A Nonlinear Integral Equation from
the Theory of Servomechanisms

By V. E. BENES
(Manuseript received March 28, 1961)

The equation x(t) = s(t) — kxF(x)(), where s(+) is a given signal,
F(-) is a nonlinear funection, k() is the response of a linear system, and
* denotes convolution, describes a general class of servomechanisms. Prop-
erties of a solution x(-) can be established by finding a fixed point in a
specific set of a function space, using Schauder’s theorem.

I. INTRODUCTION

A general class of nonlinear servomechanisms is described by the
integral equation

a(t) = s(t) — f E(t — w)F(x(u)) du, —w <t < =, (1)

where s{-) is an input signal, k() is an impulse response function, and
F(-) is a nonlinear function. The equation (1) represents the system
diagram of Fig. 1, with F(-) as above, and with K( ) the transfer func-
tion corresponding to k(-). We assume that F(-) satisfies the uniform
Lipschitz condition

|[Flx) = Fly) | =8|z —y],

and that F(0) = 0.

A classical method for studying nonlinear servomechanisms like that
of Iig. 1 is to specify exactly the nonlinear element (- ), to assume that
the response k( -) is the Green’s function of a differential operator of low
order, and to use some sort of phase-plane analysis. This method has two
theoretical disadvantages: it lacks generality, and, when applied, it
tends to give more information than is needed; thus it provides detailed
knowledge about a restricted class of cases.

In this paper we shall use a method that has the opposite characteris-
ties: it provides a small amount of highly relevant information about a
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large class of cases. We shall exemplify the use of Schauder’s fixed point
theorem for studying solutions x( - ) of (1) without specifying either k(- )
or F(-) in detail. We establish definite properties of x(-) by finding a
fixed point (corresponding to a solution of the equation) in a specific
set of a function space. Since the funetion space and the set can be chosen
in many ways, depending in part on what properties of x(-) are of
interest, such a method can be used for a wide class of problems. The
theory in the sequel is therefore restricted to sample results for the
function space Ly of square-integrable functions, and is to be regarded
only as a particular example of the method described above.

II. FUNCTIONS OF FINITE ENERGY

In many situations it is desirable that the convolution term

f kit — w)F(x(u)) du
follow the input signal s( - ). The error in this approximation is then x( - )
itself. Tt is then reasonable to work in the space L. of real, square-
integrable functions, i.e., functions of finite energy. Accordingly, we
assume that k(-) and s(-) are in Ly, and we seek to bound the energy
of a solution x(-) of (1).

Now the functions of L. cannot assume values appreciably different
from zero on sets of arbitrarily large measure. Hence they may be viewed
physically as pulses. By restricting s(-) and the solution () to Ls
we are therefore studying the response of the system of Iig. 1 to certain
pulses of finite energy. We shall be particularly interested in finding out
how much of the energy of x(-) lies outside a given time interval.

The norm symbol || - || is used to denote the square root of the energy
of a function. Thus for x(-) in L, ,

21l = ([ 2(t) [ rf-t)*,

and a sequence of funetions {x,(-), n = 0} is said to converge to a func-
tion (+) in Le-norm if || — x, || approaches zero with increasing n.

III. HYPOTHESES AND PRELIMINARY RESULTS

If 2(-) is a function of L. , we let

Tr(w) = (2-:r)_%.fm etz (t) di
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NONLINEAR LINEAR
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Fig. 1 — System diagram of servomechanism.

denote its Fourier transform; for k(- ) € L. , we reserve the special nota-
tion

Tk(w) = K(w).
The operator H on L. is defined by the condition

Hx(t) = fm E(t — w)F(x(u)) du.

Lemma 1: If K(-) is bounded in w, then H is a continuous transforma-
tion of L. into itself.

Proof: Tor x(-) € L, the Lipschitz condition on F(.) yields
| F(x) || = 8] «],sothat F(x(-)) € Lp. It is a known result that the
convolution of two L. functions belongs to Le . Hence Hx € L. Also,
by the Parseval relations,

| He — Hy|*

[ 1K) Pl 7RG = TR [ do

1A

sup | K(w) [Pl F(x) = F(y) |*

1A

Bsup | K(w) [[|la =yl

which shows that H is continuous.
Now let w( -) be a given non-negative funetion of L, , and let S be the
set of all x(-) in L. such that

x(t) | = w(l), almost everywhere. (2)

Lemma 2: S is closed and convex.
Proof: Let x,(-) € S be a sequence of functions approaching x(-) in
Ls . Then for ¢ > 0 and p(-) = Lebesgue measure,

lz = | 2 f |2, — P dt
|zy—x| >¢

= Eult: | x,(t) — x(t) | > €.
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However,

