Ultimately Periodic Solutions to a Non-
Linear Integrodifferential Equation
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Tychonov’s fixed point theorem is used to study the existence of ullimately
periodic solutions of an integrodifferential equation that arises in the theory
of the phase-controlled oscillator. The principal result deseribes conditions
under which solutions of the equation exist which have a given ultimate period
T, not necessarily the minimal period.

I. INTRODUCTION

Let A(+) be an integrable function of integral unity, vanishing for
negative argument; let e, w, and x(0) be constants; and let f(-) be a
periodic function of period (say) 2w. It is of interest to know what
choices of h(:), @, w, 2(0), and f(-) give rise to asymptotically
periodic solutions of the equation

T=w— af h(t — w)f(x(u)) du (t = 0). (1)

This equation arises in the theory of various synchronization phe-
nomena. (Cf. Refs. 1, 2, and 3 and references therein.) For example, the
synchronous motor and the phase-controlled oscillator are devices often
described by (1). Ior a specific physical application, we consider the
phase-controlled loop depicted in Iig. 1 and deseribed in detail by
Goldstein,” ¢.v.

The system is described by the equations, in ¢ = 0,

@,(1) = w, + av(t)
¢i(l) = w, + wll)
a(l) = ¢i(t) — @u(t)

v(t)

Il

f h(t — w)f(x(u)) du
0
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Fig. 1 — Phase-controlled loop.

where w, is the center or “free-running” frequency of the oscillator,
¢o(+) is the instantaneous phase of the output of a voltage-controlled
oscillator, ¢:( -) is the instantaneous phase of an input signal (driving
function, h(-) is the impulse response of a filter with de gain unity,
f(+) is a periodic phase comparator characteristic, and « is a gain con-
stant. If the initial phase difference x(0) is given, w(t) = 0 for ¢ <0,
and w(f) = wfor t = 0, we obtain (1); these conditions describe a sud-
den step of size w in the frequency of the input signal.

Since the system described by (1) is autonomous, one may conjec-
ture that a solution x(-) of (1) is always ultimately periodie, if we count
identically constant functions as periodic. The present paper attempts
to shed light on the question: what choices of w give rise to an z(+)
satisfying (1) with a given ultimate period 77 We shall investigate
solutions of (1) that are ultimately periodic in the following sense: a
function y( ) is ultimately periodic with period T if there is a periodie
function p,(-) of period T such that

lim y(nT + 1) = pu(t)  (te[0,T].
In this case we say that () is u.p. [T, and write p,(-) for the periodic
function approached by y(-). The number 7' is not necessarily the
manimal period.

If h(-) is the Green’s function of a differential operator of low order,
the nature of solutions of (1) can be studied by the classical phase-plane
method, as by Barnard.” To retain maximum generality and to exhibit
(to some extent) the core of the problem, however, we shall use Tych-
onov’s fixed point theorem. The possible novelty of our approach lies in
using Tychonov’s theorem to obtain specific asymptotic information
about solutions 2( - ) of (1) by finding a fixed point (corresponding to a
solution) in a relatively small region of a function space. This is achieved
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by verifying some local properties of the operator whose fixed point is
sought, and ensuring that a particular set is mapped into itself. A similar
method has been used on (1) by the author in a previous paper* discuss-
ing the question whether #(¢) approaches zero for large (.

II. PRELIMINARY CONSIDERATIONS

We rewrite (1) as the functional equation

g(t) = f(;t:(O) + ot — af n(t — w)g(u) (ht) t=z0 (2)

where
7(t) = f‘ h(uw) du (= 0)
() =1
g(t) = f(x(t)) (tz0)

and we seck an ultimately periodic solution g(-) of (2) in the space
B ~ C of bounded continuous functions. However, what periods 7' > 0
should be considered? If we choose a period T arbitrarily and define an
operator J by

Jf(.l:(_O) + ot — a ft n(t — w)g(u) du) (t=0)
Jg(t) = ] !

(2(0)) (t=0)

then even if g( - ) is ultimately periodie with period 7', we have no guaran-
tee that the image function Jg(-) is w.p. [T, or that it is ultimately
periodic at all. This circumstance is due to the presence of the constant
w in the definition of J, which has no immediate relation to g(-) or to a
specific period T of interest.

