Delay Distributions for Simple Trunk
Groups with Recurrent Input and
Exponential Service Timest
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Al a telephone exchange, calls appear before a simple trunk group of
m lines in accordance with a recurrent process. If every line is busy, calls
are delayed. The call holding times are mulually independent random
variables with common exponential distribution. In this paper, methods are
given for the determination of the distribution of the delay for a stationary
process and various orders of service. Three orders of service are considered:
(1) order of arrival, (2) random order, and (3) tnverse order of arrival.

[. INTRODUCTION

In the theory of telephone traffic, the following process is of consider-
able interest. In the time interval 0 < ¢ < =, calls appear before a
simple trunk group with m lines at instants 1, 7o, ++-, 7o, *-- where
the interarrival times .41 — 7.(n = 1,2, ---) are identically distrib-
uted, mutually independent, positive random variables with distribu-
tion function

P[Tn+1 - Tn é -T; = F(l) (?’L = 1!2; ) (1)

We say that the call input is a recurrent process. If an incoming call
finds a free line, a connection is realized instantaneously. If every line
is busy, the incoming call is delayed and waits for service as long as
necessary (no defections). Denote by x. the holding time of the nth
call. It is supposed that {x.] is a sequence of identically distributed,
mutually independent, positive random variables with distribution fune-
tion

P{x, £ 2} = H(x) (n=1,2 ) (2)

t An address presented on September 14, 1961, at the Troisiéme Congrés Inter-
national de Télétrafie, Paris.
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and independent of {7,}. We shall consider only those systems of service
which satisfy the requirements that there is no free line if there are calls
waiting and that the same principle of service applies to every call (no
priorities). Such a service system can be characterized by the symbol
[F(x),H(z),m] provided that the order of service is specified.

The ideal order of service, “order of arrival” or ‘‘first come — first
served,” is not always realizable, particularly at times of heavy traffic;
therefore it is important to consider other orders of service also. One of
these is ‘“‘service in random order” which often describes the practical
situation with high accuracy. In this ease, waiting calls are chosen for
service at random. Every call, independently of the others, and of its
past delay, has the same probability of being chosen. Further, it is of
great informative value to consider the extreme case, ‘“tnverse order of
arrival,” or “last come — first served.” (At present we are not concerned
with “priority systems” in which “last come — first served” service is
the natural order, e.g., the last information to be received may be the
most important in the process of the arrival of messages.)

In what follows we shall consider the system [F(x),H(x),m] in the
particular case when call holding times have the exponential distribu-
tion

1 —e* (x 2 0)
H(z) = { (3)
0 (x <0)
and the process is stationary. We shall give methods for finding delay
distributions for the three service orders mentioned.
We introduce the notation

() =f0 e dF (2) (4)

for the Lagplace-Stieltjes transform of the distribution function of inter-
arrival times,

a = fowa:dF(:c) (5)

for the average interarrival time, W(x) for the delay distribution fune-
tion, i.e., W(x) is the probability that the delay is =z, and

Q(s) = fm e " dW(x) (6)

for the Laplace-Stieltjes transform of W(z).
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If M(s) = 0 then denote by z = y(s) the root with the smallest ah-
solute value of the equation

= o(s + mu(l — 2)).

We have |y(s) | £ landforr = 1,2, ---

[‘Y(S)]r =7 (m#) _f P—(a+m;x): lrn—r (IF,‘{.'I') (7)
a=rn(n — r)!Jdg

where F,(r) denotes the nth iterated convolution of F(x) with itself.

let w = v(0); then

E

n—l p=
Z NL” ) f ‘,—mux.rn—l d]“n(.'r)' (S)

n=1 0

If map < 1, then w = 1 while if map > 1, then wisreal and 0 < w < 1.

