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The theoretical prediction of the Hall constant in metals appropriate to
high magnetic fields depends, in part, on a repeated computation of a
specific topological invariant: Fach of several parallel two-dimensional
planes in crystal-momentum space must be analyzed to find, on a single
sheet of the Fermi surface, the number of nonintersecting closed contours
that surround an arbitrary point. This number is related to the effective
sign of the charge of the “‘relevant’” electronic carriers in the plane — car-
riers whose conlribution to the Hall constant is based on their orbital area.
Applications of the technique discussed in this paper have been made fo
the Pippard model for copper, and various carrier contours are illustrated
that were found in the eourse of three caleulations of the Hall constant in
cases where the magnetic field direction lay along a principal crystallo-
graphic axis.

I. INTRODUCTION

When a current-carrying metallic sample is placed in a uniform mag-
netie field, a change in the resistance is generally observed. This phe-
nomenon, known as magnetoresistance, is the basis for an important
experimental technique for studying the band structure of metals. If a
simple model is taken to represent a metal (i.e., an effective mass ap-
proximation, a constant relaxation time, ete.), then the expected change
in resistance can be theoretically predicted. Even with a more realistic
model, it is found that one experimentally observable feature can still
be predicted, namely, the Hall constant. The analytical expression for
the Hall constant [presented in (4)] is an integral over a family of
parallel two-dimensional planes. For each plane the integrand is pro-
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Fig. 1 — Several Fermi energy contours, shown in heavy lines, generated by
the intersection of the plane P, = constant with a hypothetical constant energy
surface.

portional to the area of that part of the plane surrounded by an odd
number of zero-contours of a function defined in that plane.

Prediction of this resistance parameter turns out in general to be a
somewhat complicated analytical test, and this paper discusses some
interesting aspects of a numerical method developed by the author to
caleulate the Hall constant. In part, the caleulation procedure repeatedly
requires a topological investigation to be carried out on a two-dimensional
plane in order to evaluate a particular topological invariant associated
with that plane.

Stripped of the particular physical problem which motivates the
study, the essence of the topological inquiry is the following: Suppose
there is a container with many pieces of string of varying lengths. The
ends of each piece of string are tied together so that each piece forms a
closed loop. As many loops of string as desired are placed on a table,
subject only to the requirement that they do not touch one another;
it should be emphasized that loops within loops are permitted (see IMig.
1 for a suitable example). Now, select a point on the table not on a
string itself, and ask for the number of loops which surround that point
(thus, for example, point 1 in Fig. 1 is surrounded by one loop, loop a).
This is clearly a topological question, since the number of loops which
surround a point is unaffected by an arbitrary displacement of each
loop — a displacement which in addition does not permit any loop to
pass through the point of investigation.
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A simple pictorial model should help to elarify the role of topology in
the caleulation of the high-field Hall constant. Fig. 2 shows a hypotheti-
cal energy surface with cubie symmetry, composed of “spheres” and
“eylinders.” The intersection of this surface with each of a family of
parallel planes defines the set of contours that are pertinent for the
Hall constant caleulation. For definiteness, consider those planes, two
of which are illustrated in Fig. 2, perpendicular to the [001] axis. If
the plane, like plane a in I'ig. 2, cuts across the cylinders, then it is the
area of the various cylindrical cross sections that contributes to the
Hall constant caleulation. However, for plane b, the second plane shown
in IFig. 2, the contribution to the Hall constant is based on the planar
area oulside the spheres and cylinders, since now the regions in that
plane surrounded by an odd number of contours lie outside the cylinders.
Other planes are analyzed in a similar fashion.

Fig. 2 — A portion of an ideal Fermi surface model of cubic symmetry com-
posed of spheres of radius .1 and eylinders of radius D. The cube edge is of length
B, and represents also the length of the cubie Brillouin zone, which is centered
nhlmlt ou.(&l sphere. Two (001) planes, a and b, illustrate several different planar
orbits.
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In Section 11, we define the customary resistance parameters in terms
of the general resistance tensor that determines the electric field in
terms of an applied current. The analytical expression for the high-field
Hall constant is related to the direction of the magnetic field, the Fermi
surface of the metal, and the symmetry of the crystal. In Section III
those aspects of our calculation procedure that study the topology of
nonintersecting planar contours are discussed in detail, and a logical
procedure is developed, suitable for study with the aid of a digital
computer, by which the “relevant” area may be ascertained in the most
general case. In addition, a brief discussion is included of the significance
of open contours, i.e., those contours that possess a net direction and
never close upon themselves.