We next observe heuristically that if g(-) is u.p. [T, then Jg(-) can
be w.p. [T] only if w bears a suitable relation to both the period 2 of
J(+) and the desired period T. Roughly speaking, one effect of the
integration in (2) is to subtract a linear term ¢t from the linear term
wt already present; the coefficient ¢y will be proportional to the mean
(over a period 7') of the periodic funetion p,(-) to which g( -) is asymp-
totic; the remainder of the contribution of the integral will be u.p. [T).
It is intuitively clear that ey should have the form

r
o = %j{: po(u) du.
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Let a(-) be a function of period 7. Then certainly the function de-
fined by
Slot — et + a(t))
will have period 7' if

2nm
TT

w=c + (n an integer). (3)

For in such a case
flw — et + (0 — )T + a(t + T)] = fl (& — )t + a(t)].

In view of this, we shall allow the “constant” w in (2) to depend on
the function g( -) being mapped according to (3), for a fixed choice of
n. That is, we define a transformation A(-) of g(-)’s that are u.p. [T

by

f (.r(O) + wt — a ft n(t — u)g(u) du) (t=z0)

Ag(t) = ! (4)
f(x(0)) ‘ (t £0)
wy = 2—?;75 =+ % j;T pg(u) du (n fixed).

By this device we shall be able to consider an arbitrary period T.

I1I. SUMMARY OF HYPOTHESES AND RESULTS
If h(-) is the impulse response of a physically realizable network then
i
n(t) = f h(u) du is its response to a unit step-function, and n( =) is
0

its de gain, here taken to be unity. The function () = ( w) — n(t),
¢ = 0, is basic to much of our discussion, and is assumed to be absolutely
integrable. The integral

fﬁ (=) — n(u)] du = f;w Y(u) du (5)

0

can be invested with physical meaning as follows: a partial integration,

t t
f wh(w) du = tq(t) — f n(u) du
0 n

(1) — n( )] +f0 w(u) du
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and the observation that #( ) — n(¢) = o(f™') as t — =, show that
(5) is the “mean” of h(-), i.e.,

f: v(u) du = f: wh(u) du.

The integrable function A(-) has a Fourier transform H(-) defined by
H(s) = (2x)7} f e“"h(u) du (s real)
0
and the absolute convergence of (5) implies that

H'(0) = i2m)™ [ w(w) du,

The derivative of H(-) at s = 0 is closely related to the phase character-
teristic of the network whose impulse response is h(-). For upon repre-
senting H(-) as

H(s) = A(s)e™"™
we find
H'(s) = A'(8)e™™ + ip'(s)H(s).

The amplitude characteristic A (- ) is a real, even funection, so 4’(0) = 0.
The phase characteristic is representable as an arctangent, so ¢’(0) = 0
in general. Since 4(0) = 5(%)(2r)"* = (de-gain)(27) ", we have

H(0) = (k):rﬁ X de-gain X coeflicient of s in Taylor’s expansion

of () around zero

i(??r)fijn‘ Y(u) du.

We shall call ¢'(0), the derivative of the phase characteristic of H(-)
at the origin, the delay of the network, so that

f Y(u) du = (de gain) (delay) .
0

A condition on the function y( ), stronger than integrability, will be
used. This is that

t+G+0T
m= s [T e Gz 0) (6)

0<t=<T YtHiT
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be an absolutely summable sequence. The magnitude of ¥(-) measures
to a certain extent the speed of the response of the network whose im-
pulse response is h( - ) ; our condition requires that this speed be sufficient
to make Zh finite.

We shall assume that the non-linear function f(-) is Lipschitz of
order 1 with a constant 3,

[f(z) —fp) | =Blz—yl.

To obtain an estimate of the rate of convergence of a solution z(-)
of (1) to a periodic function, and to verify the compactness condition
needed for use of Tychonov’s theorem, we shall assume that a positive,
absolutely summable sequence {k; ,j = 0} exists, satisfying the integral
inequality

o T 3 ki + sup | f(u) | Z hi + E ki_h] < 87%k; (7= 0). (7)

:>J

Under these hypotheses we shall prove that for each n, there exist a
value of w, a corresponding solution z(-) of (1), and a function g(+)
that is ultimately periodic of period T, such that

() = g(t)
|f(xGT + 1) — p,(0) | £ k;. (Le[0,T]) (= 0)

@ =w, = 2n-.-r f p,(u) du.

[

In a corollary we give a condition under which the constants w for various
n are all distinet and lie roughly on a lattice.

IV. TOPOLOGY

In the linear space B ~ C of bounded continuous functions we intro-
duce a topology by means of the metric (distance function):

d(gi,g) = 212- max | qi(z) — ga(2) |

—nSTEn

+ sup lim sup [ {gr(nT + 1) — go(nT + D)} .

The sum term defines a metric for the topology of uniform convergence
on compact sets, and the other term (so to speak) “strengthens” the
topology at infinity. The number T' > 0 occurring in the metric is a
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parameter, the period of interest. The d-topology so defined is convenient
for studying solutions of (1) that are u.p. [T].