A

[2(t) — za(t) | 4+ [ 2a(2) |
| 2(t) — za(t) | + w(t).
Hence | z(t) | — w(t) > eimplies | z(¢) — za(t) | > eand
plt: | 2(t) — za(t) | > ¢ = wft: [2(1) | — w(t)> d.
Letting n approach infinity on the left, we find that
ft: [2(8) | — w(t) > ¢

| z(t) |

lIA

has measure zero for each ¢ > 0. Hence almost everywhere
lz(8) | = w(?),

and so S is closed. The convexity of S is obvious.
We denote by B the subset of functions x(-) of L, which are “band-
limited” to the frequency interval ( —Q,2), i.e., representable as

Q
(1) = (20) L; () dos.

The physical interpretation of membership in B is of course that the
sinusoidal oseillations into which a function is decomposed by the
Fourier transform are restricted in frequency to the interval (—€,Q);
ie., Te(w) = 0for |w| > Q.

The input signal s( - ), and the response k(- ) will be assumed to belong
to B. If we define the operator J on L. by

Jr(t) = s(t) — Ha(t),

then the range of J is a subset of B. It follows that any solution of (1),
i.e., any fixed point of ./, will belong to B as long as s(-) and k() do so.
Such a “band-limiting” restriction is natural physically, because of the
known attenuation at high frequencies characteristic of physical circuits,
and it will have an important mathematical role in finding fixed points of
J. In particular, we note that /S C B.

To obtain a bound on the amount of energy that a solution x(-) has
outside a given interval, we shall suppose that the non-negative function
w(-) of Ly, used in the definition of S, satisfies the integral inequality

[ s(t) | + _Hf [E(E — ) | wlu) du = w(l). (3)

This inequality may be thought of as defining an associated linear
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problem; it will be used to ensure that Ja(-) belongs to S if x(-) does.
The nonlinear function F(-) enters formula (3) only via its Lipschitz
constant (of order 1) B.

Lemma 3: If (3) holds, and #(0) = 0, then JS C S.

Proof: Let 2(+) belong to S. Then

e £ 15| + [T — ) [P0 | du
< s +8 [ Kt —w | w) dn
= w(t).

Our preliminaries are completed by

Lemma 4: S N B is compact in Ly .

Proof: Let E = ||w|)*. The functions of S N B are (uniformly) equi-
continuous with modulus

20E\' (| sin Qe\'
T Qe '

This follows from the inequalities:

Q
a0 —aw] = e [ e — 1] Te() do

-0

2 3
(2r)" (f le™ — 1] dm) Iz
2

o [* 3
(-Ff (1 — cos we) dw)
T Jop

< (ZQE’y (1 _ sin QeY’
- T Qe ’

the last bound on the right being independent of ¢ and 2(-). Also, the
inequalities

1A

. Q
a2 o [ Te(e) | do
)
< (2m) 7' 20)! |2 |
<

()
T b

show that the functions of S N B are uniformly bounded.
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Since both S and B are closed sets, it suffices (to prove Lemma 4) to
show that S N B is sequentially compact. Let z,(-) € SN B be an arbi-
trary sequence of functions. The @,( ) are uniformly bounded and uni-
formly equicontinuous. By a standard diagonal argument using the
o-compactness of the real line, we can select a subsequence x,( ) which
converges to a function x{-) uniformly on any compact set. We have

la(t) | £ [a(t) — an(t) | + |®alt) [,

ft |x(u) [ du = fl la(u) — an(u) |* du

t

+ 2 f | @m(w) | |2(u) — @n(u) | du + ft | () |2 du.

I'or each fixed ¢, the first two terms on the right of the last inequality
approach zero as m becomes large, and the third term is at most || w ||* =
E uniformly in ¢t. Hence || |* £ K and 2(-) € Ls . Using Minkowski’s
inequality, we find

T — Ty é €r— Iy 2d 7 €T — Ty Ed' %
| a T || (f">{l e | u)-l—([luét!t T | u)
(f Lx(u) [* du)? + (f | () |° a’.u)T

[u] >t jul >t

—I—(f |z — ;t:,,llzd.u).
luj<t

The first two terms on the right can be made arbitrarily small by a large
enough choice of {, uniformly in m; for ¢ fixed, the third term goes to zero
as m — . Hence the wx,(-) converge to x(-) in L., which proves
Lemma 4.

1A

IV. PRINCIPAL RESULTS FOR GENERAL F(-)

Theorem 1: Let s(-) and k(-) belong to B, with K(-) bounded, let
F(0) = 0, and let the integral inequality (3) obtain. Then there exists
a solution x(+) of (1) in the set S N B, with the properties

|x(t) | = w(t) (andso ||z = ||w]),

=15 (2) 10,

x(t) = (2"1_)4] ei”tT‘.]:(w) dw.