II. GENERAL THEORY

A. K. Erlang' was the first to consider the process [F(x),H(x),m] in
the particular case F(z) = 1 — ¢ ™(x 2 0), H(x) = 1 — ¢ * (2 2 0).
The case of general F(x) has been treated earlier by D. G. Kendall,*
I. Pollaczek,® and the author.*

Denote by £(¢) the number of calls in the system at the instant ;
i.e., £(t) is the total number of calls either waiting or being served.
Denote by x(t) the time difference between ¢ and the arrival of the next
call after t. Let &, = £(r, — 0), i.e., the nth call finds £, calls in the sys-
tem, and denote by 7, the delay of the nth call. The initial state is given
by £(0) and x(0).

The vector process {£(¢),x(); 0 £ t < =} is a Markov process and
has the same stochastic behavior for each order of service provided that
there is no free line if there are calls waiting. In Ref. 4 it is proved that if
map > 1, then there exists a unique stationary process. By choosing
the suitable distribution for [£(0),x(0)] we arrive at the stationary proc-
ess. Ior the stationary process, {£(t),x(t)} has the same distribution
for all £, and the distribution of £, is independent of n. Let P{¢, = k} =
Pe(k=0,1,---). As shown in Ref. 4

E( I)r—A()Ir (]" 0,1,"',?‘1’1—1)
P = {r=k ((})

Il

A ™ (k=mm+1,---)
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where
S [m(1 — o(ju)) — jl
U, = AC, (m) . : (10
2.\i) = oGt = o) = 7 )

[ m(1 — o(juw) — 41 7
== +E( )cu oGOl =y —51)

¢ -11 (1 i(f:()i#)) W

and w is defined by (8).

Remark 1 — In the particular case when {r,} is a Pmsson process of
density A, ie., F(z) = 1 — ¢ if = 0, we have ¢(s) = /(A + )
and thus

and

11 = m—ll A J 1 A m ?\ —1"
—2) + = (%) (1 ==
gﬂ(n) +m!(n) ( m.u)

Also for the stationary process the distribution function of 7, is inde-
pendent of n but depends on the order of service. We shall use the nota-
tion P{n, < 2} = W(x) for all cases. It is to be noted that the expecta-
tion E[#,} is independent of the order of service if the same principle of
service applies to every call. We shall see later that in each case, the

mean waiting time is given by

A

= (13)

j;w:t: dW(zx) =

III. SERVICE IN ORDER OF ARRIVAL

The following theorem has been proved earlier by D. G. Kendall,*
F. Pollaczek’ and the author.*

Theorem 1 — The delay distribution function for order of arrival service
is given by

Wiz) =1 — 1 f we—m.u(l—w)x (:I} > 0) (14)

where w 15 defined by (8) and A by (11).
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Proof — We have for x = 0 that
m—1 o3 x k
W(I) = Z Pk + Z Pm+k f ﬂimﬁu M mu dM (15}
k=0 k=0 0 k!

where {P;} is defined by (9). For, if an arriving call finds a free line,
which has probability

m—1 o A
> Pi=1—2 Puw=1-—
k=0

k=0 1“"‘&)

then its service starts without delay; if it finds every line busy and %
(k= 0,1, ---) calls waiting, which has probability P, = Aw*, then
its service starts at the (& + 1)st departure after the arrival. Since the
departures follow a Poisson process of density mpu, under this condition,
the probability that the delay <z is

f i (muu)*
0 I\T

Thus (15) follows from these and (14) agrees with (15).
It follows from (14) that the average delay is

mu du.

® A
and the second moment of the delay is
* N 24
fn S () = (17)

IV. SERVICE IN RANDOM ORDER

In the particular case of Poisson input this process has been investi-
ated by 8. D. Mellor,” E. Vaulot,” C. Palm,”*{ F. Pollaczek,’ J. Rior-
dan," R. I. Wilkinson," and J. LeRoy.” Now we shall consider the case
of recurrent input.

