Single Server Systems — II. Busy Periods

By S. 0. RICE
(Manuscript received July 10, 1961)

This is the second of two papers dealing with single server systems.
Statistical problems associated with the busy periods, i.e., the periods during
which the server is continuously busy, are considered in the present paper.
The input and the service time distributions may be quite general, and the
length of the waiting line is unrestricted. Among the new resulls is an
asymptotic expression for the probability density of the lengths of the busy
pertods. This expression holds when the arrival rate is almost equal to the
service rate and when the busy periods tend fo be long. It is hoped that the
methods used here will throw additional light on known results.

I. INTRODUCTION

This is the second of two papers dealing with single server systems.
In the first paper,' two subjects were discussed, (7) a method which
led to the average values of several quantities of interest and (#Z) the
statistical behavior of a single server loss system. The present paper is
concerned with the busy periods (the periods during which the server is
continuously busy) in a single server system when no restrictions are
placed on the queue length.

The distribution of the busy period lengths has been studied by a
number of investigators, among them E. Borel,” D. G. Kendall,’ F.
Pollaczek,"” I.. Takdes,”” and B. W. Connolly.>”

A closely related problem is that of the storage of water behind a dam.
An interesting survey of this subject has been given by J. Gani."”” The
moving server problem treated by MeMillan and Riordan' and by Kar-
lin, Miller and Prabhu™ is also related to the busy period problem. Again,
for Poisson input, the distribution of the busy period lengths is related to
the distribution of the delays in “last come, first served” type of service
(see Riordan® and the references to earlier work given there).

The most general results are those due to Pollaczek. His work leads to
the joint distribution function of n,S,y where n is the number of services
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comprising the busy period, S the length of the period, and y the length
of the following idle period.

The object of the present paper is to obtain, in another way, results
equivalent to those derived by Pollaczek. Integral equations similar to
Lindley’s” equation for the waiting time distribution are first set up.
These equations are then solved by methods similar to the Wiener-Hopf
technique used by W. L. Smith™ to solve Lindley’s equation. The aim of
the presentation is to illustrate the methods; the discussion is heuristic;
and no claims are made for completeness or rigor. On the other hand, it
is hoped that the different point of view will add something to the
understanding of the earlier results.

In Section II a brief review of some of the earlier results is given. In
Section III the length of the busy period, as measured by the number n
of customers served, is considered. The results of Section III are gen-
eralized in Section IV to apply to the joint distribution of n, S, and ¥.
Special attention is paid to the distribution of S. The transient behavior
of the queue length is considered in Section V. Since the method used
here to study the busy times is closely related to Smith’s method of
dealing with waiting times, a review of the waiting time problem is
given in the Appendix. Some changes are made in Smith’s method in
order to make it fit in better with the busy problem.

Throughout the paper, except possibly for (2), the intervals between
arrivals are considered to be independent of each other and of the serv-
ice times (recurrent input). The service times are also taken to be inde-
pendent of each other and of the input.

As mentioned in the companion paper, I am indebted to John Riordan
for much help in the preparation of this paper. I am also indebted to V.
Benes and L. Tak4es for helpful discussions and a number of references.

II. PRELIMINARY REMARKS

In this paper, A(t) will denote the distribution function for the inter-
vals between successive arrivals, B(t) the service time distribution, and
A’(1),B'(t) the respective probability densities. The arrival rate is a,
the service rate is b, the average interval between arrivals is

= [ - Awla
0
and the average service time is

b= f: [1 — B(t)]dt



SINGLE SERVER SYSTEMS — II 281
The Laplace-Stieltjes transforms defined by

als) = f:e""‘dA(t)
® (1)
8(s) =fu U dB(1)

play an important role.

Some information on the average length of a busy period (chosen at
random from the universe of busy periods) may be obtained from the
general results of the companion paper.! Thus, from Table I of that
paper, when the service rate b exceeds the arrival rate a so that statisti-
cal equilibrium exists, the average length S of a busy period and the
average number 7 of customers served (during a busy period) are given
by

5 ar 1 _ 1
ST w0 " Ty (2)
Here the system capacity N is infinite, 7 is the average length of an idle
period, and W(0) is the chance that a customer is served immediately

upon arrival (zero waiting time). For Poisson input 7 is 1/a and

(3)

o R

irrespective of the service time distribution. For inputs other than
Poisson, one must know either = or W(0) in order to compute S from
(2).

I'or the sake of orientation we state the following known results.

t. FFor Poisson input, general service and a < b, Kendall’ has shown
that the transform

y(2) = [ aacs) (4)
0
of the distribution funetion G{8) of the busy period lengths satisfies the
tunctional equation
v(z) = Blz + a — ay(z)]. (5)
Here 8(s) is defined by (1). For Poisson input and exponential service,

this leads to the probability density

WS~ hisv/ab) LSV T (6)

G(8) =
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where I;(2z) denotes a Bessel function of the first kind for imaginary
argument.

#. Suppose that we are given a busy period which has just begun.
Let f, be the chance that it will end after exactly n services. For Poisson
input, Takécs® has shown that the generating function

f(@) = Ty (M)
must satisfy the functional equation
f(z) = xBla — af(x)]. (8)

For exponential service this leads to

_(2n —2)! p

f"_n!(n~ Il 4 p)nt ©)
and for constant service time (Borel®) to
n—l1 e_ﬂp

When a < b, all busy periods end eventually and > ¥ fa = 1. When
a > b, the customers arrive faster than the server can handle them, and
sooner or later a busy period will start and never end. Given a busy
period which has just begun, the probability that it will never end is
1— .7 fu, where now D1 f. is less than 1. For Poisson input, expo-
nential service, and @ > b, the probability that the busy period will not
end is 1 — (b/a).

443. As mentioned in the Introduction, the results most closely related
to the work of the present paper are those due to Pollaczek."” In particu-
lar he has shown the following. Given a busy period which has just
begun, let G’ (y,S)dy dS be the chance that it will consist of exactly n
services, have a length between S and S + dS, and be followed by an
idle period whose length lies between y and y + dy. Let

va(872) =f0 deD dye” G, (y,8) (11)

where ¢ appears instead of e ™ for later convenience. Then, for rather
general input and service distributions,

. 1 In[l — —t)ld
5 atm(s) = 1= e {%f nl xﬁ(;i-i)a( 9) ;} (12)
where 0 £ 2 £ 1, Re(s) < Re(f) < 0 < Re(z), Re(z2 4+ ) > 0, and
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the path of integration for { runs from —i= to +7% in the strip speci-
fied by the foregoing inequalities. In writing (11) and (12) it has been
convenient to change from Pollaczek’s notation to a notation resembling
that used by Smith."