Section IV presents some of the numerical results obtained in the
caleulation of the Hall constant for copper. These results are based on
the phenomenological model for copper that was proposed by Pip-
pard." Several figures are shown that depict orbits, both closed and
open, computed for various charge carriers in planes transverse to the
three axes [001], [011], and [111].

1I. BACKGROUND AND ORIGIN OF THE PHYSICAL PROBLEM

In the most general situation, the relation between an applied cur-
rent density (7;) and the induced electric field (£,) is described by a
resistivity tensor (px) according to the equation

By = puji. (1)

Here, and in what follows, all indices run from 1 to 3, and the summa-
tion convention is adopted. In the presence of a magnetic field (H;),
the tensor px; becomes a function of H;, restricted by the Onsager
relations so that py( —H,) = pu(Hn). Two invariant expressions are
commonly taken as descriptors of the resistivity tensor. The first is the
resistivity p, defined by

p = priyuny , (2)
a double summation involving the unit vector n; which is in the direc-
tion of the current j; . The second invariant parameter is the Hall con-
stant Ry , defined by

1 v mHm
Ry = %_), (3)
where, as usual, H° = H;H; and €, is the three-index, completely

antisymmetric tensor defined as +1 (or —1) whenever (klm) is an even
(or odd) permutation of (123). Observe that the resistivity, (2), is
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sensitive only to the symmetric part of the resistance tensor, while the
Hall constant, (3), depends on the antisymmetrie part of p;; .

The theory developed by Lifshitz, Azbel, and Kaganov® and by Lif-
shitz and Peschanskii’ treats conduction in a magnetic field in a very
general way. The underlying picture of their theory is most easily
visualized in erystal-momentum space, the dual space of the ordinary
three-dimensional space in which the metallic lattice lies. At very low
temperatures the motion of the charge carriers in a metal is confined
to a unique energy surface, the Fermi surface; the carrier motion is
also confined to lie in one of the planes in momentum space perpendicular
to the direction of the magnetic field H, . The periodicity of the lattice
in physical space leads to a periodicity of the reciprocal lattice in mo-
mentum space, and the periodicity of the reciproecal lattice is imposed
on the energy surfaces imbedded in momentum space.

If a closed segment of the Fermi surface is contained within a Bril-
louin zone, the fundamental zone of periodicity which we identify with
the usual or “proximity” zone, then the orbits on which the charge
carriers move are all closed contours, when studied for any direction of
the magnetic field. If the region immediately within an orbit contains
energies less than the Fermi energy £/ (a value which defines the I'ermi
surface), then that orbit is said to be “electron-like.” Conversely, if the
immediately interior region has energies greater than £, , then the orbit
is “‘hole-like.”

When the Fermi surface encounters the boundary of the Brillouin
zone, then the periodicity requirement can lead to a connected surface
extending throughout the entire momentum space. For instance, the
simple cubic model in Tig. 2 represents a connected Fermi surface com-
posed of “spheres,” each in a separate Brillouin zone, that are connected
by “‘cylinders.” On such an open surface, some orbits — open orbits —
can have an infinite extension, never becoming closed. In particular,
planar open orbits directed along the eylinders exist for the model il-
lustrated in Fig. 2. Nevertheless, even for open Fermi surfaces, certain
directions of the magnetic field (whose direction dictates the family of
parallel planes on which the orbits lie) lead to all closed orbits; i.e.,
each orbit in every plane is closed, at least in some finite number of
Brillouin zones. The fundamental property of all closed orbits charac-
terizes the class of magnetic field directions for which the Hall constant
Ry can be theoretically predicted. Under these circumstances, the
analytical expression,”

ha . . -1
RH = _)E‘(_/ dpf % pldpn) y (4)
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defines Ry , where h is Planck’s constant, ¢ > 0 is the value of the elec-
tronic charge, and ¢ is the speed of light. The integration over p. repre-
sents a summation over the various momentum planes perpendicular
to the magnetic field; now, and hereafter, the z direction is taken along
the direction of the magnetic field. The domain of integration in (4)
can be restricted to a single Brillouin zone, as will be discussed in Section
3.1.1. The contour integral extends around closed orbits in each p.p,
plane. If an orbit is electron-like, the contour integral in (4) is a positive
number proportional to the area of the interior domain. On the other
hand, if an orbit is hole-like, the contour integral in (4) is a negative
number proportional to the area of the interior domain.