=}
—Q
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Proof: J is a continuous mapping of the closed convex set S into its
compact subset S N B. By the “strong form” of Schauder’s theorem,'”
there exists a point 2(-) in S N B such that * = Jx. The properties
listed above are immediate consequences of belonging to S N B.

The following slight modifieation of Theorem 1 involves no new prin-
ciple:

Fxtension: 1f, in addition to the hypotheses of Theorem 1,

Bsup | K(w)| <1, (4)

then to the conclusion of Theorem 1 can be added

[ s]]
— Bsup [K(w) |’

BES

Proof: Let a denote the bound on the right of the last inequality. Then
the intersection @ of S with the closed ball of radius @ is closed and
convex. With condition (4), and x(-) ¢ @, the inequalities

0 ) H
| Jal| < |s] + (f_ﬂ | K(w) [*| TF(2) |* dw)

IIA

' Il + sup | K(w) | || F() |l

lIA

sl + 8 sup | K(e) [ [ 2|

show that JQ < Q N B. Since the topology is Hausdorff, @ N B is a
closed subset of the compaet set S N B, so it is compact. The result
follows from Schauder’s theorem.

V. PRELIMINARIES FOR F(-) NEARLY LINEAR AT THE ORIGIN

It is clear that stronger assumptions concerning the nonlinear function
F(-) are necessary if we are to obtain results that make the energy of
x(+) less than that of s( - ). A particularly important case is one in which

F(t) =t + o(t), as t — 0;
that is, F(-) is linear near the origin.

Let F(-) have the form [where n(k) are integers, n(1) = 1]

=0

Fity = 20" (=1, (5)

k=1

with f, > 0,f1 = 1, n(k + 1) > n(k), the series converging for | ¢ | < p,
where
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p—l = lim sup Ifl: M-
koo

Suppose also that there is a number a, 0 < a < p, such that
au(f\'+l)7n(ﬁ') < fik , f()l' ]n'- 2 1_ (G)
fk+l
Then | ¢| < a implies that F(¢) has the sign of ¢ and
|F() —t] =[], (7)

for then F( -) is represented by a power series of alternating sign whose
terms are monotone in magnitude.

Since we are comparing (1) to a linearized version of (1) obtained by
setting (1) = ¢, we shall need the solution of the resulting linearized
equation: this is a function y( - ) defined by its Fourier transform

_ Ts(w)
Tylw) = m .

Similarly, the closed-loop transfer function of the linearized loop is the
Tourier transform

_ Klw)
Tz(w) = I} + f((m)
of a function z(-). These definitions will be justified in the theorem to be

proved.

By dint of our stronger assumptions on F(-), we can use a different
integral inequality from (3). We assume instead that there exists a real
non-negative function v(+) € L, such that

[ y(t) | +f2f 0" Pt — u) |2(w) | du £ (i), (8)
With this inequality playing the role of (3), the method used to prove
Theorem 1 ean be applied almost without modification.

However, since the integral inequality (8) is nonlinear in (- ), we shall
digress a little and give a sufficient condition for its validity. One way
to do this is to find a non-negative »(-) € L, that satisfies (8) with
equality, i.e., is a solution of the nonlinear equation

o(t) = |y(@) | + f f"’ p" Pt — w) |2(u) | du

(9)
= Mv(t).

We shall show how the classical contraction principle for complete metric
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spaces can be used to find a solution o(-) of (9), i.e., a fixed point of M.
Such a result is exemplified by
Lemma 5: 1f for

* 1 1/In(2)—1]
f}=,hj‘_w|2(il)irl'll< x| a_(bn(‘z))

we have for some § > 0

. Ly
sup [y(u) | < a (1 11(2)) 5, (10)

then the map M is contracting on the ¢losed set ¥V of a(-) € L, such
that
x(-) =0

esssup r(u) = a — 6.

u

v

Proaf: Consider the equation for a > 0,

sup | y(u) | + ba"® = a. (11)
The left-hand side has unity slope at the point @ = «, and the in-

the right. Hence (11) has two roots in @ > 0, and, fora € ¥,
sup | Mx(t) | < sup | y(u)| + fgf " — ) | 2(u) | du
] u —o0

2)

=< sup | y(u) | + ba™

< a — 6.