III., NUMBER SERVED IN A BUSY PERIOD

3.1 Derivation of Integral Equation

Consider the busy period to start with the arrival of customer num-
number 1 at time 0, and let the service time of the rth arrival be s, and
t- the interval between the arrivals of customers r and r + 1. The busy
period consists of one service if s, < &, 1.e.,if w, = s — &, < 0. It con-
sists of two services if s, = # and s; + s <t + 12, i.e., if uy = 0 and

# + w2 < 0. In general, n demands (customers) are served in a busy
period if Uy, Uy, -+, U,y = 0and U, < 0 where

U=+ w4+ - +

Uy = 8 — br.

(13)

Since the w,’s are independent random variables whose distributions
are known (indeed, ave exp( —su,) = B(s)a(—s)) one may, in prin-
ciple, find the joint distribution of 7y, Uz, ---, U, . Then the proba-
bility f, that n» demands are served may be obtained by integration over
the proper region in U, , ---, U, space. However, it is more convenient
to use an indirect method which depends upon the solution of an integral
equation similar to that for the waiting time distribution.

Let p(V)dV be the probability that V < U, < V + dV,and p,(V)dV
the probability that Uy, --- , U,y 2 0and V < U, < V + dV, where

V may be either positive or negative. Then

(V) = C'(V)

pn«[»l(") = L P,.(U)C’(V — ?J) dv

(14)

where (7(t) = dC(t)/dt is the probability density of u, = s.— {..
Equations (14) lead to

J(aV) = 20"(V) + « j;m J(xp)C'(V — ) do (15)

J@V) = X apa(V) (16)

n=1
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where the series and the integral are assumed to converge for0 £ » = 1.
Equation (15) is the integral equation which must be solved to obtain
J(x, V).

The integral of p,(V) from ¥V = — e« to 0 gives the probability f, that
n demands are served and hence
o 0
f@) = X & = [ Iy av. (17)
n=l1 —

When a < b, we expect all busy periods to end. Therefore
0 0
Sf=1= [ J(LV) av. (18)
1 o0

On the other hand, when the arrival rate a exceeds the service rate b
we expect the queue length to increase with time, on the average. At
the beginning of operations there may be a few busy periods, but even-
tually a busy period starts which does not end. This state of affairs is
indicated by the fact that D7 f, is less than 1 when a > b. Thus, given
a busy period which is just beginning, the probability that it will never
end is

1 - i.fﬂ- =1- j:o J(].,V) dv. (19)

The length of the idle period following a busy period of length n
(services) is — U, . The chance that a busy period will be of length n
and will be followed by an idle period whose length lies between y and
y + dy is p.(—y)dy. This is true for all values of a/b. When a < b, the
chance that the length of an idle period picked at random from the
universe of idle periods lies between y and y + dy is

;p,x—y)dy = J(1,—y)dy. (20)

3.2 Solution of Integral Equation

The procedure used in the Appendix to solve Lindley’s integral equa-
tion (95) suggests writing J(x,V) as the sum of J_(z,V) and J(z,V)
where J_is 0 for V. = 0 and J, is 0 for V < 0.Multiplying (15) by
exp( —sV) and integrating with respect to V from — = to + = gives

®_(x,5) + Pi(x,8) = aB(s)a(—s)[l + P4(x,9)] (21)

where Re(s) is confined to some suitable range and @, is the Laplace
transform of J, and ®_ is similarly related to J_ [ef. (97)].
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Assume functions ¥ (x,s), ¥_(x,s) and positive numbers D, , D,
(which may depend on x) may be found such that

v (x,8)

B(s)a(—s) — 1 = V_(x,8)

(22)
where
(7) ¥,(x,s) is analytic in s and free from zeros in Re(s) > D; = 0,
(#¢) ¥_(a,s) is analytic and free from zeros in Re(s) < D. with D; >
D, when0 < 2 =1 and
(2i7)
Vi (x,8) —s as |[s|— % in Re(s) > D,
¥_(v,s) > —s as |s|— o in Re(s) < D..

It is seen that ¥.(z,s) and ¥_(z,s) reduce to ¢.(s) and ¥_(s) of the
Appendix when 2 = 1.
When 28(s)a(—s) is eliminated from (21) and (22) one obtains

PV —W_ —s=d T, +V, —s (23)

where s has been subtracted from both sides in order to keep them finite
at infinity. Considerations of analytic continuation and the analogy
with (101) suggest that both sides are equal to some quantity K(z)
independent of s. When this turns out to be the case

[K(x) — ¥ (zs) + -S]_

b, (2,8) = Vo (os)

Suppose for the moment that b > a. To determine K(x) note (1)
that &, (x,s) is analytic in Re(s) =z 0, and (2) that ¥ (2,s) has a zero
at s = s = s(x) where s, = Owhenx = landsy =~ (1 — 2)/(a”' —
b~') when a is near 1. Also note that s, is positive when b > a and z is
slightly less than 1. Statement (1) is true since ®.(x,s) is the Laplace
transform of J(2,V) and the integral
f Jo(zV)dV = 2 Pr(lU, = 0) + &* Pr(Uy, Us = 0)

{

o< a(l — )

converges. Statement (2) follows from relation (22) and the fact that

the expansion of 28(s)a(—s) — 1 in powers of s shows that it is zero
at s = sy . Hence either ¥ (,s)) is zero or W_(x,s0) is infinite. The second
possibility is ruled out if 1 — 2 is small enough to make s, < Ds since

¥_(x,s) is analytic in Re(s) < D,. Thus K(x) must be taken to be
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— 8 in order to keep ®,(x,5) from having a pole in the region Re(s) =
Oats = s.
Equating the left-hand side of (23) to —so and solving for ®_ gives

§ — 8

0
—8V .17 7 = . — A
[ @y ar = e =1+ g (24)
1 c4-i0
T (V) = — ¢"d_(2,) ds (25)
27@ c—1i%

where ¢ is chosen so that the path of integration in the s-plane passes
to the left of the singularities of ®_(x,s). Comparison of (24) and (17)
leads to

npe _ 1 So _ (1 —2a)s
;1‘” fu=2-(20) =1 v_(z0) 1+ v, (z,0)

(26)
In this result, ¥_(,s) and ¥, (x,s) are obtained from (22); and &, a
function of z, is that zero of z8(s)a(—s) — 1 which approaches s = 0
as ¥ — 1. In the foregoing definition of sy, b is supposed to exceed a.
When a and b are in any ratio, the statement is amended to read, “‘s =
o is the one and only zero of ¥ (z,s) in Re s > 0 when 0 = z < 1.”
When a < b, s tends to 0 as x — 1, and when a > b, s tends to a posi-
tive number as @ — 1. These statements about s are made on the
strength of the examples given below in Section 3.3 and hence cannot
be regarded as proved in general.