After suitable scale factors are introduced it suffices to study a
completely geometrical factor in the Hall constant, which we call G:
Let p; — P;, where the P; represent appropriate dimensionless vari-
ables; then

G = fa’P: j{ P.dpr,. (5)

This integral is based only on (a) the direction of the magnetic field,
which selects the z direction, (b) the several plane surfaces, fixed in
crystal-momentum space, which define the Brillouin zone boundary,
and (c¢) the Fermi surface, also fixed in crystal-momentum space, on
which the orbits are constrained to lie. In many substances the Fermi
surface is multisheeted in each Brillouin zone. In this case a “G" may
be determined for each sheet independently according to (5); the true
“@" is the sum of the various individual ones. For simplicity, we confine
our further analysis to a Fermi surface with only one sheet.

III. STUDY OF THE GEOMETRICAL FACTOR IN THE HALL CONSTANT
3.1 Computational Procedure

3.1.1 Domain of Integration and Subdivision of the Calculation

The formal definition previously given®? for (4) [or (5)] states that
the integration domain covers all of momentum space (infinite in ex-
tent), but that the redundancy of the total number of Brillouin zones
(also infinite) is to be divided out. The periodicity of the energy surface
suggests that the numerical result obtained from an infegration over
this weighted infinite domain should be equal to the result of a mo-
mentum integration restricted to only one Brillouin zone. Indeed, if all
the closed orbits lay within a single zone (as on a small sphere), then
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the integration domain could readily be restricted to only one Brillouin
zone.

However, when the Fermi surface is open, it is & common oceurrence
that all of the different closed orbits do not lie within a single zone. For
example, for certain directions of the magnetic field, some of the larger
orbits may close only after excursions through a number of different
zones. It is the possibility that there may be some large orbits, which
necessitates the seemingly redundant integration over a correspondingly
larger domain of momentum space, so that within each P.-plane, the
true nature of the larger orbits, i.e., whether they are electron- or
hole-like, may be ascertained directly.

If an independent determination of the nature of all the orbits —
say, a “list” of their electron- or hole-like character — were already in
hand, then @ could be caleulated by an integral over only one Brillouin
zone. This limited integration would be valid because the “list” would
already specify the true nature of any orbit for which only a portion of
that orbit lay on a single plane within one Brillouin zone. It is this gen-
eral scheme that we employ to limit the domain of integration to the
customary first Brillouin zone centered about the point P, = P, =
P.=0.

Must we examine every orbit in an arbitrary P.-plane for our “list”’?
No, fortunately, as the following argument shows. In a fixed momentum
plane, simultaneous electron- and hole-like orbits can exist on a single
sheet of the Fermi surface only if one orbit type encloses another.
Several different orbits are pictorially indicated in Fig. 1, separated by
clear and shaded regions which represent, for example, energies above
and below the Fermi energy. For the particular P.-plane shown in Fig.
1, the geometrical factor G would acquire contributions from the entire
area within the orbit marked @ and also, with the opposite sign, the
entire area interior to the orbit marked b. The net result consists in
including, with a single sign, only the shaded area between the orbits
a and 0. This same line of reasoning applies to the remainder of the
orbits in this plane, so that just the shaded area within the boundaries
of the first Brillouin zone contributes to . As a result only the “shaded
area,” or, as we shall call it hercafter, the “relevant area,” corresponding
to a unique sign of the energy relative to the Fermi energy, enters into
the caleulation of the Hall constant for each plane P, = constant. Thus,
to obtain the equivalent of a ““list” of the orbits suitable for calculating
@, it suffices to study just one point. If this point is surrounded by an
odd (even) number of contours, then it is within (outside) the relevant
area; all points whose energy F relative to the Fermi energy E; is of
the same (opposite) sign lie in the area relevant in caleulating G.
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3.1.2 Certain Orbit Characteristies Determined by a Topological Study