Denote by W;(z) (j = 0, 1, ---) the probability that the delay of
a call is =z, given that on its arrival all lines are busy and j other calls
are waiting. For the stationary process the probability that an arriving
call finds all m lines busy and j calls waiting is Pj,. = Aw’. If there is
a free line when a call arrives, which has probability

1
P_;:].— ‘A

i=0 l—w

m—

bl

then there is no delay.
t Ref. 8 is an English version of the material in Ref. 7.
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Thus we have

m—1

WU—ZP+QDMM x), (18)
that is,
W) =1 — -4 4 A W) (19)
l —w im0
Let us introduce the notation
o) = [ o aW(a) (20)
0
and
®(s,2) = 2 0(s)2 (21)
i=0

which is convergent if R(s) = Oand |2z| < 1.
Theorem 2 — The Laplace-Stieltjes transform of the delay distribution
function for random service is given by

2(s) = 1 - -0 + A®(50) (22)
where w = v(0) s defined by (8), A by (11), and
My du
2(s2) = s + mu[l — y(s)] ‘[(a) e(s + mu(l —u)) — u}
’ 1 — e(s +mu(l — u))] :
[ T et ol = e =] %)

: dv
o {f o(s + ma(1 — ) = v}d“

where v(s) 1s the only root in z of the equation
z = o(s + mu(l — 2)) (24)

in the unit eircle | z| < 1. The explicit form of v(8) is given by (7) with
r = 1.

Proof —For j = 0,1, --- we can write that
_ (7 + 1 - ]‘ [f —muu (m.‘-‘u ]
Wi(x) = Z_,D oL dF(u) |#W ()

(25)

1 o (M)
+ J:Z—u 1 f ;:p (1 — F(u)lmp du
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where * denotes convolution. If an arriving call finds every line busy
and j (j = 0, 1, ---) calls waiting, then the event that the delay is <z
can occur in the following mutually exclusive ways: either in the sub-
sequent, interarrival interval £ (kK = 0, 1, ---, j) services terminate
and the service of the given call does not start during this time interval
or, in the subsequent interarrival interval at least k + 1 (k = 0, 1,

-, ) services end and the service of the given ecall starts at the termi-
nation point of the (k 4 1)st service.

Forming the Laplace-Stieltjes transform of (25) we get

" o0 . k
G DY) = 5 G+ 1= Dasls) [ e g
= J (26)
> [ —(s+mp)x (m#L) 1 — F(x)mu dx

k=0

whence
220 (j+ DQ(8)2" = ols + mu(1 — 2)) 2 j0;(s)2’
=0 i=0

muz  [1 — (s + mu(l — 2))]

ta-o (s +mu(l —2))

that is,

6‘13(82

[z — @(s + mu(l — 2))] — 4 &(s2)

@D
_omu [ —ols + mu(l — 2))]
(1 —2) (s + mu(l — 2))

If mpa > 1, then | o(s + mp(1l — 2)) | < ¢(mpe) <1 — ewhen |z | =
1 — e and e is a sufficiently small positive number. Consequently by
Rouché’s theorem it follows that

¢ = o(s + mu(l — 2))

has one and only one root z = y(s) in the circle | 2| < 1 — ¢, where
e is a sufficiently small positive number. The explicit form (7) for
[y(s)]” can bhe obtained by Lagrange expansion. By definition ®(s,z) is
a regular function of zif | z| < 1 and R(s) = 0. If we put z = y(s) in
(27), then we get

mu
s + mu[l — y(s)]’

The solution of the differential equation (27) which satisfies (28) ean
be written in the form (23). Finally, (22) follows from (19).