When a < b, (26) gives ®_(1,0) = 1 in agreement with (18). When
a > b, s is not zero for x = 1, $_(1,0) is less than 1, and (19) shows
that the probability that a busy period will not end is

1— @ (10) = (a > b) (27)

Y_(1,0)

The relations corresponding to (24) and (25) for J(»,V) are

= —av _ - _ 8§ — &
j(; € J+($,V) dV = ‘14(.1:,8) 1 + \P_+(x,s) (28)
Jo(zV) = L fmm e, (v,s) d (29)
+\z, = D e +(T,s S

where ¢ is chosen so that the path of integration passes to the right of
the singularities of ®.(x,s).
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3.3 Fxamples

The special cases used as examples in the Appendix to illustrate the
waiting time distribution will be used here for the busy period length.
It has been pointed out earlier that ¥, (z,s) reduces to ¢.(s) forz = 1.

Example a. Poisson Input, Exponential Service. Equation (22) to de-
termine the ¥’s becomes

V(xs)  wxab — (a — s)(b + s)

V_(x,8) (:1 —s)(b+s) (30)
_s + (b —a)s — (1 — a)ab _ (s — s0)(s — )
(a —s)(b+s) (a —s)(b+s)
where
:‘:} = 2_ by IV (b + a)? — 4dabz. (31)

As @ runs from 0 to 1 the roots sy and s; move along the real axis in
the s-plane as shown in Iig. 1.
The conditions for (22) lead us to take, as in (109),
(s — s)(s — 1) _
¥, (x,5) = GTh , V_(x,8) =a—s (32)
with D; = s and Dy = a. Expressions (26) give the generating function
for the probability f. that, given a busy period which has just begun,
it will consist of exactly n services. Setting s = 0 in (32) to obtain
¥_(x,0) leads to

n Sp So
2" f, =1 — L B
gl oS ¥_(x,0) a

(33)

_otb 1 e = dab

2a 2a

The coefficient of 2" in the power series expansion of the last expression

S—-PLANE

Fig. 1 — Ranges for s, and s, as z runs from 0 to 1.
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gives the value (9) for f,. When z = 1, the sum D 7 fa is equal to 1

when @ < b and to b/a when a > b. Thus, from (19) or (27) the proba-

bility that the busy period will not end is 1 — (b/a), with b < a.
Inserting the expression

8

—80_&—8(1
a— $§ a — 8

&_(xs) =1+ (34)

obtained from (24) in the integral (25), and evaluating the integral
by closing the path of integration on the right when V' < 0, shows that

(a — so)e"” (V <0)
(Vz0)

From (20), the probability density for the lengths of the idle periods
when a < bis

J_(z,V) = (35)

J-(I:_y) =ae "

as expected for Poisson arrivals. When a > b, the idle period probability
density is still given by the expression on the right, but now J_(1,—y)
has to be divided by the normalizing factor 1 — (so/a) in which z = 1,
i.e., by b/a, the probability that the busy period will end.

Although &, (x,s), J . (x,V) are not needed to calculate the probabili-
ties given above, their values as obtained from (28) and (29) will be
stated for the sake of completeness

(I,-{-(T‘:S) = g%z]l.
b ny V=0
To(aV) = (b + s1)e (V.z0)

(v <0)

Note that b + 8, = a — 5.
Erxample b. Poisson Input, General Service (Takées®). In this case,
(22) and the related conditions are satisfied by the analogue of (110)

T, (r,s) = s —a+ axp(s), T_(z,8) =a—s (36)
with D, = sp and D; = a. With the help of Rouche’s theorem it may be
shown that ¥_(x,s) has only one zero, s = s, in Re s > 0 when 0 =
z < 1. Furthermore, since ¥ (2,0) is negative and ¥, (x,a) is nonnega-
tive, 0 < s = a. Equations (24) and (25) show that ®_(x,s) and

J_(z,V) are given by (34) and (35), just as for Poisson input and ex-
ponential service, and we still have

n So
an=1—5. (37)
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However, s; no longer has the simple form (31), but it still tends to 0
if @ £ b and to a positive number if @ > basz — 1.

When Lagrange’s expansion theorem is applied to 1 — (sy/a) it is
found that (see Pollaczek,” p. 102, Eq. (8.37))

B (_a)n—l dn—l N
fom G2 a0 (38)

which gives (9) and (10) as special cases. It should be recalled that from
(3) the average number served in a busy period, for Poisson input and
a > byisa=1/(1 — p).

Example e. Recurrent Input, Exponential Service. When one takes the
steps leading to (111) (which pertains to the waiting time distribution
for this case) as a guide, he is led to

oy (8= s0)(s = &) oy (s —s)(s — &)
Vo (x,8) = b1 , Wo(as) = tha(=s) — b — s (39)
where s; is the only zero of
h(s) = s+ b — aba(—s) (0<2 <) (40)

which lies in Re(s) > 0 and s, is the left-most zero of £(s) in Re(s) > 0
when 2 is close to 1. The existence of s; may be established with the help
of Rouche’s theorem. Then h(0) = (1 — 2)b > 0Oand h(—b) = —aa(b)
> 0 show that —b > s > 0. To make the existence of s, plausible,
consider the case when a is nearly equal to b and 2 is close to 1. When s
is small, the series (114) for a(—s) gives

2
xbass

his) = (1 — 2)b + s(1 — aba™) — 5

+o (41)

[t is seen that 2(s) has a double zero at s = 0 when x = 1 and a = b.
When 2 = 1 — ¢, with e small and positive, and 1 — ba™' = 5 is small,
the double zero splits into two simple zeros given approximately by