The relevant area in Fig. 1 is independent of whether the interior
points have energies greater or less than the Fermi energy. Indeed, Fig.
1 graphically illustrates the following property: Every point in the
relevant area is enclosed by an odd number of closed orbits. For example,
point 1 is within a shaded region of Iig. 1 and is enclosed by one loop,
and so on for points 2 and 3. Furthermore, this characterization of the
points in the relevant area is invariant under any deformation of the
contours such that no contour passes through the point under study.
This invariance property is topological in nature, being independent of
specific details of the orbit shapes.

In order to accurately determine the number of contours surrounding
a given point, a portion of the plane P. = constant must be *“scanned”
— a portion generally much larger than that lying in the first Brillouin
zone. Orbits which surround a point can only be found if they are ac-
tually encountered in the investigation; however, the restriction to a
finite region of investigation is not serious in practice.

In the selection of a logical procedure to find the number of contours
enclosing a particular point, simplicity is certainly a desirable feature.
One very simple means of counting the contours (modulo 2, which is all
that is necessary here) would seem to be the following: Pick a point
not on a contour (i.e., £ = FE;) and, starting there, investigate the
energy values for a large sequence of closely spaced points all lying in a
straight line. If an odd (even) number of crossings of the Fermi energy
is found, the original point lies inside (outside) the relevant area. This
intuitive procedure is, unfortunately, not always correct. Fig. 3 illus-
trates a set of contours in a fixed plane and shows three possible paths
that could be used to determine the topology using the preceding scheme.
Both paths 1 and 2 encounter three contours, and both emanate from
shaded regions, i.e., relevant regions, as would be predicted by the
above rule. However, path 3 illustrates the difficulty with this tech-
nique, In this example, the path ends inside a “sand-trap,” and only
two contours are encountered. Thus, we would erroneously conclude
that the initial point did not lie within the relevant area. Clearly, a
more sophisticated procedure of investigation is required that avoids
the possibility of ending in a “‘sand-trap” by skirting around it.

Several alternate schemes of investigation come to mind which have
the desired property of skirting around ‘“‘sand-traps.’” In each of these
an original test point is selected, and a series of points lying in some
preselected straight line are tested for the crossing of a Fermi surface
contour. If a contour is encountered, the confowr is then followed, by
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Fig. 3 — Fermi energy contours in a plane of fixed P . Three different paths,
directed as shown, are tested in an attempt to determine where the shaded or
“relevant’’ area lies.

always turning (with no loss of generality) initially to the left. The
schemes differ in how far the contour is followed before the path leaves
it.

One suggestive scheme has the path leave the contour as soon as it
can proceed, without crossing the contour itself, in a radial direction
whose origin is the original test point. A simple study reveals several
fallacies in this scheme. Another scheme, of slightly greater complexity,
has the path follow the contour until an extension of the original straight
line of investigation is first encountered. At this point the path leaves
the contour and continues in the original direction searching for a new
contour. This scheme is likewise not foolproof in general, and must be
abandoned. Among the contours it fails to analyze correctly is one
shaped like the letter (3 if the test point is below the “hook” and the
direction to be followed is upwards. Of course, in the general case, the
loeation of the original point and the direetion of inquiry are quite
arbitrary, relative to the position and orientation of the contours to be
studied.

The method of investigation illustrated in I'ig. 4, although still more
complicated, leads to an accurate count of the orbits surrounding any
point. When a contour is encountered in the present scheme, that con-
tour is followed completely until the point is reached at which the contour
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Fig. 4 — A satisfactory means of investigating an arbitrary layout of contours
to establish the number of orbits which surround any point. It is applied here to
a plane of fixed P, that contains two distinet contours.

was originally engaged. While the entire contour is being examined,
the number of points on the contour are counted that lie along a line
which is an extension of the original line of investigation. Whether this
number is odd or even determines whether that contour does or does
not, surround the original test point.* After the contour is completed,
the path jumps to the furthest of these points, and then proceeds radially
again along the original direction searching for a new contour to study.
If a new contour is found, it is studied in completely the same fashion.
IFig. 4 schematically illustrates the steps in a complete study of one
contour by the present technique: the quest for the contour, the entire
tracing of the contour, and the subsequent leaving in the original di-
rection to continue the topological investigation. This investigation
procedure is the one employed in the topological study of the various
P.-planes in calculating the geometrical part of the Hall constant by (5).
A straightforward numerical integration, not discussed here, was used
to determine the appropriate area in each plane that contributes to G.

