish outside B.
Equation (17) essentially states that the sum of the potential energy,
made up of the strain energy and electrostatic energy, and the kinetic
energy is equal to the energy passing into B through S; due to the ap-
plied voltage V.

For free vibrations, with (u:, V,) = (w",V"w,.), (17) yields the
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Rayleigh quotient for the natural frequency w, , i.e.,

f (Cijim Sii" St + € E"E) dB
R . )

w, —— —. (19)

f pu;"u;" dB

B

This relation suggests that the effect of piezoelectricity is to increase the

natural frequencies over the values they would have in an ordinary

elastic body with the elastic constants cijxm . In Section VII we shall

prove that this is the case for small piezoelectric coupling coefficient k.
If we subtract (16) from (15) and rearrange terms, we obtain

f [Pﬂi’(Fi” + w”g'll.;i”) _ quﬂfr] dB + f (H:'IT;'” _ V’q.q”)dS
B, 8
= f (84'T" — E/D/") dB.
BHJ

This equation still holds when we interchange primed and double-primed
quantities. Furthermore

S:"T:f — E/D{ = 8:i/T:" — E,"D,‘”,
and thus

j low (F" + " u") — V'gs"1dB + f (/T — V'gs") dS
B 8
- (20)
= f low.”(F 4+ o™u)) — V'qs'1dB + f (" T — V”qs’) ds.

B 8

This is the analytical form of the so-called reciprocal theorem (see Ref.
3, Chapter VII, p. 174) for a piezoelectric body. In words it may be
stated as follows:

The difference between the mechanical and electrical work done by the
forces (including kinetic reactions) and charges of the first set, acting over
the displacements and potential produced by the second set, is equal to the
difference between the mechanical and electrical work done by the forces
and charges of the second set, acting over the displacements and potential
produced by the first.

V. EXPANSION IN NORMAL MODES

We now return to the problem of forced vibrations, deseribed in Sec-
tions I and IT. The equations and boundary conditions of those sections
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completely determine a unique particle displacement u; and potential
V, except at certain natural frequencies w,(n = 1,2, - --) where a non-
trivial solution (w.", V™) of the free vibration problem (with V, = 0)
exists. If we denote the solution of the static problem (with w = 0) by
(u,V*), we may satisfy all of the preceding equations and boundary
conditions, except (1), by setting

wi = u' + 2 e’ (21)
n=1

V=V+2aV, (22)
n=1

where the a,’s are to be determined to satisfy (1). Since
Tis' = Tiu" + pwdu =0,
in this case (1) is satisfied if
14 Z (L"ll‘.3 - wﬂ}ari'ufn = szuia. (23)
n=1

Now suppose we set (u/,V’) = (w",V"), (u”,V") = (w",V"), with
wm # ay, in (20). We obtain

,0((;.1,,.2 - w,,ﬁ) f ui'"-u;" dB = 0_. (2—})
B
co that displacements corresponding to two different natural frequencies
are orthogonal, just as they are in ordinary elasticity. Thus, multiplying
(23) by u* and integrating over B, we obtain

play — o)y f wiurdB = pmgf wi'ui dB.
B B

Again applying (20), this time with (u/,V’) = (w* V5, (V") =
(u:", V"), we obtain

pwi f wiuF dB =f VD n: dS = V.f [Dfn; dS.
B S, 8y
Thus

2yr k
k=wll~£][Di]nidS

pa(w® — o)

a

(25)

For future reference, we also note the identities
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pwnzf’l&iﬂﬂ.'“ dB = f S.‘j“T,‘,‘" dB, (26)
B B

f VilD"In: dS = f e (S5 E" — S5"Ey") dB, (27)
8 B
obtained by direct application of the divergence theorem.