9
bass™

0= —eb — sp+ 5 -

The two roots of this equation are small, real, and of opposite sign. The
positive root corresponds to s; and the negative one to s, .
From (26)

ir"f :1+(l—.1')s(1:1+(1—-.1')b

2)
1 ’ Y (x,0) $1 (42)
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and Lagrange’s expansion theorem gives (see Pollaczek,’ p. 103, Eq.
(8.42))

fn = Cyp1 — Cn (CO = ]-)
ntl [ gn—1 43
Cp = b_ [i— ES_Q[Q'(_S)]”I:I . (43)

n! Lds"! s=—b

When a < b, the average number served in a busy period may be ob-
tained either by differentiating (42) and setting x = 1, or using the value
of W(0) obtained just below (111). Both methods give

"o Wtﬁ) - I:_i_l:lml (44)

Ezample d. Erlangian Input, Erlangian Service. Let f(s) denote the
same polynomial in s as in Example d of the Appendix. Then

B(s)a(—s) — 1 = x(l + %)—k (1 — ;—J.)_I —1= Lf_(s@

When & = 0 the polynomial x — f(s) has a zero of order &k at s = —bk
and a zero of order { at s = al. Now let 0 < @ < 1. From Rouche’s
theorem and the fact that | f(s) | > « on the imaginary s axis, it may
be shown that z — f(s) has k zeros in Re(s) < 0 and [ zeros in Re(s)
> 0. Denote the zeros in Re(s) < 0 by s, ---, s, the left-most zero
(when z is close to 1) in Re(s) > 0 by so, and the remaining zeros in
Re(s) > O0by Sk41, -, 8ks11 - Then (22) takes the form

x — f(s) _ __(8 — 80)(s — s) - (s — sppr1) _ Py(ays) (45)

J(s) (s — al)!(s + bk)* - V_(x,8)
and the conditions on the ¥’s are satisfied by

(s —s0)(s — &) -+ (s — )

\I’+(.L',S) =

bk)*
(s + )z (46)
T_(z,5) = — (s — al)
T (s = se) e (8 — Sepaar)

From (26) the generating function for the number served in a busy
period is
(1 — a)(—=bk)*

w
—1

Sy =1 — (al) 'sosipSesz - Sepra = 1 —

1 81 - S

where sy, 81, * -+, Sk1-1 are functions of .
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IV. DURATION OF BUSY PERIOD

The distribution of the busy period lengths for recurrent input and
general service may be obtained by an extension of the foregoing analy-
sis. A number of the steps will be omitted here because of the similarity
with the work of Section III. For the sake of simplicity, throughout this
section it will be assumed that @ < b and hence that all busy periods
eventually end.

4.1 Derivation of Integral Equation

Let p.(V,S)dV dS be the probability that Uy, -+, U, 2 0,V <
U, <V +dVand S < 8, < 8+ dS where U, is defined by (13)
and S, is the sum s;+ s: + - -+ + s, of the first n service times. It may
be shown that p,(V,S) is zero for V > S and

m(V,8) = B'(8)A(S — V)

8 T
pan(V,8) = f dafn dopn(0,0)B (S — )A'(S = V — o + 0).

These may be combined to give the integral equation

J(z,V,8) = 2B'(8)A" (S — V)

S o 47
+ a,f dcrf dvd (zp,0)B' (S — a)A' (S = V — o +2) )
0 0

where
J(x,V,8) = 2 a"pu(V,8). (48)
n=1

The probability that a busy period will consist of exactly n services,
have a length between S and S 4 S, and be followed by an idle period
of length between y and y + dy is

pa( —1,8)dS dy = G./(y,8)dS dy (49)

where (,/(y,S) is the density function introduced in Section II. The
probability that a busy period will consist of exactly n services and
have a length between S and S + d8S is dS times

@'(8) = [ pu(v.8) av. (50)
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Summing with respect to n shows that the probability of a busy period
length between S and S 4+ dS is dS times

@ (S) :[ J(LV,8) dvV. (51)

I"'urthermore, the probability the busy period consists of exactly n serv-
ices is

fu = fn " s [: pa(V,8) dV.

4.2 Solution of Integral Equations

Multiplying (47) by exp[—zS — sV], and integrating V' from —
to S and S from 0 to = gives

®_(x,82) + Pil,82) = 2B(s + 2)a( —s)[l + P4 (x,5:2)]

L] S
d,(1,5,2) =j(; de[; dVe VI (2,V,8)

(52)
) 0 )
d_(1r,52) =f de dV e Vg (2,V,8).
0 '— o
IFrom the last equation
] ) 1 e4io
f eV J(2,V,8) dV = 2—1”[ _ ¢Sd_(w,52) dz (53)

where ¢ is such that the singularities of the integrand lie to the left of
the path of integration.
Assume the factorization

_ ‘I’+(.’L’,S,Z)

T (x,8,2) (54)

1B(s + 2)al—s) — 1
where the ¥ functions satisfy conditions (), (#1), (4i7) set forth in con-
nection with (22), z heing regarded as an imaginary constant (or is at
least on the path of integration Re(z) = ¢ in (53)). When z = 0,
W, (x,8,2) reduces to the ¥ (x,s) of (22) and when z = 0 and x = 1,
to the ¢.(s) of (99). The analogue of (24) turns out to be

ez) = 1 4 5T s2)
@ (asz) =1+ 5 0
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where s = sy(x,z) is that root of
2B(s + z)a(—s) =1 =10 (56)
which tendsto s = 0as 2 — 1 and z — 0.

The various probabilities of interest may be computed, at lea,:.t in
theory, from ®_(x,s,2). The relations are indicated in Table 1. The
Laplace transforms v,.(s,2), v.(z), v(z) are the same as those introduced
in Section I1.

From (55) and the last two entries in the table it follows that:the
Laplace transforms of > "G, (S) and G'(S) are respectively

‘ o, so(x2) [1 — aB(2)]so(2,2)
¢ (20z) =1 V_(x,0z) 1+ ¥, (2,0,2) (57)
B - _ 8(1(1,5) _ H - .B(Z”SIJ(],Z) -
FY(Z) - (137(17072) - 1 \117(1,012) - ] + ‘I’+(I,0,Z) (08)

TPurthermore, the generating funetion (26) for f, may also be written
as®_(z,0,0). :
4.3 Examples

The special cases used earlier will again serve as examples. The results
of Examples b and ¢ are equivalent to results given by Pollaczek.

