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This is the first of two papers dealing with single server systems. Two
subjects are discussed in the presenl paper, (i) relations between such items
as the probability of loss, probability of no delay, and the average number. of
customers served in a busy period, and (¥) the statistical behavior of a
single server system in which no waiting for service is allowed.

I. INTRODUCTION

A typical but rather homely example of the systems considered here is
a barber shop in which there is only one barber, the “single server.”
Let N — 1 be the number of chairs provided for customers waiting for
service so that the “capacity” of the system is N. When the shop is
tull, one customer is being served and N — 1 are waiting. A prospective
customer (a “demand’ for service) arriving when the shop is full is
turned away and is said to be “lost.” If the shop is not full, he waits and
is eventually served.

The demands arrive at an average rate of a per unit time. The server
would serve b customers per unit time (on the average) if he were to work
steadily. It follows that the average interval between arrivals is 1/a and
the average service time is 1/b, It is assumed that the rates ¢ and b do
not change with time.

The first part of the paper is concerned with several quantities of
interest, including the fraction L of demands lost and the average length
of the busy periods, i.e., the periods during which the server is continu-
ously busy. The values of these quantities are expressed in terms of a,
b, and two other quantities po and r. Here po is the probability that the
server is idle (at an instant selected at random) and 7 is the average
duration of an idle period. Both py and = depend upon N and upon the
probability laws governing the arrivals and service times. However, only
the simplest cases of this dependence are mentioned in the first part, of
the paper. The results are summarized in Table I.
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The second part of the paper is concerned with the single server “loss
system’ in which no waiting is allowed (N = 1). The input is now as-
sumed to be “recurrent,” i.e., the distances between arrivals are inde-
pendent and have the general distribution function A(¢). The service
times have the distribution function B(¢) and are independent of each
other and of the arrivals. The funections A (¢) and B(Z) are such that the
interarrival distances and service lengths have the respective average
values

ot = f: [1— A(8)]dt
® (1)
bl = fo [1 — B(0)] dt.

Further conditions are imposed on A(¢) and B(t) in the course of the
derivations. The principal items of interest are (¢) the loss L, (#7) the
probabilities py and p, that the server is idle or busy, respectively, at a
time selected at random, and (7iZ) the distribution of the lengths of the
idle periods. The expression for the loss is equivalent to one obtained in
a different manner by F. Pollaczek." A discussion of how the loss in-
creases with the variability of arrival has been given by P. M. Morse.”

Results for a Type I counter, i.e., one in which the registration of an
arrival is followed by a “‘dead time,” may be applied to the single server
loss system by identifying the dead time (supposed variable) with the
intervals the server is busy. For example, results obtained here are
closely related to some for counters given by R. Pyke’ and earlier workers
to whom he makes reference.

The infinite capacity system (N = o) is discussed in a companion
paper.’ In this case there is no loss, and attention is focused on the
distributions of the waiting times and busy period lengths. Some of the
results of Section II of the present paper find application there.

I am indebted to John Riordan for many helpful discussions on the
subject matter of these two papers and for numerous improvements in
presentation.

II. AVERAGES OBTAINED FROM FIRST PRINCIPLES, GENERAL INPUT AND
LIMITED CAPACITY

Several important averages associated with a single server system may
be readily obtained by considering its behavior over a long period of
time T, statistical equilibrium being assumed, and then letting 7' — .
The input and service are assumed to be general with respective arrival
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and service rates @ and b. The capacity of the system is N, so that de-
mands arriving when N — 1 are waiting are lost.

The probability pe that the server is idle (at an instant selected at
random) and the average duration 7 of an idle period are supposed given.
For Poisson input, i.e., one in which the probability that a demand will
arrive in the interval t, t + dt is adt + 0(dt) (irrespective of the arrival
times of the other demands), the value of r is 1/a.

Let »(T) be the number of arrivals in T and let ¢ be a given, arbi-
trarily small, positive number, The input and service are assumed to be
such that the probability of 1 — ¢ < »(T)/aT < 1 4+ ¢ may be made
as close to unity as desired by choosing T large enough. For recurrent
input this restriction is satisfied, by virtue of the law of large numbers,
when the first integral in (1) gives a finite value for a™". We shall refer
to the above inequality by saying that the number of arrivals in the
long interval 7" is “equal” to a7 Similar statements made below regard-
ing total idle and busy time, number served, ete., in the interval T are
to be interpreted in a similar way.

