The One-Sided Barrier Problem
for Gaussian Noise

By DAVID SLEPIAN
(Manuseript received September 21, 1961)

This paper is concerned with the probability, P[T,r(7)], that a stationary
Glaussian process with mean zero and covariance function r(7) be nonnega-
tive throughout a given interval of duration T. Several strict upper and lower
bounds for P are given, along with some comparison theorems that relate
P’s for different covariance functions. Similar results are given for
F[T (7)), the probability distribution for the inlerval belween two successive
zeros of the process.

INTRODUCTION

Let X({¢) be a real continuous parameter Gaussian process, stationary
and continuous in the mean. We shall assume throughout that
EX(t) = 0 and shall write r(7) = EX(t)X(t + 7). We further assume
throughout that we are dealing with a separable, measurable version of
the process,

Our main concern in this paper is the probability P[T,r(7)] that X (¢)
be nonnegative for 0 < ¢ = T. This quantity is of interest as a means of
describing the duration of the excursions taken by the process from its
mean. From P[Tr(7)], the distribution function #[A,;»(7)] of the inter-
val between successive zeros of the process can be determined by differ-
entiation [see (19)]. This latter quantity is of importance in a variety of
engineering applications of noise theory.

Considerable effort has been directed in the past toward the numerical
determination of F[A\r(r)] both theoretically’™ and empirically.?"
These researches have resulted in various approximations for F[\,r(1)],
but many of these are neither upper nor lower bounds for F, and exact
circumstances under which they are good approximations are not clear.
Generally speaking, they are good for small values of A and become nuga-
tory for sufficiently large A. There appears to be nothing rigorous in the
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literature concerning the asymptotic behavior of F for large A. (An ap-
proximation method is given in Ref. 21.)

In this paper we summarize some known results and present a number
of new strict bounds and comparison theorems for P[T,(7)] and
F[\r(7)]. The most important of these are: Theorem 1, Section 1.3;
Theorem 3, Section 1.4; and Theorem 10, Section 1.8. Theorems 12 and
13 (Section 2.7) dealing with class 2 covariances (defined in Section 1.1),
though of less importance for our goal, are perhaps of more than passing
interest. These and other results presented shed some light on theoretical
questions regarding P and F. Their utility in numerically determining
these quantities will be discussed elsewhere.

The paper is divided into two parts: Part I presents definitions, results,
and discussions; Part IT contains the more technical aspects of proofs
and other supportive material for Part I.

PART I — DEFINITIONS, RESULTS AND DISCUSSIONS

1.1 Preliminaries

From its definition, it is clear that P[T',r( )] is a nonincreasing function
of T. It assumes the value % for 7 = 0. It obeys the scaling laws

P[T (7)) = P[T;r(7)] (1)
PITr(Ar)] = PINT,r(7)] (2)
A> 0.

In asserting (2) for all A > 0 we have assumed r(r) given for all 7.
This is a convention that will be adhered to throughout this paper. It is
to be noted, however, that P[T,r(7)]for0 = T < T, depends only on the
“piece” of the covariance function 7(7),0 = 7 = 7%

The scaling law (1) suggests normalizing the covariances to be con-
sidered so that

r(0) = 1. (3)

We adopt this convention hereafter.

The scaling law (2) suggests that a normalization of the time scale is
in order. There does not appear to be a convenient way to do this for the
class of all covariances. For processes continuous in the mean, such as
are,being considered here, all one can say in general about covariances is
that they are even continuous nonnegative-definite functions. This is a
rather large class of functions containing a great variety of pathologies
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such as nowhere differentiable continuous functions. In what follows we
shall have occasion to consider covariances r(r), strictly monotone in
some right neighborhood of 7 = 0 and such that »(7) — 1 behaves like a
nonnegative power of | | for sufficiently small | = | . We normalize and
define this class as follows: The continuous covariance r(r) is said to be
of class « if, as  approaches zero,

_ [ |® .
r(r) =1 — ' (a +1)+0(\1—]),

and if r(r) is strictly monotone in some right neighborhood 0 < r < 7,
of the origin. Here necessarily 0 £ @ < 2 and T'(a + 1) is the usual
gamma function. The normalization is contained in the specific choice
of the coefficient of | 7 |*.