TasLe 1
Probability Function Laplace Transform
G (y,S) = pul—y,8) vn(s,2) = Expression (11)
Ll 0
= f dS f dVe =5=2Vp,(V,S)
0 —0
o oe
; @' (1,8) = J(x,—y,S) le whyls,2) = @_(1,5,2)
G,'(8) f 8_‘SG,i'(S) dS = ‘}’n(o,z) = Tn(z)
0
@ 0 n
Z @,/ (S) = f J(x,V,8) dV 3 ary(z) = d_(z,0,2)
1 —w 1
0 )
G'(S) = f J(1,V.8) dV f e~SF(8) dS = v(z) = ¢ (1,0,2)
—w 1]
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Example a. Poisson Input, Exponential Service. In this case (54) be-
comes

Vo(xs2) &+ s(z+b—a) —alz+ b — zb)

) GEIEAlY o
= (s — 80) (s — 1)
(s+b+2z)(a—s)
where s; = s;(z,2) is given by
:} - %H * é V(b + a+z2)* — 4xab. (60)

When z is fixed and z runs from —zw to +%%, s traverses an oval-
shaped path in the s-plane. The oval lies in Re(s) = 0, it starts and
ends at s = a (corresponding to 2 = +iw ), and when z = 0 it crosses
the real s-axis between s = 0 and s = @ as indicated by T'ig. 1, case
a < b. At the same time, s; traverses a path roughly parallel to the
imaginary axis. The path lies in the region Re(s) < 0, is asymptotic to

the line Re(s) = —b at 2 = i, and crosses the real s-axis between
s= —band s = a — b. As & — 0, the oval shrinks to the point s = «a
and the path of s; tends to the straight line Re(s) = —b.

This behavior of s and s; and the similarity with (32) lead us to take
(s — 80)(s — 1)

Y (xs52) = PRI i , ¥_(x,52) =a —s  (61)
From (57)
d_(2,02) =1 _ (@) 9—1'3[11 +a+z—(b+a+z)?— dzabl. (62)

Inverting this Laplace transform (see, for instance, Pair 556.1, Camp-
bell and Foster'®) gives (Takdes®)

G (8) = §° 1/ b (04931, (5 Taab) (63)
1

where I;(2) is a Bessel function of the first kind for imaginary argument.
Putting = 1 in (63) gives Kendall’s’ expression (6) for G/(S).

Ezample b. Poisson Input, General Service (Prabhu'’). In analogy
with (36)

V. (x,82) = s — a~+ xaB(s + z), ¥ (z,52) =a—s (064)
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and (57) gives

d_(2,0,2) = 1 — a "so(z,2) (65)
where s = sy(z,z) is that root of
s—a-+xaf(s+2) =0 (66)

which tends to zero as * — 1 and z — 0. Rouche’s theorem may be used
to show that if 0 < 2 < 1 and Re z = 0, then (66) has one and only
one root (namely, s(z,z)) in Re(z + s) > 0.

When s in (66) is replaced by si(z,2) = a — a®_ (from (65) with
&_ = &_(z,0,2)) one obtains

. =2a8(z+ a — ad). (67)
This is a functional equation satisfied by the generating funection
d_ = Zx“'y,.(z). (68)

Setting * = 1 gives Kendall’s equation (5)°

v(z) = B(z + a — ay(2))

for the Laplace transform of G’(S).
Example c. Recurrent Input, Exponential Service (Connolly,’ Takdcs’).
The analogue of (39) is

(s — 8)(s — &)

‘I’+(.17,S,2) = s + b ¥z )

69
(s — s0)(s — 1) (69)

rba(—s) — s — b — 2z

T _(x,s2) =

where s = s, is the only root of
2ba(—s) —s—b—2=10 (70)

which has a negative real part when Re(z) 2 0 and 0 = = =< 1, and
8 = 8 is the root which tends to s = 0 whenz —0and x — 1.
Equations (57) and (58) give

. B z+ (1 —a)b
d_(20z) =1+  os(zz)
(71)
-4
1) =1+ 5

which may be used in Table I. The coefficients of —z and 2°/2 in the
power series expansion of y(z) give the first and second moments of the
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distribution of the busy period length S. With the help of (70) it is
found that

S
S10
{791\
208 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1962

where 8(¢) is a unit impulse. Since the right-hand side of (75) is a con-
tinuous function of 8, it cannot hold in this case. However, formal cal-
culation of (75) gives

G'(8) =~ 8 ~/2(2xb) e tSU—P 2, (77)

By using n! ~ +/2zn n"¢ " and p = 1 it may be shown that (77) be-
comes a smoothed version of (76) when S is replaced by nb~'. A better
approximation to (76) may be obtained by noting that the Laplace
transform y(2) of (76) is of the form > f, exp(—znb™"). Hence v(z)
is a periodic function of z with period #27b, and contributions to (73)
may be expected not only from the region around z = 0 but also from
regions near z = 2xkb where k = ---, —1,0, 1, 2, --+ . It may be
shown that the sum of these contributions does indeed approximate
(76) when n is large and p = 1.

The approximation (75) holds for large values of S. One may obtain
an idea of the behavior of @'(S) for small values of S by noting that
now the busy period contains only a small number of services. In particu-
lar, the assumption that the very short busy periods consist of a single
service leads to the approximation G'(8) =~ Gy (S) = B'(8)[1 — A(S8)].
Higher-order approximations may be obtained by computing p:(V,S),
pa(V,8), - -+ step by step and using (50). The first step gives the result
cited, namely

G/(8) = f B'(8)A'(S—V)dV = B'(S)[1 — A(8)]. (78)

V. GROWTH OF QUEUE

In Section IIT the functions ¥, (x,s) were introduced to obtain the
chance f, that a busy period will consist of n services. It is interesting
to note that these functions may also be used to determine W,(t), the
waiting time distribution for the rth customer. Only a sketch of the
procedure is given here. More complete information on W,(t) is given
by Pollaczek,” Spitzer,”® and Lindley."
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so that Ly(x,t) = 0fort < 0, it is found from (94) that
Lo(et) = Wolt) + = f Lu(xf — 1) dC(r). (80)

This holds only for ¢ = 0. To solve the integral equation, let L_(z,t)
denote the value of the right-hand side for ¢ < 0 and set L_(x,t) = 0
for t = 0. It is found that