VI. THE EQUIVALENT ELECTRICAL ADMITTANCE

Using the apparatus developed in the previous sections, it is a simple
matter to obtain a general expression for the admittance of the erystal
body. The admittance ¥ (w) is the ratio of the total input current I,
into the crystal to the voltage V; across its terminals. The current is the
rate of increase of the total charge ¢ on the electrode S;, where

(o3 =_/; [Difn: dS,

so that
Y(w) = L/Vy = jo@i/V: = juVi! j; 1 [Din; dS.
Substituting
D1 = D1+ 3 @D
we obtain

Y (w) = jo (ca > —“L) (28)

sl w,t — w?

where the static capacitance C, is given by
¢, = v [ Dnias, (29)
8

and the motional capacitances C, by

(j;l D" dS)2

(30)
pw,f f u;"u.-" dB
B

(Jn =

If 'we set

Co=Cy,— 2. Ch,

n=1
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(28) may also be written in the form

Y(w) = jo (cu + 3 _C-_ﬁ) (31)

n=1 ]- - w2/w,,2
Tig. 2 shows the corresponding equivalent circuit with
L" = 1/\'.01120;:7 n = 1525 T

and TFig. 1 shows the corresponding behavior of the admittance with
frequeney. Since (', < C, for real piezoelectric materials, the admittance
is very nearly equal to jwC,, except in the vicinity of a resonant fre-
quency, where the admittance is that of a simple series-resonant circuit,
shunted by the capacitance ;. The corresponding antiresonant fre-
quency w,’ is given approximately by

9

Wy _ 1 + Cn
m.u|2 N CU ’
or, since (',/Co K 1,
Dw, _ @i — wn _ Cy
o T w3 (32)

All of these considerations hold when the resonant frequencies are not
too closely spaced, specifically when (wy41 — wa)/w, is large compared
with €'./Cq . At high frequencies, where many resonances may oceur in
a narrow frequency band, the region of applicability of the above simple
single-resonance circuit may be very small, and the simple relation for
the antiresonant frequency w,’ given by (32) may not be an adequate
approximation. In order to circumvent this difficulty, we may choose
the shape of the electrodes S: and S, so that resonances in the vicinity
of a desired resonance in this frequency range are not excited, i.e., so
that the corresponding C'.’s vanish, or

f [D"In: dS = 0. (33)

This is a necessary and sufficient condition that the nth resonance not
be excited by the given plating shape.

In order to make use of this condition, the surface charge [D:"In; must
be determined, either theoretically, perhaps by using an approximate
theory of the type applied so successfully by Mindlin and his cowork-
ers,"™" or experimentally using a point electrical probe as developed by
Van Dyke’ or Koga, Fukuyo, and Rhodes.® In the case of high-frequency
vibrations, one would expect that the resulting electrode shape would
be quite complex. Clearly the choice of electrode shape suppressing a
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finite number of resonances is not unique. For these and other even more
pressing reasons, it is not clear whether the use of the conditionis of any
particular practical importance.

Besides affecting the value of (', , the choice of electrode shape also
affects the magnitude of the static capacitance C, (or (). Since C,
shunts the series-resonant elements, it is desirable to make its value as
small as possible, i.e., to make the capacitance ratio (',/Cy as large as
possible at the desired resonance. IFinally, because of piezoelectric cou-
pling, the values of the resonant frequencies themselves depend on the
electrode shape, although only to second order in the piezoelectric cou-
pling coefficient k. In order to obtain more concrete information con-
cerning these effects, in the next section we consider the case of small
piezoelectric coupling.

VII. SMALL PIEZOELECTRIC COUPLING

In this section we shall obtain expressions for the static capacitance,
the capacitance ratios, and the shift in natural frequencies due to a
change in electrode shape, valid for small piezoelectric coupling coeffi-
cient k. With an eye to the applications, these expressions should be the
most convenient forms for application to the most common practical
case, namely, a crystal plate.

First of all, it is clear that, to first order in k, the static capacitance
C, is simply the ordinary electrostatic capacitance in the absence of any
piezoelectric effect. Thus, to first order, the static potential V" satisfies
the equations

Df = e'E = —ei' Vi,
D" =0,

in B, and

Vi, on S,

{0, on S .