The total idle time of the serveris T'po , the total busy timeis 7 — Tpg
and the total number served is b(T — T'py). The number lost is the
number of arrivals less the number served, and the fraction of arrivals
lost is

L =[aT — b(T — Tpo)l/aT =1 — (1 — po)p " (2)

where p = a/b. L is the “probability of loss.” Loss occurs only when the
waiting room is filled, i.e., when the system is in state N (probability
py and average duration ry). The number of times state N occurs is
pxT /7w , and the average number of demands lost during such a period
is 7vle — b(1 — po)]/pwy. For exponential service the service time
lengths have the distribution function B(t) = 1 — ¢, and the value of
T is 1/b.

The number served in T without delay is equal, to within one, to the
number of idle periods. The number of idle periods is poT/7; hence po/ar
is the probability W(0) that a demand will be served upon arrival. Thus,

W(0) = po/ar. (3)
Because a demand is either served without delay, delayed, or lost, the
probability of delay is
1 — L — (po/ar) = (1 — po)p~" — (po/ar).

Since busy and idle periods alternate, the number of busy periods is,
to within one, the number of idle periods, namely pyT /7. Dividing this
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into the total busy time T — T'po gives (1 — po)/po for the average
length of a busy period. Similarly, the total number served gives br(1 —
po),/po for the average number served in a busy period.

When N is infinite, statistical equilibrium requires p < 1, and’ all
demands are eventually served. Equating the number of arrivals aT' to
the number served b(T — T'po) givespy = 1 — p.

These results and the forms they assume for N infinite and + = 1/a
(Poisson input) are summarized in Table I. The results for Poisson
input are well known.

When the capacity of the waiting room is infinite, the average number
i of demands served in a busy period is

A= 1/W(0). (4)

In this case L is zero, demands are either delayed or not delayed, and
W (0) becomes the probability of no delay. This follows from (3), Table
I, and the fact that both sides of (4) are equal to ar/(1 — p). For limited
capacity

it = (1 — L)/W(0) (5)

which follows from: Table I. Here W(0) is the chance that a demand
chosen at random will be served upon arrival.

III, SINGLE SERVER LOSS SYSTEM

In a single server loss system any demand arriving when the server is
busy is lost. The system capacity N is 1, there is no waiting line, and
every busy period consists of a single service interval. As mentioned in
the introduction, the input is assumed to be recurrent, the service is

TABLE I — STATIONARY AVERAGES FOR A (GENERAL SYSTEM

Infinite Capacity, po =1 — p

Limited Capacity
Average General Input .
Poisson Input,

r=al

General Input

Rel. number lost 1 — (1 — po)p! 0 0

Rel. number not de- polar)™! (1 — p)ar)™! 1—p
layed

Rel. number delayed | (1 — po)p™! — polar)™t| 1 — (1 — p)(ar)™!

Length of busy period (1 — po)po? p(l — p)7! (b — a)t

Number served in br(1 — po)po! ar(l — p)! 1 - p)t

busy period

Notation: @ = arrival rate, b = service rate, p = a/h, 7 = average length of
idle period, py = fraction of time server is idle.
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general, and the principal items of interest are (7) the loss L, (¢Z) the
probabilities py and p, that the server is idle or busy, respectively, at a
time selected at random, and (7i7) the probability q(w) du that the
length of an idle period will lie between « and u 4 du.

3.1 Values of L, py and p,

Tor general input and service, the results of Section 1I for N = 1 and
the relation 1 — py = p; show that

L=1—pp', po=bm, p=ab (6)

where the second relation is obtained by equating the average busy
period length (1 — py)/poe to the average service length 1/b, 7 being
the average idle period length.

For Poisson input, = 1/a and (6) gives

pr=opp, Po=I(14+p ", L=p=p/(1+p. (7)

In this case, the loss is independent of the service distribution, a property
also possessed by the many-server loss system for Poisson input.

For recurrent input and general service, the ratio L/(1 — L) of the
number of demands lost to the number served is equal to the expected
number of demands arriving while the server is busy serving one de-
mand, i.e., during one service interval. Thus

I%L = '/[: n(t) dB(t) (8)
where n(¢) is the expected number of arrivals during a service of length ¢
(not counting the one starting the service) and B(t) is the service time
distribution function. As t becomes large, n({) is 0(at) and the integral
converges because the average service time is finite.