To the author’s knowledge, when the scaling laws (1) and (2) are
taken into account, there are'only three distinct covariances for which
P[Tr(7)]is known explicitly. These are:

(&) m(r) =" 0 7= =,

2

PITr(r)] = < aresin ¢ ", 0=7T < =;
™

(i) r(Br) =1 — 5 + B cos (T) 0=7< =, 0=8=1,

1_T — 5= '11(5111 [,Bsm( )] 0= Zé2ﬂ',
2 A4r B
P[T,I‘ﬂ(ﬂ,‘f)] 1
E
1

2[1 - B] 2r

JI/\

L—|r], 7=
0

Il

(iii) ra(r)

fflél,

[mrsm (1 —=T)—=+/T(2 =T)], 0=T=1.

The process with covariance ry(r) is Markovian, and it is this special
property that permits determination of P[7T,r(7)] in this case (see Ref.
22 or Ref. 21, Section [X).

Case (47) corresponds to the stochastic process

X(1) = A + B cos [% + q:],

with 4, B and & independent random variables, the two former being
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normal with mean zero and variances 1 — 8° and @ respectively, and the
latter being distributed uniformly in (0,2). The determination of P
in this case is an exercise in integration and elementary probability the-
ory that will be omitted here. For the obvious generalization of this case,
namely,

N
X(t) = A + 2 B coslt/B: + @i,

P[T,r(7)] can be expressed in principle as a (2N + 1 )-fold integral. Ex-
cept in the case N = 1 presented, the integrals appear untractable.

The form for P[T,rs(7)] given follows from results found in Ref. 23.
Note that it is valid only for T < 1. We have been unable to extend P
beyond this point.

These examples shed little light on the many questions that naturally
arise concerning the behavior of P[T,r(7)], both as a function of T and
as a functional of »(7). What are possible asymptotic behaviors of P
for large T? What features of r(7) determine this behavior? To what
extent is P determined by the behavior of 7(7) in the neighborhood of
7 = 0? (For example, if (r) is analytic in the neighborhood of r = 0,
then it can be extended as a covariance in only one way, namely, by its
analytic continuation. In this case, then, P[T,r(7)] is completely deter-
mined by the behavior of () near r = 0.) If ¢(7) is another covariance,
in some sense close to 7(7) for 0 £ = £ T, is P[T,r(r)] close in some
sense to P[T,q(r)]? How can P[T,r(7)] be determined numerically for a
given covariance r(7)?

These and many other Lasic questions await to be answered in full.

1.2 P[T (7)) as a Limat

LetO0 =t <t < --+- < t, = T be a partition of the interval (0,7')
into n — 1 parts. The n random variables X(t), X(t), ---, X(t.) are
jointly Gaussian with covariance matrix r = (ri;), where ri; = 7(f; — t;).
Denote by P,(r) the probability that these n random variables be non-
negative. Because of the assumed separability of the process,

P[Tr(7)] = lim P,(r), (4)

where it is understood that the limit is taken as the partition is refined
with mesh tending to zero. If r(7) is positive definite, then |r | > 0 for
any choice of partition, and one can write explicitly

P.(r) = (21r)*“’2lr|‘*jn dxfo dz,e ¥ (5)



ONE-SIDED BARRIER PROBLEM 467

It is somewhat surprising that information about P[T,r(7)] is so difficult
to obtain when it can be expressed as the limit of the apparently not too
unwieldy expression on the right of (5). This integral is deceptive. For
n > 3 it cannot be expressed in terms of elementary functions of the co-
variance elements r,; . Series expansions and upper and lower bounds can
be easily written for this integral, but most of the obvious ones yield
vacuous results in the limit as the partition is refined.