* The more lengthy procedure of Sulﬁming the polar angle variations along the
contour can and has been used. This method can provide an exact count of the

number of contours surrounding the original point, rather than an exact count
modulo 2 provided by the method discussed in the text.
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3.2 Additional Features of a Calewlation Encountered in Practice

It was pointed out in Section IT that the Hall constant cannot be
theoretically predicted on the basis of (5) for magnetic fields which lead
to a sizable, or nonnegligible, number of open orbits. However, this
does not mean that open orbits will not be encountered in practical
caleulations of the Hall constant. On the contrary, open orbits may be
present for one of several reasons. For example, all the magnetic field
directions which support open orbits may not be known a priori for a
phenomenological IF'ermi surface; only by trial and error can all such
directions be discovered.

Another reason why open orbits may be encountered is based on the
fact that numerical computations on digital machines can never be
made with absolute precision. In particular, in the technique employed,
a path of investigation is said to follow a contour so long as the value
of the energy K satisfies the relation | E — E;| < ¢, where € is a small,
nonzero number (e & 107'E,), fixed by the gradient of the energy func-
tion and by practical computation requirements. It is entirely possible
that two closed orbits which come close to each other cannot (computa-
tionally) be distinguished from a single connected orbit if the energy
values satisfy | £ — E;| < e along some path that connects the con-
tours. If a sequence of closely spaced closed orbits exists, an error may
be repeatedly or even unpredictably made, so that the path of investiga-
tion does not close. While the likelihood of errors being made decreases
as e is made smaller, a proviso must be made for encountering either one
of two types of “open” contours: (a) valid open orbits for which the
path proceeds through momentum space along an open contour possess-
ing a net directivity, or (h) “lost” open orbits, which may or may not
indicate the presence of true open contours, for which the path of in-
vestigation gets lost and wanders rather aimlessly throughout momen-
tum space. The first type of open orbit, i.e., a valid open orbit, is de-
tected to a high accuracy by placing an upper bound on the radial
distance from the test point that the path travels in momentum space;
the second type, i.e., a “lost” open orbit, is sensed by an upper bound
on the number of individual points of investigation that can be made
along any single contour. Whether an open orbit declared “valid” is
truly open or just part of an exceedingly extended closed orbit is not
too important, since the magnetic field is, after all, finite, and greatly
extended closed orbits become indistinguishable from open orbits when-
ever the orbit circumference ¢ divided by the mean free scattering length
[ is comparable with the magnetic field strength, suitably normalized.
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Such considerations can in fact act as a guide in selecting the upper
bounds placed on the path’s excursion.

The presence of open contours generated by ‘‘tunnelling through an
energy barrier’ (i.e., along a path such that | £ — £;| < €) is not
necessarily an academic case when e is small. There is a small but very
important class of magnetic field directions that lead to both closed and
open orbits, but to the latter only on a set of P.-planes of measure zero.
The hypothetical connected Fermi surface illustrated in Iig. 2 is one
for which sets of open orbits of measure zero exist when the magnetic
field is along the principal crystalline axis [001], or equivalently along
either the [010] or [100] directions.

Even in the presence of an infinitesimal number of open orbits, the
geometrical part of the Hall constant is still theoretically predicted ac-
cording to (5), since the contribution from those few P.-planes is negli-
gible. In fact, those magnetic field directions that lead to a negligible
number of open orbits are often among the most interesting, for they are
axes that possess high symmetry. When a Hall caleulation is carried out
for such a direction and one of the few open orbits is encountered (in
one of the two ways discussed above ), that entire P.-plane is disregarded;
no investigation of the size of the relevant area is or even can be made.
Since the open orbits are ideally of zero measure, they should be en-
countered in the computation on at most a few of the large number of
parallel planes studied that are perpendicular to the magnetic field. An
open orbit of this kind, ideally belonging to a set of measure zero, will
be illustrated in the next section.