It will be shown that

__ 1 ci o a(s){’“dé‘
n(l) = 2 Jerin [1 — al(s)]s

(¢ > 0) (9)

where a(s) is the Laplace-Stieltjes transtorm of the distribution function
A(t) for the separation between arrivals:

als) = f: A, (10),

It is assumed that e(s) and ¢ are such that the integral in (9) converges.
Equation (9) is but one of a number of similar results; see, for example,
D. R. Cox and W. L. Smith.’
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To obtain (9), note that the service starts with an arrival, and the
probability that n or more additional arrivals will oceur in the ensuing
interval of length ¢ is the probability that

S, =Xi+Xo+ - + Xu =L (11)

Here X is the separation between arrivals ¢ — 1 and 4. Since the X/’s
are independent and have the distribution function A(t), the rules for
determining the distribution of the sum of » random variables may be
applied to find the chance that S, = ¢. In particular, the Laplace trans-
form of the probability density for S, is [«(s)]", and the Laplace trans-
form of Prob [S, = ] is [a(s)]"/s.

The probability of exactly n arrivals in an interval of length ¢ which

starts just after an arrival is

P.(t) = Prob[S, £t) — Prob[S.p = 1]

_ L (1 — a(s)][a(s)]"s " ds. (12)

21('6' c—i®

Multiplying P,(t) by n, noting that | a(s) | < 1 on the path of integra-
tion, and summing from n = 0 to n = o then gives (9).

When n(¢) is known as a function of ¢, either from (9) or otherwise,
and is used in (8), the result is an equation which may be solved for the
loss L. When L is known, (6) gives

p=p(1l—L), p=1-—p. (13)

A few examples follow.
1. Poisson input. Here 1 — A(t) = ¢ * and a(s) = a/(a + s). Then
e4im

n(t) = i as ‘e’ ds = al
L Ye—iw
L fw _ _
14“*2-— A atdB(t)‘a/b—p

and the results given in (7) are again obtained.
7t. Arrivals spaced 1/e apart. By inspection

n@) =n, nal<t<(n+1a’
and (8) becomes

1 E 7= i}nf("WﬂdB(t) = in[B (” ‘: 1) - B(:—):I (14)

nla

#i. When a(s) is 0(1/s) as § — ¢ == 0, as it is when the probability
density A’(1) = dA(i)/dt exists and is of bounded variation, and when
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B'(t) exists and is 0(e ), € > 0, as ¢t — o, substitution of (9) in (8)
gives

L fmdB(t) HE a(s)e ds
—h

1 -_ L‘ 2 ] c—i® 1 i 4
_ a(s)B(—s) ds
T i 1= als)]s 0<e<e)
where
8(s) = f e dB(1). (16)

In (15) the singularities of 8( —s) lie to the right of the path of integra-
tion and those of a(s)/s[1 — a(s)] to the left. The conditions imposed
on a(s) and B’(t) are sufficient to ensure the absolute convergence of
the double integral and hence to justify the inversion of the order of
integration. The result (15) is equivalent to one obtained by F. Pollac-
zek' by a different method. .

iv. Exponential service. Here, 1 — B(t) = ¢ and B(—s) =
h/(b — s). Substituting this value of 8( —s) in (15), closing the path of
integration by an infinite semicircle on the right, and evaluating the
residue at the pole s = b gives

L ab)
1—L 1=’

L =a(b), p=pl—al)

This expression for p; is a special case of the stationary state probabilities
(determined by both F. Pollaczek® and L. Takdes’) for the many server
system with recurrent input and exponential service.

v. Let a(s) satisfy the same condition as in example 7 and in addi-
tion, suppose that (9) may be written as

1 [~ a(s)e ds
i J_eriw [1 — als)]s

n(t) = R(t) + 57— (e > 0)

where the only singularity of e"‘a(s)/s[1 — «(s)] to the right of Re(s) =
—c¢ (s finite) is a double pole at s = 0 with residue E(¢). Then (8) gives

—eti®
o fmz)dauwif__m%‘ .

It should be noticed that not all cases can behandled by (15) and (17).
An example to the contrary is furnished by

Ay =1— (1 +at)™*
B(t) =1— (1 +bt)*

(18)
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where the averages a ' and b~ exist but the corresponding variances are
infinite. In this case

a(s) =1 —x+ .rﬂe:f e vy 'dy (x = s/a).