The integral (5) admits of a simple geometric interpretation obtained
by reducing the quadratic form in the exponent to a sum of squares by
a linear transformation and performing a radial integration. P,(r) is the
fraction of the unit sphere in Euclidean n-space cut out by n-hyperplanes
through the center of the sphere. The angle 6;; between the normals to
the 7th and jth hyperplanes directed into the cutout region is given by

cos 0:; = rij,1,j = 1,2, --- | n. This geometric interpretation of P,(r)
holds even when |r| = 0. For n = 2 and 3, this picture gives at once
1 .
P, = 2%_ [r — 8] = }1 - 5 Aresin 7y (6)
1
P3 =I-[2W—9]2 '—913—-923]
m

(7)

1 1 . . .
3 - o [aresin 712 4+ aresin i3 4 aresin rs.
m

Seen on the surface of the sphere, the region described above is the
generalization of the spherical triangle in three-space and is known as an
n-dimensional spherical simplex. Geometers have studied the problem
of expressing the content of the spherical simplex in terms of the angles
between its bounding surfaces.”™ Many of their results can be readily
derived from known results in probability theory using the connection
with P,(r) just mentioned (see Section 2.1).

It is clear that P,(r) is an upper bound for P[T,r(r)]. The result (7)
then is a simple upper bound for P[Tr(7)], where ry = r(tn — ),
rg = 1l — ), 73 = 7(#y — &) and 4 , ta, £y are any three points in the
interval (0,7"). For very small values of 7, this upper bound can be made
close to the true value of P[T,7(7)]. For large values of 7, this is gen-
erally not the case. If, for example, r(7) is never negative, P; is always
greater than §. If »(7) oscillates in sign, there is 2 minimum value for P,
different from zero (unless r(r) achieves the value —1) obtainable for
any choice of #; < . < t;, and hence this bound for P[T,r( )] does not
approach zero for large 7.
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1.3 A Comparison Theorem for P[Tr(r)]

Recall that in the geometric picture of P,(r), rij = cos 6;; where 8;; is
the angle between the inward normals to hyperplanes ¢ and j. Intuitively,
it is clear that if this angle is decreased, ie., if 7, is increased, P,(r)
should also increase. This is borne out by the following

Lemma 11— Let P,(r) be the probability that n jointly Gaussian vari-
ales with mean zero and normalized covariance matrixz r(ri = 1) be non-
negative. Let q be another normalized n X n covariance matrix, If ri; = qi;
forigj=1,2, -+ ,n,then P,(r) =2 P.(q).

Note that the matrices r and q need only be nonnegative definite (as
distinguished from positive definite).

By regarding P[T,(r)] as a limit of P,(r), as explained in the pre-
ceding section, Lemma 1 can be used to deduce the following comparison
theorem.

Theorem 1 — I} r(7) = q(7) for 0 = 7 = T,, then P[Tr(7)] =
P[T,Q(T)lfﬂr 0 é T é ?‘u-

The covariance function of a process is generally regarded as a rough
measure of how much the process “hangs together.” This view is sup-
ported by the theorem. A process with a larger covariance function
hangs together more and is more likely to maintain the same sign than
one with a smaller covariance.

The comparison theorem can be used with the three covariances
(Section 1.1) for which P[T,r(r)] is known exactly to bound this quan-
tity for other covariances. The theorem is particularly useful for com-
paring covariances of the same class. Let r(7) and ¢(r) both be of class
@, and suppose that r(7) = ¢(r) in some neighborhood of the origin.
Then P[T,(7)] = P[T,q(r)] in this neighborhood. But, for any A >
1,g(7) = r(A7) in some sufficiently small neighborhood of the origin,
so that also P[T,q(7)] = P[T,(Ar)] = PAT,r(7)] by the scaling law
(2). Choosing \ appropriately leads to the following

Theorem 2 — Let r( ) and q(t) be of class a with v(t) = () in some
neighborhood of v = 0. Then for some T* > 0,

P[Tx(7)] = P[Tyq(n)] = P (¢(T)x(7)], 0 =T =T

The theorem is proved in Section 2.3 where the determination of 7*
and the choice of proper branch for #~'(¢) are also discussed. Knowledge
of P[Tr(7)] thus provides both upper and lower bounds for P[T,¢()]
near r = 0.