(In this instance, one should recall our previously agreed upon conven-
tion concerning the treatment of the external region.) The static capac-
itance is then given by

C, = 1_lf [Dn; dS = V1_2f e 1.5, dB. (34)
5, B,

Next we consider the solution of the free vibration problem for small
coupling. To first order in & the particle displacement ;" and natural
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frequency w, are those of the purely elastic problem, and the potential
V" and electric displacement D," are of first order in k. Finally, the
change in natural frequency is of second order in k. Thus we set

0 "
wi = ui + u’,

V=V,

W = w (1 4+ ),

where the quantities with index “0” are of zero order in %, those with
single primes first order, and those with double primes second order in
k. We have also temporarily dropped the index “n’” in order to reduce
the number of indices present. The governing equations and boundary
conditions then become

T + pwotd = 0, in B,
T.'n; = 0, on S,
D;/ =0, in B,
V! 0, on S, = 8o+ Sy,
T + pwo'(u” + v"u’) =0, in B,
T:/"n; =0, on S,

where the 7T:/s and D/s remain to be defined.

The definitions of these quantities, and thus u.’, @, V', w.”, and »”
depend on the choice of constitutive relations used. For example, if we
use (3) and (4) for the stresses and electric displacements in terms of
the strains and electric fields, we have

T.‘jﬂ = C,‘_,'An,,,EAS';.-,,,O,

D.,‘f = é,']‘.Sl"j;\-’ + ﬂ,‘k,nlqﬁ-m[),

T{j” = C;j';-,,;ES;.-m” - Cﬁ-ij};’,
whereas if we use (7) and (8) we have

Tijo = C,‘jkmDSkmD,

E! = Ba"Dy — hignSim'

TU” - C,‘j;l-,,,DnS';\-,,i” — }L,-,-;ng-’.

Use of either of these sets of relations should give the same results (to
the order considered) for the potential V', the electric displacement
D¢, and the natural frequency o = wi'(1 + »”). We may apply the
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reciprocal theorem, (20), to obtain a simple expression for »” in either
case. We set (w/, V') = (u’0), (w”,V") = (w”,V’') to obtain the
expressions

VE =[ EijSEa"Ej,dB/PwEaf HiouafodB, (35)
B R

vy = — f £ii*Di D, dB/pwp’ f w'ui’ dB, (36)
B B

where wp und wp are the natural frequencies found using the elastic

constants ¢ijm” and cij,”, respectively, and vy and »p are the corre-

sponding frequency shifts due to the piezoelectric effect. Since, to seeond

order,

W = wp(l + vg) = wp (1 + vp)
and »z = 0, ¥vp = 0, we must have
wr = w = wp, (37)

with equality only if vz or vp vanish. According to (35) and (36), this
can only happen if £/ or D/ vanishes identically, i.e., if the divergence
of the vector eiwSi.. vanishes in the former case, or if the curl of the
veetor Rigm S vanishes in the latter case. Thus, in general, neither of
these bounds will be attained. We can, however, prove that the lower
bound wr is most nearly attained by a completely plated crystal and
the upper bound wp by a completely unplated erystal. Furthermore,
making the electrodes larger always decreases the resonant frequencies,
These results, which are not of central importance in our present con-
siderations, may be obtained by the application of Schwarz’s inequality
and Green’s identity to (33).