As|s|— o« in Re(s) = 0, a(s) is 0(s™"). Near s = 0,
a(s) =1 —sa' — sa’lns + 0(s).

Since 8(s) is similar to «(s), both 8(—s) and «(s)/s[l — «(s)] have
branch points at s = 0. Equation (17) fails in this case because s = 0
is not a double pole. Equation (15) fails because it is impossible to draw
a path of integration which separates the singularities of 8( —s) from
those of a(s)/s[l — a«(s)]. When A(¢)and B(¢) are given by (18) it
seems necessary to work directly with (8) and (9), or else use some sort
of limit.

3.2 Lengths of Idle Pertods

Now turn to the distribution of [, and [; , the lengths of a busy period
and the following idle period, recurrent input and general service being
assumed. The probability that I, < ¢ is simply B(¢), the service length

distribution function. The distribution of the idle period length {; is more
complicated. Its average length is, from (6),

r=p/bpr=a (1 — L) = b (19)

where L is given by (8). The first step towards obtaining the probability
g(u) du that u < I; < w + du is to determine the conditional prob-
ability ¢(u; f) du that w < I; < u + du given l, = &.

Consideration of the arrival patterns which give no arrivals in
(t, t + u) followed by one in (t + u, t 4+ u 4+ du) leads to

glu;t)ydu = D2 Pr[S, <t;jt4+u< S, <t+u-+dul (20)
n=0

where Sy is 0 and S, for n > 0 is the sum (see (11)) of n interarrival
intervals X ;. An expression for the joint probability density of S, and
S.4+1 may be obtained by inverting its double Laplace transform

ave exp [—rS, — sS,4]
=aveexp [—(r 4+ &) (Xi + -+ + X,) — sX,4]
[a(r + 8$)]"a(s).
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Integrating the density over the region 0 < S, < f,u +t < Supn <
w# + ¢ + du shows that the nth term, n > 0, in (20) is

du ek s(u+1) ke ny rt —1
AT s ) [ el + 9@~ 107 (21)
(27!‘?;)2 c—i® c—i®

where ¢ > 0.

Expression (21) holds only for n > 0. However, replacing the factor
(e — 1) by ¢ gives an expression which holds for n = 0. Indeed, clos-
ing the path of r-integration on the right shows that the integral of
[a(r 4+ $)]"7" is zero for n > 0. Closing it on the left shows that the
integral of ¢"'7 " is 277 for ¢t > 0 and leads to the correct value for n = 0.

Setting the modified form of expression (21) in the series (20) and
performing the summation shows that ¢(u; t) du is equal to an expres-
sion obtained by replacing [a(r + $)]"(¢° — 1) in (21) by
1 — a(r + s)]7'¢". The joint probability density of I, and I; is
q(u; t)B'(t) where B'(¢) = dB(t)/dt. The probability density g(u) is
the integral of g(u; t)B’'(t) taken from t = 0 to t = oo. Assuming B’({)
to be 0(e™*") as t — « and choosing the paths of integration ¢ & 7=
so that 0 < 2¢ < e makes the integral of B'(t) exp [{(s 4+ 7)] converge
and have the value 8(— s — r). Changing the variable of integration
from r to z = » + s and, for convenience in writing (22), taking a(s) to
be such that the path of integration for s may be shifted to —¢ & 7%
(this implies that A’(¢) is 0(e ™) as { — =) gives finally

(1 2 p—qtioe . 1t B(—z) dz
qlu) = (zTn) Lq_,.m dse”als) —iw [ — a(2)](z = s) (22)

where © = 0 and 7 is an arbitrarily small positive number.
It may be shown that (22) reduces to a ¢ ™ for Poisson input, as it
should, and to

od

glu) = b[1 — a(h)}*lf e A (uw + v) dv (23)

for recurrent input and exponential service. Multiplying ¢(u) by
exp (—s'u), integrating w from 0 to =, closing the path of integration
for s on the right, and dropping the prime from s’ shows that the Laplace
transform of g(u) is

ave e — ave e — L [TTTB(=2) [am — alz)
S O dyim 2 — 8 1 — alz)

]dz. (24)
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We also have

avee

R | n+ice B(r — 2) l:a(s) — a(z):l dz (25)

T 2m i 2 — s 1 — alz) °

which may be regarded as a double Laplace transform. In (24) and (25)
the singularities of 8( —z) and B(r — z) are supposed to lie to the right
of the path of integration and the remaining singularities of the inte-
grands to the left.
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