+ Proved in Section 2.2. A special case of this lemma was proved by J. Chover*
by a completely different method. He applied his result to obtain a weak version
of our Theorem 1. Chover’s result inspired much of the present paper.
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1.4 Some Related Results Useful for Large T

From Lemma 1, it is easy to deduce (see Section 2.4)
Theorem 3 — Let Ty = 0,Ty = 0,73 = 0 be such that Ty + Ty = T, .
Ifr(r) 2 0for0 = 7 = Ty, then

PlTy, r(7)] = P[Ty, r(0)]P[Ts, r(7)]. (8)

This theorem provides some asymptotic information on P[7'r(7)] for
covariances that are never negative. It implies for these covariances
that — (1/7) log P[T,r(7)] approaches a nonnegative limit as 7" becomes
infinite. In this sense, then, for nonnegative covariances, P[T,r(+)] cannot
decrease asymplotically more rapidly than exponentially. An exponential
lower bound for these covariances is found by iterating (8). Thus, if
T = NT,, P[Tyr(r)] = PINT,, r(7)] 2 P[T,, r(+)]". One obtains in
this manner the exponential bound

Pyl 2 PPI™ T 2T, (9)

which holds for nonnegative »(7) with P, = P[T,, »(7)], T, > 0.

For covariances for which P[7',r(7)] is not known, (9) still gives useful
information by replacing P, by a lower bound. For example, from the
lower hounds presented below Theorem 6 in Section 1.6, it follows that
for nonnegative r(7) of class 2, P[Tr(7)] = f(1T') where

=

1 T
-’3[1_¥]’ 0 2

AT) = (10)

m

1A

l[i‘_’i’] T g BT
412 T |’ 2 = -2

By choosing 7T, to maximize f(7,)"" and using this maximum value for
Py in (9), one obtains the following
Lower Bound — If r(r) s of class 2 and nonnegative, then

PlTr(r)] =z 0121 ¢ 27, T = (1.016).

For a specific nonnegative covariance of class 2, a somewhat smaller
exponent can often be obtained by using for f the lower bound of Theo-
rem 6, or a lower bound obtained from the comparison theorem and
example (#7) of Section 1.1.

For covariances (such as ry(7) of Section 1.1) that are identically zero
for 7 =2 Ty for some T, > 0, an exponential upper bound can readily be
written for P[Tr(7)]. For example, if T = (2N — )T, , then
PI[(2N — 1)T,, r(7)] is certainly not greater than the probability that
the process be nonnegative in the intervals (0,7v), (27, 37T)), --- ,
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((2N — 2)T,, (2N — 1)T:). But the process in any one of these inter-
vals is independent of the process in the other intervals because of the
vanishing of r(r) for r = Ti. Thus, P[T,r(7)] = {P[Ty, r()".
Arguing in this manner, one arrives at the

Upper Bound — If r(r) vanishes for r 2 Th, then

1
IJ[T‘J"(T)] é ‘\/F leng, T = Tl!
1
where Py = P[Ty, r(7)].

1.5 Bounds from Rice’s Sertes

LetO =t <ty < -+ < &, = T be a partition of the interval (0,T")
inton — 1 parts. Let A, denote the event: “X(¢) changes sign at least
once in the interval & < { < tisy,” ¢ = 1,2,---,n — 1. Then, by the
method of inclusion and exclusion,

OP[Tr(r)] = 1 — 2. Pr{dd + 2 Prid, N A}
; i<i
- Z PI‘[A,‘ n Aj n Akl
i <P <k
+ - + (—l)n_IP['[A]_ n Ag n e n A“_I},
is the probability that none of the events A; occur. If 77(0) exists, the

above series approaches as a limit as the partition is refined with mesh
tending to zero

T .l T T
2P[Ty(r)] =1 — f () dh + 5, dtlj; diage(ly , 1) — +++ |
0 . Y0
(compare Rice," Equation 3.4-11) which we write as

2P(Tr ()] = 1+ 3 0B
C T an
Bo= [ du-o [ g, ta).

Here q,(ti , - - b, )dly- - -dt, is the probability that X(¢) has one or more
zeros in each of the intervals (4 , & 4 dty),- - -,(t. + dl,). The existence
of ”(0) assures us that X(#) has a derivative almost everywhere in
(0,7 for almost all sample functions. One then has

q,.(tl,---,m=f_mdsl---[mdsn|z.---m o)

'[.’P(El, Ty En: 0 B )mn)]:-u=0-
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Here p(&, -+t , 21, -+ -,x,) is the joint density for the random vari-
ables X'(t1), -+, X'(t.),X(t), - -,X(t,) with & associated with X’(t;)
and =z; associated with X (), = 1,2,---,n. X'(t) is the derivative of
X () with respect to &.