‘0—-(2:18) + ‘p+($)s) = S_l + W+($:S)B(3)a(-s) (81)

where ¢, is the Laplace transform of L, and ¢_ is similarly related to
L_ (cf. (97)). Equation (81) is similar to (21). When the functions
¥, (x,5) appearing in (22) are introduced, the analogue of (23) turns
out to be

o (2,8)¥_(2,8) — 5 W_(2,8) + 8 ¥(z0)

(82)
= ou(2,8)¥(x,8) + s ¥_(2,0)

where s™W_(z,0) is added to both sides in order to cancel the pole of
s 'W_(2,8) at s = 0. Setting both sides of (82) equal to a quantity K(x)
independent of s leads to

oY [S - So(:U)]‘I'_(.”C,O)
er(me) = = sW, (x,8)s0(x)

where s = sy(z) is the one and only zero of ¥, (x,s) in Re(s) > 0.
Inversion gives the required result:
) efim [

S ey = Y@0) L[ s = so(w)le”

0 @) Zrideie s P (€>0) (83)

5.2 Poisson Input and Exponential Service

For the special case of Poisson input and exponential service, the val-
ues of ¥, (x,8) are given by (32). Insertion in (83) gives

o e+iom at
Z '.L'rI”V,-(t) = L M ds
0 211'1' e—imo S(]S(S —_ 81) (84)
1 (a + b)e™ —— Vi
T T ma— VI
where e > 0,t > 0 and
. = 4ab _ (b + a). (85)

(a+ b2 2



300 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1962

Upon using

e _ o ()" (20 — k)I(k + 1)2"
(I_VI_QL) _"Z=k (n+1)|(n__k)|4n_

. ( )n+l (86)
(1 — /1 = ex)explr—rv1 — ¢z] = E e [CEST P(n,r)
n=0
it is found that
_ ae’ " 'S "Plnr)
Wil =1 = 5 &t e (87)
where P(n,r) is the polynomial
o= (2n — Bk + 1)(20)"
Plnr) = 2, K(n — k)1 (88)

= (20)"Mer (1 + P)Ku(r) — 7K. (7)]

and K denotes a Bessel function of the second kind for imaginary argu-
ment.” It may be shown that P(n,r) is 0(4"n!/v/n) asn — « with =
finite.

Setting = 1 in (86) and using the result to transform (87) leads to

W,t) =1—pe "™ 4+ ae’F.(t) (a £ b)
W.(t) =0+ aeF,(1) (az=b)

where

The value of F,(t) is unchanged when the values of a and b are inter-
changed.

When a = b = 1, differentiation of the generating function (84) leads
to expressions for the probability density W.'(¢), r > 0:
t!’
)"1 |

w,'(t)

()[Kwu)—KFUH
_ et E (2r —n — 1)(20)"

2152 rlnl(r — n — 1)1

_Qf costudu[ 1 t
- (u? 4+ w41 2]

(89)
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5.3 Queue Behavior asr — ©

Return now to the case of recurrent input and general service. When
r becomes large W,(¢) approaches the limit W(¢) discussed in the Ap-
pendix if @ < b. Questions related to this approach have been studied
by Lindley, Pollaczek, Spitzer and others.

When a > b, the customers arrive faster than the server can handle
them and the waiting line tends to grow steadily. An idea of the behav-
ior of W.(t) in this case may be obtained by using the notation of the
Appendix. The rth customer arrives at time 7' = to + & + -~ + L
and his service begins at S, + [,, where S, = s + & + -+ + 854
and 7, is the total amount of time the server is idle in the interval (0,7’,).
The waiting time of the rth customer is w, = S, + I, — T, . Since the
server may be expected to be continuously busy after a few initial idle
periods, we expeet I, to approach some constant value as r — . Thus,
I, becomes small in comparison with S, — 7, = wo + wy + - -+ + ;.
Upon making the approximation w, = S, — T, and using the central
limit, theorem, it is found that, for @ > b and r > 1

o AW 1 _(t*m-)g:l ]
W, (1) = = NU\/?J;‘P.\I)[ el B (90)

Here u = bt — a'is the average value of u, = s, — ¢, and o = v, +
v, is its variance, vy and v, being the respective variances of s, and ¢. .

When a¢ = b, the approximation (90) no longer holds. However,
Pollaczek® has shown that, at least for Poisson input, in place of (90)
we have

2 2

77! ~ — v ____L,,:| (
W, (t) =~ o 07\[)[ 508 (t >0). (91)

This agrees with the asymptotic form of the integral in (89).

APPENDIX

Waiting Time Distribution®

In Sections I1I and IV the busy period problem has been investigated
by a method similar to the Wiener-Hopf technique used by Smith" to
deal with the waiting time distribution. The application of the method
to waiting time problems is reviewed in this Appendix. Smith’s approach
has been changed slightly in order to make it fit in better with the busy
period problem.

* Here the ““waiting time”” of a customer is the interval between his arrival and
the instant his service begins.
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A.1 Derivation of Integral Equation

The basic integral equation is due to Lindley."” Suppose the single
server system (with unrestricted queue length, recurrent input, and
general service) starts operations when the Oth customer arrives at time
0. Following Lindley, write w, for the waiting time of the rth customer,
s, for his service time, and ¢, for the interval between the arrivals of
customers 7 and r 4+ 1. The rth customer stays in the system for an
interval of length w, 4+ s,, and the (» 4+ 1)th customer arrives ¢, units
of time after this interval begins. If w, + s, < ¢, the (r 4+ 1)th cus-
tomer does not have to wait and w,,, is zero. When w, 4+ s, > ¢, , the

(r + 1)th customer has to wait w, + s, — f, units of time. Thus
'wr1=0 (wr+sr§tr)
i (92)
Wry1 = Wy + 8 — i (wr + s > t‘r)-

It is assumed that the s, are independent random.variables with the
common distribution funetion B(¢), and also that the ¢, are independent
{of each other and of the s,) with common distribution function A(¢).
The rule for combining probability distributions shows that the distri-
bution function C'(¢) of the variable v, = s, — (. is given by

¢ = [ B+ ) dA(r). (93)
0
Since w, and w, are independent random variables, it follows upon re-
writing (92) as
Wepn = 0 (w, +u, £0)
W41 = Wy + Uy {wr + Uy > O)

that the distribution function for w,, is
t
Woa) = [ Wit—mdc)  z0.  (9)

By starting with Wy(¢) = 1 for { = 0, which states that the Oth cus-
tomer is served immediately, one may compute Wi(¢), Wa(¢), ---, in
succession from (94). When the service rate b exceeds the arrival rate
a, i.e., when p = a/b < 1, W.({) tends to W(t) as r — o where W(t)
satisfies Lindley’s integral equation

W(t) = [t W(t — 1) dC(r) (t=0). (95)

W(t) is the distribution funetion for the waiting time when statistical
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equilibrium prevails. Note that (95) holds only for nonnegative {. When
t is negative, W(t) is zero but the integral on the right does not vanish.