Finally, there is some additional information that can be found from
a knowledge of the extent and of the directions of the open orbits them-
selves. This additional information pertains to the expected behavior of
the other magnetoresistance parameter, the resistivity p defined in (2).
Generally speaking, it follows from theory”” that, on the one hand, the
resistivity saturates in a high magnetic field for those magnetic field
directions which lead to all closed orbits, and, on the other hand, the
resistivity continues to increase as H* for those magnetic field directions
which possess a nontrivial set of open orbits, all of which lead off in the
same net direction. Thus, to predict qualitatively the resistivity behavior
for various magnetic field directions, it suffices to study the geometrical
shape of the Fermi surface in order to see for which directions of the
magnetic field open orbits are permitted.

‘'onversely, the analysis of high-field resistivity data gained from
measurements on high-purity metal single crystals is one of the best
means available to gain information regarding the topology of the Fermi
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surface, and even to provide some quantitative limitations on the shape
of the Fermi surface. Therefore, a valuable auxiliary feature of a general
procedure to calculate the Hall constant is the ability to shed some light
on the expeeted resistivity behavior of a particular Fermi surface model
by displaying the open orbits that are encountered for an arbitrary
magnetic field direction. Preliminary discussions of the interpretation
of the observed resistivity behavior for copper have been given else-
where,"”*" and an extensive paper is in preparation in collaboration
with J. . Kunzler that will discuss magnetoresistance measurements
and their explanation in some detail.

1V. APPLICATION TO METALS: COPPER

In this section we present some of the results of Hall constant analyses
for a particular model of the Fermi surface of copper. Copper, or any
of the noble metals, is particularly attractive for a discussion of the
present type, since it involves a Fermi surface with only one “sheet”;
the essential ingredients needed to discuss more complex metals are
present without any unnecessary complications.

Copper has a face-centered cubic space lattice whose cube edge is
3.61 angstroms long. It follows that the reciprocal lattice in erystal-
momentum space is body-centered cubic. The Brillouin zone that is
characteristic of this lattice is an octahedron, truncated by a cube at the
six vertices. If we make use of the cubic symmetry, then two inequiva-
lent planes suffice to define the Brillouin zone boundary: one face per-
pendicular to the [111] axis — this face forms one of the eight surfaces
of the octahedron; and three equivalent faces perpendicular respectively
to the [100], [010], and [001] axes — these faces truncate the octahedron.

Because copper has only one valence electron, the region within the
first zone that is also contained within the Fermi surface must equal one-
half the total volume of the first Brillouin zone. Subject to this volume
requirement, the confining surface may, in principle, be arbitrarily de-
formed. Suppose, as an extreme, the Fermi surface assumes the free-
electron spherical shape. It is readily deduced from the volume con-
straint that this sphere does not intersect the boundary of the Brillouin
zone, although it does come close to the octahedral faces. In this case
the Fermi surface would consist of a number of disconnected spheres,
each lying completely within a separate zone of periodicity. Only elec-
tron-like orbits would exist; no hole-like or open orbits would be pres-
ent. Consequently, the Hall constant would depend on the sum of all
the electron-like areas, i.e., it would depend simply on the volume within
the Fermi surface. The observed Hall constant would be the same for



1362 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1961

any orientation of the magnetic field, and by (5), ¢ = Giee = 3, ex-
pressed in units in which the volume of the Brillouin zone is unity. Such
a state of affairs would be present if the conduction electrons were free
and felt no perturbing influence from the lattice.

In real copper the electrons are, of course, not free, and the Fermi
energy surface deviates from a simple sphere. Pippard' in 1957 was the
first investigator to successfully derive a phenomenological, nonspherical
Fermi surface for copper. Speaking picturesquely, the surface he found
from anomalous skin effect measurements possesses “‘arms” or ‘“necks”,
which extend outward from the Fermi surface, that actually contact the
hexagonal Brillouin zone faces associated with the <111> directions, i.e.,
the [111] and equivalent directions. Each area of contact is about 10
per cent of the area of one of the hexagonal zone faces. The Fermi sur-
face of copper therefore consists of a sequence of sphere-like ‘‘bodies”
situated on a body-centered lattice that are completely interconnected
by “arms” which lie along <111> directions.