We have now obtained expressions for the static capacitance and the .
shift in resonant frequency caused by the piezoelectric effect. We now
derive a simple and symmetric expression for the capacitance ratio
C./C, , using (26) and (27). We have

f '[ﬂ'liDiﬂ]'n.i- dsS = f R""'J'(Si'jREL.” _ S.‘jﬂEkx) dB = _f e'fw‘i"jS:‘ankH dB,
S1 B R
neglecting terms of higher order in £. Also, from (26),
o I
pw.,_‘ / 'I(;”Hg” f]B = f S,'_,'HT,'J'" ('IB,
vB B

which, in the present case, is either the strain energy in terms of ¢ijpm”
or in terms of ¢z, depending on our choice of constitutive relations.
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To first order in k the two expressions are equal, of course. I'inally, using
(34), we obtain
9

. ( j eeiidt"Si" dB)
( n B

o= . (38)
' ([ ('".ﬁ'h“h"]"E‘MJ‘:i r,B) ([ ci’jkﬂub‘S{j"Ska (IB)
h B

Direet ealeulation, again using Schwarz’s inequality, leads to the upper
bound

(39)

Again we will not dwell on this incidental result, only remarking that it
provides a general upper bound on a quantity which we usually wish to
make as large as possible. An alternate form of (38), in terms of stresses,

1S
v (f (]k,'jl':kaT,'j" ([B)
( n B J

- . (40)

€ "ESES dB itm Tii" Then” B
5 €j i J 5 Sukm i km

VIII. CRYSTAL PLATES

In this section we consider a thin piezoelectric erystal plate, driven by
symmetrically placed electrodes on its face (w2 = 0, 22 = h), as sketched
schematically in Fig. 5. In this case, if the thickness A is small compared

X3

p X2

Fig. 5 — The crystal plate.
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with the diameter of the electrodes, the static capacitance is given ap-
proximately by
Cn - 62234‘/‘1/71, (41)

where A is the electrode area. To the same approximation, the static
field is given by

]L'lj = L = 0,
{— Vi/h, for (xy,a3) in A4,

Eza =
0, for (a;, x3) outside A.

(We now neglect the external field completely.) Thus we have
f eSS dB = — TV, ff eaiiSi; (w0, xg) daydag
B A
where
h
S‘,‘j" (;131 y .1'3) = h—l S{jn(m] y L2, .’123) d.L‘z,
0

or, in terms of average stresses,

f d,{--,‘_,‘EkaT"jﬂ dB = — Vl ff dz.‘jT?‘jn(ﬂ’,:]_ ’ .’L‘a) d.Ll d.'Ua f
f A
where
h
T:'j"(&'l ’ .’Ua) = hﬁl f 'Tijn(.tl y L2, ﬂ:;;) d.’ﬂz 5
0
With

f E,’js]ﬂ‘,"l‘:jn dB = V12(:‘; = ngEA .Vlﬂ/h,
B

the capacitance ratio is given by

;—:: = (;hq) [ff palan, 23) day ri.ra] , (42)

_ 62;’;‘&‘;‘“
pH . R i‘l‘ bl (43)
_[ Cijkm Sij Skm dB
B

where
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in terms of strains, and
_ doi;Tii"
p" - E n n ¥’ (44)
f Sijkm Tij Tiw" dB
B

in terms of stresses. Note that the integrals in the denominators of these
two expressions for p, are simply normalization factors. We retain them
only to keep the dimensions straight.

Equation (42) gives the capacitance ratio in a form which is particu-
larly easy to study for given p, . We wish to know either how to choose
A to make (,/C, zero, in order to suppress a given resonance, or how
to choose 4 to make C,/C, as large as possible, to increase the useful
bandwidth of the crystal.

Clearly the former problem has many, many solutions. If, for example,
pu 1s both positive and negative over the plate area, as will be the case
unless we are dealing with some sort of fundamental mode, we need
only distribute the electrode area A so that the integrals over the posi-
tive and negative portions are equal. The apparent difficulty when p,
is everywhere positive (or negative) can be circumvented by a simple
artifice. We obtained (42) by assuming at the outset that voltages of
the same polarity were applied between all portions of the top and bot-
tom electrodes. If instead we imagine A to be divided into two parts,
AT and A7, with voltages of opposite polarities applied to these parts,

then
ff Pn dﬂh dl',a = ff Pn (']‘L] [i.’L‘:; s ff Pn d'.?ll d.l:;;,
A A+t AT

which clearly can be made to vanish by choosing A™ and A~ so that
the corresponding integrals are equal.