From the derivation of the method of inclusion and exclusion, suc-
cessive partial sums of (11) alternately overestimate and underesti-
mate 2P(T). We therefore have the sequence of bounds

0 < 2P[Ty(7)] £ 1,
_ B _ 1 _ B B
Bl Bg B3 , B] Bg Ba B4
1—ﬁ+2—!_3—1§2P[g:7‘(1’)]§1_ﬁ+2—1_‘§+ﬂn

etc. Unfortunately, except for n = 1,23, the integrand ¢,(t, - - - t,)
oceurring in the definition of B, cannot be expressed in terms of ele-
mentary functions. For covariances r(r) of class 2, one has

91(‘51} = ;lr,
gty 1) = #Fi”[}/? ;)imarcsin o
where
po= (1 =11 =) — %2 + 2" — 1),
a=[(1 =" +r"l/[1l =2 =",
and

r = r(fg - tl), ' = I"(fg - tl), r” = ?‘”(tQ —_ tl)

The expression for g; is too complicated to warrant display here.

Bounds given by partial sums such as (13) cannot be expected to
yield useful results for large 7. Typically, for large T, B, behaves like
T": the upper bounds exceed unity for large 7' and the lower bounds
become negative.

For small 7T, however, (13) yields useful information. One has

B =1
™

Ifr(r) =1 — 7°/2 + er'/4 + ()(-r"), a very tedious computation shows
that for small 7,
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_C—lTa 3
B, = 21 ;+0(T),

B;; = O(Ta)
From this and the inequalities (13) follows
Theorem 4 — If for small =

2 4
T cT P
7‘(7)=1_§+4—1+O(7),

then the first three right-hand derivatives of P[T (7)) with respect to T
exist al T = 0 and are given by

PlOy(r)] = 3,

Plo+r(n)] = =5,
P04 (n)] = 0,
P04 = 56

The assumed form for r(7) in Theorem 4 is important. It has been
shown by Longuet-Higgins' that if 7(7) = 1 — 212407+ 0@,
b # 0, then for small 7, B, = O(T?) forn = 2,34,--+. One can only
conclude in this case that P[0+ ()] = — 1/2m.

The power series 1 + 31" B,A"/n! can be written formally as

exp 2 c\"/n.
1

Expand the latter in a power series, equate coefficients of like powers

of \ and set A = — 1. There results the formal identity using (11)
IP[T ()] = e Ty (14)
where
e = By = Z
T
¢, = By — BY (15)

C3 Ba b SBlB-z + 2[)’1:I
Cy = Bq —_ 4BlB;; - 3322 + 1231239_ - GB:,
ete., with the B’s given by (11) and (12). Relations (15) are the usual
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ones connecting semi-invariants with central moments (see Ref. 39, p.
37 or Ref. 40, p. 186). Kuznetsov, Stratonovich and Tikhonov' have
suggested the use of (14) keeping a finite number of ¢’s as a better ap-
proximation to P than series (11). For large 7', (14) will perhaps yield
a better approximation than (11), but it is difficult to see under just
what circumstances this will be true. A knowledge of the asymptotic
behavior of the ¢’s for large 7" is needed, but this appears to be a difficult
point.

A truncated form of (14) will not in general yield the correct asymp-
totic behavior of P[T,r(r)]. For example, retaining only ¢, , (14) gives
2 P[Tr(7)] ~ ¢ "' for all class 2 covariances. That this is not in general
correct can be seen from a family of simple counterexamples. If ¢(r) is
of class 2, then so is

r*(r) = qlar) sin ﬁr,
BT

where @ = v/1 — g2/3 and 0 < 8 £ /3. If X(¢) has covariance r*(r),
then since r*(nx/8) = O,n = =41,£2,---, the random variables
X(m/B), X(2x/B), X(37/8),- -+
are independent. Set N = [87/x]. Then
PTy*(r)] = PriX(jm/B) 2 0,5 = 1,--- N} = (4)"

(16)

é 2(%)ﬂ’f.’ﬂ' — ‘)C*(ﬂ log Q)Tﬂ’r.