A.2 Solution of Integral Equation

Let W_(t) be the value of the integral for ¢ < 0 and take W_(t) = 0
for t = 0. Since W (¢t — r) is zero for + > ¢, (95) may be written as

W_(t) + W) = j:: Wit — T)C’(T) dr (96)

which holds for all real values of ¢. The derivative C'(r) = dC(7)/dr
is the probability density of the random variable u, = s, — ¢, .

Multiply both sides of (96) by exp(—st), where 0 < Re(s) < D
with D such that the following integrals converge. The existence of D
is ensured by assumptions made below. Integrate from ¢ = — o to
t = o and introduce the transforms

e (8) = [o e W (t) dt = f i e "W(t) dt

o0

v_(s) = f_w ¢ W_(t) dt = [0 W_(t) dt - (97)

fm ¢ (r) dr = ave exp [—ss, + st,] = B(s8)al(—s)

where 8(s) and a(s) are the respective Laplace-Stieltjes transforms of
the service and interarrival distribution functions B(¢) and A(t). This
carries (96) into

e (8) + ¢i(s) = ¢ (s)B(s)al(—s)
p-(8) = es(s)[B(s)a(—s) — 1].

Since W () and B(t) are distribution functions, both ¢.(s) and B(s)
are analytic in the region Re(s) > 0. To ensure convergence of the inte-
grals in (97) involving W_(¢) and C’(r), assume that the probability
density A’(t) = dA(t)/dt exists and is Olexp(—Dt)] as ¢ — o, where
D is positive but may be arbitrarily small. It may then be shown from
(93) that C(t) is Olexp(Dt)] as t — — =« and, using this in (95), that
W_(t) is also Ofexp(Dt)] as ¢t — — . It follows that both ¢_(s) and
a(—s) = ave exp(st,) are analytic in the region Re(s) < D.

Now suppose that funetions ¢, (s) and ¥_(s) may be found such that

(98)

B(s)al —s) — 1 = Iﬁ; (99)
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where (7) ¢.,.(8) is analytic and free from zeros in the half-plane Re(s) >
0, and (#7) ¢_(s) is analytic and free from zeros in Re(s) < D. Although
these functions may be expressed as integrals when suitable conditions
are satisfied (see, for example, Smith") their expression in'tractable
form is usually the most difficult step. in obtaining W({). For future
convenience assume that ¢ (s) and ¢_(s) may be chosen so that

Yi(s) > ¢ as |s|— e« in Re(s) >0

(100)
Y_(s) — —s as |s|— = in Re(s) < D.

The difference in sign is required by the fact that the left-hand side of
(99) tends to —1 as s — =79 (unless both A(¢) and B(t) have dis-
continuous jumps, a case we shall rule out).

When the resolution (99) is possible, (98) becomes

e (sW_(5) = ei(s)e(s), O < Re(s) < D.  (101)

The right-hand side is analytic for Re(s) > 0 and the left hand for Re(s)
< D. Equality in the strip implies that each is the analytic continuation
of a funetion which has no singularities in the finite part of the s-plane.
It turns out that when conditions (100) are satisfied, this funetion may
be taken to be a constant K. Indeed, conditions (100) were imposed to
make this so. Then the Laplace transform of W (i) is

K
Vi (s)
which is analytic in Re(s) > 0 by virtue of the requirements on ¢, (s).
Since

gils) = (102)

=]

lim sg (s) = lim [ e ™ dW(t) =

§-+0 §=>0 v—0

it follows that ¢ (0) is 0 and K is given by
K = lim ¥+ [d"’+(3)] = ./ (0). (103)
g=(0 R

=0 S ds

The constant K is also equal to W(0), the probability that a customer
will not have to wait for service. One way to see this is to note that from
(102) and (100)

K = o, (s)y(s) = llm ¢i(s)s = lim s _/w 7‘”W(!) dt

8—>00

= lim f (%‘) du = W(0).

(104)
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The limit exists since 0 < W(¢) < 1 and W(t) decreases monotonically
as ¢ decreases to 0. Although W(t) is discontinuous on the left at ¢ = 0
and may have discontinuities for positive values of ¢ (as it does when
both A(t) and B(t) have discontinuities), we take it to be continuous
on the right at t = 0.

Thus when ¥.(s) is known, ¢,(s) is determined and W({) may be
obtained by inversion,

o K f“’jw e ds -
1' (t) = '_,77:1 e \l/+(s) (C > 0). (100)

The Laplace-Stieltjes transform of W(t) is
w(s) = f“ e dW (t) = s (s) = ;TK‘;S (106)

As s — =, w(s) tends to W(0) = K. The value of —dw(s)/dsats =0
is equal to the average waiting time.

Tn some cages y_(s) is simpler than ¢, (s) and in place of (102) one
may use

K
e+(8) = Grat=s) = TN_(») (107)
where differentiation of (99) gives
K =¢4/(0) = (a7 — b )y_(0). (108)

A.3 Fyamples

The results just obtained will be illustrated by several special cases,
all of which have appeared in the literature.