Since the metric d(-,-) depends only on the difference function
i — go, it is invariant under translation to zero

d(gi,g2) = d(g1 — ¢2,0).
Also it ean be verified that for @ > 0,
d(agy, ag:) = ad(g, g2).
Let S.(g) denote an open sphere of radius ¢ about an element gin B ~ C,
S(9) = {old(g,9) < 4.
Let g, and g, be elements of S.(g) and consider a convex combination
gy + aoge (1,02 = 0, a + a; = 1).
Then
d{mgy + aags, g) = d(agy — g + axg: — axg,0)
d(mg — a1g,0) + d(asg: — asg,0)
ad(gy, ) + axd(gs, g)

€.

A TIA

A

Hence S,(g) is convex. The family of such spheres is a base for the d-
topology consisting entirely of convex sets. Hence with the d-topology.
B ~ ('is a locally convex, linear, topological space (Cf. Ref. 5).

V. PRELIMINARY RESULTS

We define a modulus m(-) of continuity by the equation
m(|e]) = 8|e| {2’1ﬂ + 2 sup | /() | sup | n(uw) [}

+8 sup [ |wlt+5) — g0

18]=]e] “0
Lemma 1: If g(-) is u.p. [T], and
sup | g(u) | = sup [ f(u) |

then Ag(-) has modulus of continuity m(-).
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Proof: The mean value (first Fourier coefficient) of the limit function
Pyl +) is at most sup | f(u) | in magnitude. Hence

(e
| Ag(t + €) —Ag(t)léﬁlelwﬂLBM n(t + e — wg(u) du

e8] [+ = w) = a = 0ot du

<8 12—”—“’5 + 2asup | 0] sup | n(0)]

AN

e —u) — ¢(t — wlg(u) du

< m(|e|)

by a known result of Lebesgue (Ref. 6, p. 14).
Let S be the subset of B ~ (' consisting of the functions g(-) with

the properties
(i) There is a continuous function p,(+) of period T such that

lgGT +t) —p(&) | £ k5 (£e[0,T] (72 0).
(i) sup | g(w) | = sup | f(w) |
(#4) g(-) has modulus of continuity m(-).
Lemma 2: S is compact.
Proof: To show § is closed, let {zn} C S be a sequence converging to

+. The secand term of the d(-,-) metric ensures that p,,(¢) converges
as m — oo, uniformly for ¢ £ [0,7]. Denote the continuous limit funetion

by p(-). Then
|2GT + 1) — pa) | < [2GT + 1) — 2aGT + 1) |
+ | 2u(fT + 1) — pe, (1) |
+ | 2, (8) — pa(D) |-
With j and ¢ € [0,T] fixed, let m — = ; the first and third terms on the
right go to zero; the second is at most k; , for all m. Hence
2T + ) —p(t) | = k5 (Le[0,7]) (52 0).
Also
|zt + &) —x(t) | S 2t + ) — xu(t + € |
+ | 2(t) — au(t) |
+ |t + € — aalt)].
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Letting m — o for fixed ¢, the first two terms on the right vanish; the
last is at most m(e) for all ¢ = 0. Thus x(-) has modulua of continuity
m( ), and g0 belongs to S. Hence S is closed.

Also, for y ¢ Sand ¢ € [0,T],
[Pt + e —p(O)| S [plt+ 0 —y(GT +t+ |
+ [ p(t) — yGT + 1) |
+yGT +t4 ) —yGT + 1) |.

With ¢ and e fixed, let j — < ; the first two terms on the right vanish,
and the last is at most m(e€) for all j = 0. Hence, for y ¢ S, the limiting
period funetion has modulus of continuity m(-).

Now let a, be an arbitrary sequence of S. From the associated se-
quence p,,, of periodic funetions we can pick a subsequence converging
uniformly on [0,7] to a function p(-). From the w,’s associated with
this subsequence we can pick, by a standard diagonal argument, a fur-
ther subsequence xyny ¢ = 1, 2, - -+ such that for some x £ S

2r(iy — @ uniformly on any compact set
Pryiy — P uniformly on [0,71].

Then ;) converges to x in the d-topology, so that S, being closed and
sequentially compaet, is compact.

Lemma 3: AS C S

Proof: In view of Lemma 1 and the form of A, it sufficies to show that
A preserves the defining property (7) of the set S. Accordingly, let
g(+) € 8, and define the periodic function p,,( ) of period T by

2mn

Pagt) = f(L(O) + ft + a f: [po(u) — g(u)] du

+ af [Mp, — p,(u)] du + f ot — w)y(u) du
0 0

where Mp, is the mean value of p,(-). We shall show that
| Ag(GT + 1) — pa() | £ k; (££[0,T])) (5= 0).