An “arm” along one of the <111> directions supports open orbits whose
net direction is along the same <111> direction. However, in copper (and
surely in various other metals) the shape of the “bodies” and “arms”
is such as to provide support for open orbits along additional directions.
The origin of the support for additional open orbits is straightforward
and is discussed elsewhere.” Resistivity measurements bear out in detail
the presence of the primary open orbits along <111> directions, as well
as additional open orbits that the <111> “arms” support,” principally in
the <100> and <110> directions.

[010]

Fig. 5 — Contours on the Pippard Fermi surface in the . = 0 plane transverse
to the [001] axis. The topological path of investigation proceeded along the dotted
line and around the contours in the direction of the arrows. This plane was deter-
mined to be electron-like since at the initial point ¥ < E; .
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The periodic energy surface determined by Pippard has been expressed
to an accuracy of 1 per cent by Garcia-Moliner’ in terms of a three-
parameter Fourier series. His analytical expression has been employed
in caleulations on IBM 704 and 7090 computers to study the Hall
constant for various directions of the magnetic field, based on the pro-
cedure developed in this paper. In these caleulations, electron-like, hole-
like, and open orbits were all encountered. Some of the contours that
are present when the magnetic field is along either a <1005, <110>, or
<111> type direction are shown in Figs. 5 through 9. In these figures
the path of investigation is explicitly exhibited by which the relevant
area was determined according to the procedure indicated in IMig. 4:
The dotted line denotes that part of the path, always proceeding to the
right, for which contours are heing sought. The heavy line or lines repre-
sent the part of the path on which, in the direction indicated by the
arrows, a contour on the Fermi surface is being followed.

Iigs. 5 through 7 represent the behavior in three parallel (001) planes,

[010]

[100] —>

Fig. 6 — An open contour on the Pippard Fermi surface in the P. = 0.585 [if
center to (001) face of Brillouin zone = 1] plane transverse to the [001] axis.
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[ore]

[ |

Fig. 7 — Contours on the Pippard Fermi surface in the P. = 0.575 plane trans-
verse to the [001] axis. This plane was determined to be hole-like since at the ini-
tial point £ < K, .

the first at >. = 0, which shows the contours of electron-like behavior
around the “belly” of the Fermi surface. Iig. 6 shows an open orbit,
ideally belonging to a set of measure zero, located on the (001) plane at
P. = 0.585, where for present purposes the distance to the (001) face of
the Brillouin zone boundary is taken as unity. Just a short distance be-
low this plane, at P, = 0.575, the carrier behavior is quite different, be-
ing hole-like; the I'ermi surface contours for this plane are shown in
Fig. 7.

In Tig. 8, hole-like contours are illustrated that lie in the P. = 0
plane when the magnetic field is along the [011] axis. Oscillations in gold
and silver of similar so-called “dog-bone’ orbits have been observed in
de Haas-van Alphen experiments.”

T[oﬁ]

Fig. 8 — Contours (“dog-bone’” orbits) on the Pippard Fermi surface in the
P. = 0 plane transverse to the [011] axis. This plane was determined to be hole-
like since at the initial point E < Ky .
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T{nz]

Fig. 9 — Contours on the Pippard Fermi surface in the PP, = 0.866 plane trans-
verse to the [111] axis, which is tangent to one of the hexagonal faces of the Bril-
louin zone. This plane was determined to be hole-like, since at the initial point
I < E;.

Iig. 9 shows the contours found when the magnetic field was in the
[111] direction and the particular plane of investigation lay on the sur-
face of the Brillouin zone, i.e., P. = 34/3 = 0.866, expressed in the
same units as above, The small contour represents a cross section of one
of the “necks” which connects the gphere-like “bodies.” However, the
large hole-like contour, which surrounds the small one, determines the
behavior in the plane for purposes of the Hall constant calculation. An
investigation of the contours that terminated before the first big con-
tour had been reached would have given an erroneous result, although
it would have covered all of the area within the first Brillouin zone.