Example a. Poisson Input, Exponential Service. Here a(s) = a/(a +
s), B(s) = b/(b 4+ s), and ¥, (s), ¢_(s) are to be determined from (99),
which now takes the form

ba sts+b—a) _ yils)

b+s)a—s) (b+s)a—s) d(s)

Inspection shows that when D = a

sls+b—a)

b r s v (s) =a—s (109)

¢+(S) =

satisfy the requirements set forth in connection with (99). Then (103),
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(102) and (105) give

8->0 S b -f
(s) = K _(Q-p)b+s) _1_ p
#+ Yo (s) s(b—a-+s) 8§ b—a+s

W(t) =1 — pe ®%
Incidentally, for this case the probability density of w, = s, — i, is
ab(a + ) 'e™ (u < 0)

C'(u) = o .
abla + b)7¢™ (u=0)

Ezxample b. Potsson Input, General Service. In this case (99) becomes

Bls)a _ | _s—a+aB(s) _ ¢u(s)
a—s a—s v_(s)’
With the help of Rouche’s theorem (Titchmarsh,” p. 116) and the fact
that [1 — B(s)]/s is the Laplace transform of 1 — B({), it may be shown
that s — @ 4+ aB(s) has no zero in Re(s) > 0 when b > a.
Then, with D = a,

Yils) = s —a+aB(s), ¢_(s) =a —s,
K= (a"=b"y(0) =1—p=W(0), (110)

sK _ s(1 — p)
Yi(s)  [s—a+ aB(s)]’

The expression for w(s) is sometimes called the Pollaczek-Khinchin
formula. The coefficient of —s in the power series expansion of w(s) is
equal to the average waiting time.

Example c. Recurrent Input, Exponential Service. Replacing (s) by
b/(b + s) in (99) gives

ba(—s) — b —s _ [ba(—s) —b - s] [s(s - 31)] Yy (s)
b+ s - s(s — s1) b+ s Y (s)

where s is the one and only zero of s + b — ba(—s) which lies in Re(s)
< 0 when b > a. The existence of s, may be established with the help
of Rouche’s theorem."” If s = 0 is the only new zero of s + b — ba( —s)
introduced when the region Re(s) < 0 is extended to Re(s) < D, one
may take

w(s) = spi(s) =

s(s — s1) _ s(s — s1)
'f’+(3) = W; y_(s) = ba(—s) — b — e (111)
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These functions satisfy the conditions stated just below (99). Then

K = lim bils) _ s W(0)

80 s b
(S) _ K _ _S|(b + S) _ 1 _ 1 + Slb—]
e+ Y. (s) bs(s — s1) s s — &

W(t) =1 — (1 4+ sb e

Example d. Erlangian Input, Erlangian Service. In this case the input
and service time probability densities are

~al(alt)'™

_ . k(bR T e
(I —1)! ’

B =G ¢

A'(t)

and have the Laplace transforms

at) = (14 gl)", st = (1+ S

It is found that (99) becomes

1— f(s) _ ¢uls) (i _ g)z( EAY
J(s) y-(s)’ /(s) (1 a) \&T bk) :

Tor a < b (the only ease considered here), the polynomial F(s) =

1 — f(s) has a zero at the origin, zeros s, -+, s in Re(s) < 0 and
ZT0S Sgq1, * -+ 5 Skpit in Re(s) > 0. This may be shown with the help
of Rouche’s theorem. It turns out that s;, -- -, s lie inside a circle of
radius bk centered on s = —bk, and Srq1, - -, Sk lie inside a circle

of radius al centered on s = al. Hence

_sls —s1) - (s — &)
’1&+(S) - (s + bk)* ’
L (s —al)' ‘
v_(s) = (s — spp1) = (8 — Seqi-1) (1132)
— _ Sttt Sk (' — b_l)(a'l)l
W) = K = (—bk)* - Sk41 0 Skl '

For the case of regular arrivals and constant service time, inspection
shows that W(¢) = 1. It appears that in this case letting k = [ — =
should give

Yils) = s, ¢ (s) = sl ™ — 1



308 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1962

Example e. Arrival Rate Almost as Large as Service Rate. It often
happens that when the arrival rate a is almost as large as the service
rate b, most of the customers have to wait a long time for service. In
such cases one may obtain an approximation for the waiting time dis-
tribution funetion W(t).

Let a;, as, by, ba be the first and second moments, and v, , vp be the
variances (which are assumed to exist in the following discussion) asso-
ciated with A(¢{) and B({). Then a; = 1/a is the average spacing be-
tween arrivals and b, = 1/b is the average service time. From the inte-
gral (105) for W(t) it is seen that the behavior of W (¢) for large values
of ¢ is determined by the right-most singularities of K /¢ (s). In Exam-
ple a (Poisson input, exponential service), these are poles at the zeros
of ¥ (s) which occur at s = 0 and s = s; = @ — b. Note that s, is nega-
tive and s — 0 as a tends to b. Furthermore, the value of y_(s) near the
origin does not change markedly as @ — b; and the same is true for the
remaining factor (b + s)~' appearing in y,(s).

Many other cases show the same type of behavior as a — b. In gen-
eral, the function (99)

_ _ :':b+(8)
Bls)a(—s) — 1 ()

has a double zero at s = 0 when a = b. When a hecomes slightly less
than b, and a, slightly greater than b, , one of these zeros remains at
s = 0 and the other moves to s & s, where

_2{31 — bi)
Vi + Va

< 0. (113)

8 =
This may be seen upon using

8(s) =1 — bis + 25 + o(s))
(114)

ass’
al—8) =1+ as + —f)— + o(s)
and assuming that (@ — bi)® is negligible in comparison with v, + v .
The approximation (113) for s, is given by Smith" who points out its
importance in the present case.
An examination of the earlier examples leads us to take
Yi(s) =~ s(s — &)C (115)

when s is near the origin. Here (' is a constant equal to the value of
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the remaining portion of ¢ ,(s) at s = 0. Equations (103) and (105)
then give

K = l_im@ = —g(C (116)
&0
K o —s _L_ 1
vi(s) s(s—s1) s §8—8 (117)

W) ~1— e

Thus, when @ — b and ¢4 + v5 does not tend to zero, W(t) is given by
the approximation (117) where s is given by (113). The average wait-
ing time is —1/s . It should be noted that this approximation gives
W(0) =~ 0 instead of the true (small) value W(0) = K = —gC. Un-
fortunately, there appears to be no simple expression for C correspond-
ing to (113) for s, .

A.4 Conclusion

Finally, it will be mentioned that when a customer departs after be-
ing served, the chance p, that n customers remain in the system is equal
to the chance that an arriving customer will find » in the system. Fur-
thermore, for 0 = o < 1

i i = (1 —a) [ al(—s)8(s) Kds

= 2mi eim |1 — xa(—8)] ¥y(s)
where ¢ > 0 and is such that the singularities of 8(s)/¢+(s) and a{ —s)/
[1 — wa(—s)] lie on opposite sides of the path of integration (this re-
stricts A () and B(!) somewhat). The right-hand side may be replaced
by one of several integrals which differ slightly from the one shown.
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