Let us rewrite

2
w,l — afu n(t — wg(u) du
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in the form, for ¢ = 0,

t t
2T o it — W) du+ o [ 9= wlg() = po(w)]du
0 0
t t (8)
+ afo [po(u) — g(u)] du + afn Mp, — p,(u)] du.
From the Lipschitz condition satisfied by f( - ), we obtain
A0 + 0 = 201 < 8{[ 17 = o] du + a
iT4t
[ me =l ww) au

T+t
o [T 10GT + = W) = gt = W] w(w) du}.
Sinee g(-) belongs to 8, it is true that for ¢ ¢ [0,7]

fi | polu) — g(w)| du = T ; ki,
_/:H | p,(t — w)|-|¢(u)| du = sup |f(u)|.§j hi,

iTHL
fo 10T + £ — w) — polt — w)|-] w(w)| du

lIA

fo [g(iT +t — u) — p,(t — w)|-| ¥(u)| du

i—1 (1) T+
£ [ G 4w = = ] 9] du

i=1 v iT+t
i
< 2 ki,
=
Lemma 3 now follows from the integral inequality (7).

VI. PRINCIPAL RESULTS
Theorem 1: If 3 h; < « and ) k; < w, where {A} is given by (6)
i=0 iz0
and [k, satisfies (7), then for each integer n there exist a value of w, a
(corresponding) solution z(-) of (1), and a function g(-) that is u.p.
[T], such that
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i. Ag = g, i.e., g(-) satisfies (4),
7. g(t) = f(2(t)), forall ¢,
i, | flx(GT + 1)) — Pa(t)| ki (te[0,T]) (5 z0),

. the periodie function p,(-) is a solution on [0,7] of the equation

2mn

Po(t) = f(x(O) + 5ttt f [po(u) — g(u)] du

+ a j; [Mp, — po(u)] du + « j; py(t — w)y(u) du) R

21rn

+ Tf po(u) du = 270 4 alMp, .

Proof: We first show that A is a continuous transformation on the
set S. Let g — ¢ with g ¢ S; then g ¢ S, because S is closed. Let L

be a compact set of the line and set z = sup | ¢| . For { ¢ L we have
teL

| Agn(t) — Ag(t)] = B|t(w, — w) + aj:r;(t—u)[g(u) — gm(w)] du‘

< op ( | Mpaw = Mps| + sup ()] [ g0 = gutun) du).

Since p,, — p, uniformly, and g, — ¢ uniformly on compact sets, it
follows that Ag, — Ag uniformly on compact sets. It remains to show
that pa,,, — Pae uniformly. Now for ¢ £ [0,T1,

[ Dasn®) = PacD] S @8] (Mpay = Mp)t+ [ [pun(u) = ga(u)

. . (9)
~ [(o) = g dut [ punlt = ) = pult = wlpu) dul.

The first and fourth terms on the right of (9) obviously converge to zero

uniformly in ¢, by the uniform convergence of p,, to p, . The middle two
terms on the right are together at most

[ 190 = il et [ 1000 = gutw)] du+ 21 T

in magnitude; this bound can be made arbitrarily small by first choosing
7 large, and then m large.
The set S is compact and convex, and A is a continuous map of S into
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itself. Hence by Tychonov’s fixed point theorem (Ref. 5, p. 456) there
is a fixed point g ¢ S with Ag = g. Define x( - ) by

v

2(0) + ot — « f‘ 7(t — w)g(u) du (t = 0)

x(t) =
x(0) (t =0).

Then (- ) satisfies (1) almost everywhere in ¢ = 0, and g(t) = f(x(¢)).
Since g ¢ S, there is a funetion p,(-) of period T' such that

lgGT + 1) — p() | = k; (te[0,T]) (G2 0).

The limit equation for p,(-) is obtained by taking the limit as j — =
in the equation

gUT + t) = Ag(GT + 1) (t£[0,T])

and using (8) to expand the right-hand side. The second term of (8)
approaches

f: Pt — uly(u) du

while the third term of (8) goes to zero, by an elementary Abelian result.
Finally the value of w associated with the solution () of (1) is given
by (v) because flx(-)] is a fixed point of A.
Corollary: If h(-) is bounded, and
™
T
then each interval (2nw/T) = v, n an integer, contains a value of w
for which the (unique) solution of (1) is u.p. [T'].

Proof: The condition stated guarantees that the values of (v), The-
orem 1, for various integers n, are all distinct. Uniqueness of the solu-
tion 2(+) of (1) can be proved from the boundedness of k() and the
Lipschitz condition on f(-) by standard methods.

> asup | f(u)| =7
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