®(s,y(s)) =

(28)
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Remark 2 — Let us introduce the notation

A(sz) =z — o(s + mu(l — 2)) (29)
and
B _ mu 1 — (s 4+ mu(l —2))] 0
) =T=2  G+m1—2) (80)
Then (23) can be written in the following equivalent form
. [ _ Fodv dB(su)
8(sz) = Blsz) fw) exp { f m} ) gu. (1)

The function ®(s,z) can also be expressed in the form of an infinite
series as follows

®s2) = L s(5)le — 1) (32)
which is convergent if | 2 — v(s) | is small enough. If

A(s2) = T A(5)le = 1) (33)
[note that A(s;y(s)) = 0 by definition of y(s)] and

B(s2) = 3 Bi(o)le = 7() (34)

then ®,(s) (j = 0, 1, ---) can be obtained by the following recurrence
formula

’:Z;:t)k‘pk(s)Ai+1Hk(s) + ®;(s) = Bj(s) (j =0, 1, ---). (35)

This follows from (27). In particular by (35) we obtain
Biy(s)

1+ Ai(s)’
B.(s) _ Bi(s)As (s)

1 + 244(s) 1+ Au(s)][1 + 242(s)]

Formula (32) can conveniently be used to determine the moments of
the distribution function W(x). The rth moment

®y(s) = By(s), Py(s) =

By(s) =

fm 2 dW(z)

0
can be calculated by the aid of the derivatives

(d 3’;,.‘”))ﬂ=n (i+j=r).
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By using the relation y(s) = ¢(s + mu(1l — ¥(s)) we can write that

— s (mp(1 — w))
v(s) = o+ 1+ mue’ (mp(l — w))]

2”7 (36)
L Se (mu(l—o)) TR
201 + mpe'(mp(1 — w))J?
Now in particular we have _/ i xdW(z) = wﬁ (37)
N .2 ) = 24 2
i [ ) = B st = an -

V. SERVICE IN INVERSE ORDER OF ARRIVAL

The particular case when {r,} is a Poisson process was investigated
earlier by E. Vaulot," J. Riordan," and D. M. G. Wishart."” The case
of recurrent input can be treated in a similar way. As noted by J. Rior-
dan' the problem can be reduced to finding the distribution of the length
of the busy period for the process of type [F(x),H(x),1] where F(x) is
defined by (1),

= (z = 0)
H(x) = {0 (x < 0) (39)

“and there is only one server. In this case denote by G(z) the probability
that the length of the busy period is =z. The busy period is defined as
the time interval during which the server is continuously busy. Evi-
dently G(x) is independent of the order of service, provided that the
server is idle if and only if there is no waiting customer in the system.

If mpa > 1, then there is a unique stationary process, and for the
stationary process W(x) is given by

Theorem 4 — The delay distribution function for last-come, first-served
service s

O R ) (40)

1l —w

where w 1s defined by (8), A by (11), and for x = 0
o0 n—l1 z
G(x) = mu D, ™ (—T-H—'"?:')i f 1 — F.(u)] du (41)
n=1 . 0

with F,(u) the nth iterated convolution of F(u) with itself.

Proof — If a call arrives and finds a free line, which has probability
1 — A(1 — w)7', then its service starts without delay; if on its arrival
every line is busy, then we can remove all the calls waiting without



320 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1962

affecting the distribution of the delay of the call in question. The service
of this call starts when the queue size decreases to m for the first time.
The waiting time of this call evidently has the same distribution as the
length of the busy period for the queueing process of type [F(x),H(x),1]
with H(z) = 1 — ¢ ™ (x = 0). For, in both cases the arrivals have
identical stochastic law and the departures follow a Poisson process of
density mu. Thus we get (40). In Ref. 16 it is proved that

pg— o mpll — y(s)] ,
[} e ae = 2

where v(s) is the root with smallest absolute value in z of the equation
z=o(s + mu(l — 2)). (43)
v(s) is given by (7) with » = 1. By Lagrange expansion we find that

jl e dG(_.lT) _ muy SZ (—l)n(m.u)n

0 T s+ mp e n! . (44)
" ([w(s + m.u)]")
dst 1\ (s + mp)?
whence (41) follows by inversion.
By using the expansion (36) we get from (42) that
* A
and
“ a 24‘1
- dW(x) = - — . (46
[} 2V = it = T =) 49
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