In the planes transverse to either one of the two types of symmetry
directions, <100> or <111>, closed orbits of both electron- and hole-like
character exist in different planes, this being possible because, by rota-
tional symmetry, only a finite (henee negligible) number of intermediate
planes can oceur that contain open orbits. This is not the case for copper
if the magnetic field lies along a <110> direetion, and the analysis of this
particular direction requires an individual study, which will be given
presently. For the former two symmetry directions the predicted and
observed" values of the geometrical factor ¢ — divided by the free-
clectron value (; — are tabulated along with the Hall constant Ry in
Table I. The ratio (¢/(; measures the effective number of metallie elec-
trons that are contributed per atom. The observed Hall voltage is very
sensitive to field orientation in the neighborhood of the <111> direction,"
and aceounts for the increased experimental uncertainty. This extreme
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sensitivity with orientation can be readily understood: It is due to the
rapid transformation of hole-like regions similar to that illustrated in
Fig. 9 into electron-like regions as the magnetic field orientation deviates
from a <111> axis.

When the magnetic field is in, say, the [011] direction the Fermi sur-
tace of copper supports not only planes of hole-like or electron-like be-
havior separated by a finite number of planes with open orbits, but also
a small yet nontrivial band of planes that support [100]-directed open
orbits. In principle, these open orbits are broken into very large but
nevertheless closed orbits if the magnetic field i reoriented very near
to the [011] direction with a slight component along the [100] direction.
If the angle of deviation from the [011] direction is small, then only an
an extremely small number of any new open orbits could have been in-
troduced. Consequently, it appears quite permissible to treat the Hall
constant in the immediate neighborhood of a <110> direction as numer-
ically significant #f the magnetoresistance exhibits a point of saturation
in the proximity of the <110> axis, which indicates that at some point
open orbits were actually absent experimentally, and if the measured
Hall voltage is a smooth function of the magnetic field orientation in
that vicinity. The experimental results support both of the requirements
in question: The magnetoresistance shows a point of saturation near the
<110y axes,* and the Hall voltage shows a broad flat peak in the neigh-
borhood of the <110> directions.”"* Thus this Hall measurement is signifi-
cant, and it was used to obtain the observed Hall constant for the <110>
directions shown in Table 1. The theoretically caleulated value for Table
I was computed by assuming that the magnetic field was along the
[011] axis, so as to determine the prineipal contribution, including that
from the hole-like regions. The band of planes with open orbits, which
was actually detected, was then reinterpreted as a band of planes hav-
ing electron-like behavior, the behavior each of these planes would ac-
quire if the magnetic field were tilted ever so slightly in the [100] direc-
tion.

The precision of the various Hall constant predictions is estimated at
1 to 2 per cent. Better agreement with the experimental Hall constants
can be obtained if a I'ermi surface model is used whose ‘“‘arms’ or “necks”
are increased in diameter. With fatter “arms,” more hole-like planes,
such as in Figs. 7 and 8, will be present for fields along <100> and <110>
axes, and, as o consequence, higher Hall eonstants would be predicted.
It is interesting that the results of de Haas-van Alphen measurements'

* See Ref. 7, especially Fig. 1b, which shows the saturation behavior near to an
[011] axis.
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TasrLe I—A CompariSON BETWEEN THE PREDICTED AND OBSERVED
Harn ConsTaANT FOR THREE INEQUIVALENT FIELD
ORIENTATIONS IN COPPER

Predicted* ‘ Observedt

Magnetic Field
Directions | T |
G/Grree ‘ Rut G/Grree | Rut
<1002 .71 10.3 | 0.59 C 126 £ .5
<110> .72 10.2 0.65 . 11.4 + .5
<111> I .32 22.7 0.37 20.0 & 5.0

* Based on the Garcia-Moliner? expression of the Pippard Fermi surface of
copper. .

1 Based on the data of Kunzler and Klauder.!!

1 The numbers in this column when multiplied by 1072 represent the Hall
constant expressed in volt-em/abamp gauss.

also suggest that a more realistic copper Fermi surface would have fatter
“arms” than the Pippard model.
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