Thus MY < Y. To show that V is a closed set we reeall that convergence
in L. implies convergence in measure, Let x, € Y converge to x in L ;
then, as n — =,

pit: |, () —a(t) | 2 ¢ —0
for each € > 0. However, almost everywhere we have
—|a(t) —x(t) | = a(t) S |a(t) —a(t) |+ a — 8,
and so

ult: x(t) < *6}1
pit: v(l) 2 a — 6 + ¢

where u(-) denotes Lebesgue measure. Letting e — 0, we find

S pltr|x.(t) —x(t) | = o,
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esssup 2(t) = a — 4,

essinf x(i) = 0.
To show that M is contracting on Y, let x(-) and y(-) be arbitrary
functions in Y. Then

© 3
” Mz — J[y || = fz ([ l T= |2 | T.I‘Mm _ Tynt?} !2 dw)

< fosup | Tz| || — y" .
.

However, on Y

n(2)

I.'L _ yri(?) I é IJ' —y | n(g)(a _ 6)"(2)—l,

|2 = 5™ | < [ =yl a2)(a - 8",

and so, since z € L,

| Mz — My | < fasup | Tz | n(2)(a — 8)"¥ 7 | — y|
< bn(2)(a — )" 2 =y .

But bn(2)(a — 8)"®™" < 1, s0 M is contracting on Y.

Lemma 5 implies, by the contraction principle, that there exists a
unique solution »{-) of (9) in the set Y, obtainable as the limit of
successive approximations starting at any point of V.

VI. PRINCIPAL RESULTS FOR F(-) NEARLY LINEAR AT THE ORIGIN
Let R be the set of functions x( - ) of L that satisfy the condition
| x(t) | = o(l), almost everywhere,

where v( - ) is the function in the inequality (8). The argument of Lemma
2 shows that R is closed and convex, and that of Lemma 4 shows that
R N B is compact.

Theorem 2: If @ > 0 and F(-) have the properties (5) and (6), and
if k(-) and s(-) both belong to B, with k(-) € L, and K(w) # —1,
and if (8) holds with

2 0,211'
-1 2
lol” <=5 (12)

then a solution x( ) of (1) exists in B with the properties
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le(t) [ = (1),

(&) 121

Proof: Since K(w) is continuous, and tends to zero at o, it must be
bounded away from —1; hence by the Wiener-Lévy theorem,**

(14 K(w)]™
is the Fourier transform of an integrable function g(-), and so

Ts(w)[l + K(w)]™

| e(t) |

IIA

is the Fourier transform of a function y(-) of L, N B, and also
K(w)[l + K(w)]™"
is the Fourier transform of a function z(-) of L, N L. N B.
We now write (1) as

x(l) + f (it — w)e(u) du =

s(t)y — fw k(t — w)F(x(u))— 2(w)] du.

Taking Fourier transforms gives
Te =Ty — Tz TIF(x) — x].

We shall therefore consider the equivalent equation

£

a(t) = y(t) — f 2t — ) F(x(u)) — x(w)] du,

= Gualt).

This is of exactly the same form as (1); in particular, G is a continuous
map. To apply Schauder’s theorem it remains to verify that GR < R.
Forx(-) C R,

|Ga(t) | = |ylt) | + f [ Fle(t — ) — 2(t — w) | |2(u) | du.

But [a(-) | = a, by (12); 50 (7) gives
[F(a(t —w) — a(t —u) | £ fu|x(t —w)|"?,
hlv" 0 — ) [, almost everywhere.

Hence (8) implies that | Ge(t) | £ o(¢).
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The energy of the solution of the linearized equation with the input

signal s(-) is
* Ts(w) [ } B
(f_wu_ir K(w) “T“’) = Il

The gain of the closed linearized loop at the frequency w is

K(w)
T+ K(o)

. (13)

It is reasonable to expect that, if the function F(-) is close to being
linear, then the solution x(-) will have an energy close to that of the
linear solution y( - ), in the sense that, for some constant ¢ that approaches
unity as F(-) becomes linear, we have

lal = &llyll
A precise form of this intuitive idea, depending on the linearized loop
gain (13), is given in
Theorem 3: If, in addition to the hypotheses of Theorem 2, it is true
that
K(w)
1+ K(w)

then to the conclusion of Theorem 2 may be added

ol < min ({210 ).

Proof: The intersection V of R which has the closed ball of radius
Iy |l/ (1 = ¢)is closed and convex. With condition (14), and 2(-) €
V, the inequalities

e = a"P 7, sup l <1, (14)

- %

[Ge| =yl + (j | Tz [*| TIF(z) — 2] | (fw)
<yl +sup|Tz| | F(x) — 2|
—S—I‘U!]+C‘]1H§ HUH

(1 —c¢)

show that GV < V N B. Also, V N B is a closed subset of the compact
set R N B. So the result follows from Schauder’s theorem.

The condition (14) used in Theorem 3 relates the maximum gain of the
linearized loop with the second nonzero coefficient f; in the expansion of
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F'(t) around the origin, and with the power n(2) associated with this
cocflicient,.
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