The problem of maximizing the capacitance ratio is mostly visua-
lized simply as a geometric problem. First of all, note that in this case we
may replace p, by its absolute value in the integral in (42), for in re-
gions where p, is negative we may assume that the polarity of the driv-
ing voltage has been reversed. This obviously will always increase the
capacitance ratio over the value it has with unreversed polarity in such
regions. Now we imagine the surface x: = | p.(x1,a3) | to be erected
above the plane x> = 0. The integral over | p, | can then be interpreted
as the volume between this surface and the base plane, cut out by a
cylinder of cross section A. Denoting this volume by V, we then must
choose A to make /A as large as possible. This problem has a very
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simple solution, although one which is not particularly well adapted to
caleulation.

Tirst of all, we observe that, for fived area, to maximize the volume
we should choose 4 to be the region bounded by the appropriate level
curve of | p. |. Any other choice of A, giving the same area, must con-
sist of this region less a subregion plus an external region having the
same area. But the value of | p, | for points outside the level curve is
smaller than for points inside, so that the integral can only be decreased
by this alternate choice.

Let us denote the area bounded by the level curve | p.(x,23) | =
p = a constant by A, and the corresponding volume by V,. We must
now choose A, so that V,°/4, is maximized, i.e., so that

AV, /A,
CodA,
Now the change in V, due to an increment A4, in 4, is pAd4, , since

the height of the surface above the base plane is constant around its
boundary, and thus

d(V,'/A,) _ Vi(2p4, — V,)
A, Az, ’

0.

which vanishes when p4, = %V, , ie., when the volumes above and
below a plane through the level curve are equal. Explicitly, to maximize
the capacity ratio we have the condition

1 -
p:’lp = 2 ff | p“(fﬂl,ﬂ'}a) |d;111d:t'3, (4:0)
A

P

where A, is the total area of the electrode on either plate face, bounded
by the level curve | p.(21,23) | = p, and p, is given by (43) or (44).
We also assume that the electrode polarity is positive when p, is posi-
tive and negative when p, is negative. Since A, must of course be less
than or equal to the plate area, the maximum capacitance ratio given
by (45) may not actually be attained. If this is the case, a plate wholly
covered with electrodes gives the largest possible value to the capacitance
ratio. It may also happen that the maximizing area A, may be partly
bounded by a level curve and partly bounded by the plate edge.

Bechmann and Parsons' have considered the excitation of piezoelec-
tric bars and plates with partially applied electrodes and have obtained
results similar to the above for the capacitance ratio, both theoretically
and experimentally.
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IX. THE LONGITUDINAL VIBRATIONS OF A PIEZOELECTRIC BAR

To illustrate the foregoing results, we now consider a concrete example.
To keep the analysis simple, we treat the example discussed by V ormer’
of the low-frequency longitudinal vibrations of the piezoclectric bar
sketched in IMig. 6. We assume that & < a < L and restrict our discus-
sion to vibrations of wavelength large compared with . Then we may
assume that all the stresses T';; are zero except 7'y, which we take to be
a function of x; only. Thus, for free vibrations,

Th = Tn"(x1),
satisfying the equation of motion
Tui" + pw.w" =0,

and the stress-strain relation

Su' = w," = SllllETlln-
Eliminating 2," hetween these two equations leads to the equation

Tun" + (wn,:/ﬂﬁgTun = 0,
where ¢ = 1/psun”. Together with the boundary conditions

Tw"(0) = TW"(L) =0,
this equation yields

Tu"(ay) = sin nway /L, w, = nme/L.

If we assume that the width of the electrode A at x = a/L is af(x),
as in Fig. 6, we find that the capacitance ratio is given by

¥ 1 2
(;," 21 (f"{) [ f flr) sin nrx d.v] , (46)
C, A 0

Fig. 6 — The erystal bar.
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where k is the piezoelectric coupling coefficient, here given by

Ay = al is the bar-face area, and A is the electrode area, given by
1
A= A [ 1f@) | de.
i}

We must assume that 0 = | f(2) | £ 1, and we may take into account
portions of electrode of reversed polarity by assuming that f(x) may
be both positive and negative.

For the wholly covered bar (f = 1), for example, (46) gives

c, {41&2/?&2, forn =1,3, -+,

[ 0, forn = 2,4, ---.

(Clearly an even excitation, such as the above, cannot excite the odd
modes.) This already provides an example of resonance suppression of
a very trivial nature. In the present case, within the limitations of the
theory, we can actually find an electrode shape which suppresses all

UL I

resonances except one, for the 7y," ’s are orthogonal. Thus, if we set
f(x) = sin mwa,
we find
. k' /4, for n = m,
. 0, otherwise.

Of course, since the applieation of the present simple theory is restricted
to low frequencies, we cannot expect the above to be valid for large n
and m. On the other hand, the low-frequency resonances are sufficiently
widely spaced so that resonance suppression ig of no particular practical
importance in this case. Thus the present example must be taken as
illustrative, rather than practical.

In the present case of one-dimensional vibrations, the level lines of
| p. |, considered in the previous section, are straight lines 2, = a con-
stant. Thus the electrode shape maximizing the capacitance ratio con-
sists simply of a sequence of rectangular bands of suitable widths and
polarities, extending across the width of the bar. To determine the opti-
mum width, it suffices to consider the fundamental mode (n = 1). For
convenience we shift the origin of coordinates to the center of the plate
so that

Tu'(2) = cos (wa1/L) = cos wz,
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and assume that the electrode band covers the interval |z | £ x,. We
must choose o according to (45),

zg
2a f cos mx dz = 2a(2x, cos mxo),
0

or
tan wry = 2770,

which is satisfied by zy = 0.371, which is the value found also by Bech-
mann and Parsons' in this case, i.e., 74.2 per cent of the bar length cov-
ered by electrodes. This maximizes the capacitance ratio €1/C, for the
fundamental mode. The capacitance ratio for overtone modes may be
maximized similarly, since the overtone modes may be imagined to be
made up of a set of fundamental modes for n bars, 1/n in length, set
end to end.

For the fundamental mode, this maximum capacitance ratio is 0.909%*
compared with the values 0.811%% and 0.786k” for a completely covered
bar and for a bar with sinusoidal plating which suppresses all overtones.
Thus we may increase the capacitance ratio about 10 per cent over its
value for the wholly covered bar by the above technique.

A difficulty which we do not encounter with the fundamental mode
shows up when we consider the excitation of the first overtone (n = 2).

(@) L
(b)
SR
(c)
- +

Fig. 7 — Various electrode configurations for excitation of first overtone in
crystal bar.
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In order to excite this mode, we must use electrodes having odd polarity
about the middle of the plate, as shown in Fig. 7. IFor example, we may
use complete (split) electrodes, as in IFig. 7(a), sinusoidal electrodes, as
in Fig. 7(b), or band electrodes, as in Fig. 7(¢). Ispecially in the first
case, there will be a substantial contribution to the total static capaci-
tance from the capacitance between adjoining electrodes of opposite
polarity. This contribution has been completely neglected in our pre-
vious calculations. To make it small compared with the ordinary plate
capacitance, proportional to electrode area, the spacing between adjoin-
ing electrodes of opposite polarity should be large compared with the
plate thickness. This consideration makes the band electrodes [IFig. 7(¢)],
which maximize the capacitance ratio, particularly attractive.

The presence of a substantial eleetrical field component, parallel to
the bar faces, also changes the form of the function p, and thus the
motional capacitance. At high frequencies, with a complicated resonance
spectrum, this field component may excite unwanted resonances. In the
present case of low-frequency longitudinal vibrations, this effect is
probably not important.
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