Thus if

V3=17322=28> = 1.442, (17)

log 2

-

¢""P[Tr*( )] approaches zero exponentially for large 7', and the first
term in the exponent of (14) yields an incorrect asymptotic behavior.

It is interesting to note that the form ¢ ™" ohtained from (14) by
retaining only ¢; would be correct for a process in which the axis cross-
ings were independent. One would then have ¢,(t,, -+ t.) = [[m(t)),
B, = (B1)" and ¢, = O,n > 1. For processes with the covariance (16)
with 8 given by (17), P[T,r*(7)] decays even more rapidly. This has
nothing to do with the asymptotic behavior of 7*: by proper choice of
q(7), this can be altered at will. One must suppose this rapid decay of
P[T,r*(7)] is due to the fact that typically r*(r) takes negative values
so that at certain time separations the process is anticorrelated. Indeed,
it is tempting to conjecture that for nonnegative class 2 covariances,
¢""P[T,r(7)] increases without limit for large 7.
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1.6 Some Other Bounds for P[T (7))

In this section we list a few miscellaneous bounds on P[T,r(7)].
Theorem 5 —
2 1
PlTr(r)] £= f (1 — w) aresin »(Tu) duw.
™ Yo

The theorem is proved in Section 2.5. If r aresin 7(7) is integrable, the
bound in Theorem 5 approaches zero like 1/T.

Lower bounds for P[T,r(7)] are difficult to obtain. One is given by
(see Section 2.6)

Theorem 6 — If r(7) is of class 2,

3 T 1 .
=2 _ 2 4 =
P[Tx(r)] 2 5 in + 1, Aresin r(T).
This bound goes negative for relatively small values of 7' (at least be-
fore T = 2r). It gives somewhat more information than the bound
1 Al
sz A=), (18)
2 T

obtained from Rice’s series (Section 1.5) by retaining only Bi. The
bound obtained by retaining By, B, and By is of course generally much
better than that of Theorem 6 but is so complicated that it can be used
only with difficulty even with a modern computer. For nonnegative
covariances of class 2, Theorem 6 gives P[T,r(7)] =2 3§ — T/4x. This,
together with (18), gives (10).

Theorem 7 — If in the neighborhoed of 7 = 0,
7 17

r(r) =1 — > + Y + o(r"),

then

PlTr(7)] = % — Z—r — %r aresin [ﬂ sin (;1_,3)] , 0

where Ty = min(Bx,7,) and 7, is the smallest positive value of T for which
r(r) = 1 — 24/B. This theorem follows from the comparison Theorem
1, the result (77) of Section 1.1 and the fact (see Theorem 14, p. 494),
that for 0 < 7 < T, the covariance of Theorem 7 is dominated by

T'.’(61T)'

1IA

T="T,
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Theorem 8 — If v(1) is nonnegative and of class 2, then
P[Tr(r)] 2 % — %r — %r aresin [—\i'_‘j sin :/T_ﬁ:l , 0T %
This theorem follows from the comparison Theorem 1, the result (#7)
of Section 1 and the fact (see Theorem 13 in Section 2.7) that for 0 <
r = 7/4/2, every nonnegative covariance of class 2 is greater than
ro(1/4/2,7).
We conclude this section with a rather weak, but sometimes useful,
result proved in Section 2.8.
Theorem 9 — Let h(&) be nonnegative for 0 < §¢ < 6 and let h(g) = 0
Jor £ < O and t > 6. Define

A

Gr(x) = [ hx + DA(®) dt

and set

ro(r) = [: r(r — 2)Ge(z) dx.

Then
P[Tye(7)] 2 P[T + 6,r(7)].

1.7 Relationship Between P{Tr(r)] and F[\r(7)]

If »”(0) exists, then almost all sample functions X (¢) possess a deriva-
tive almost everywhere. If #”(0) does not exist, then almost all sample
functions are nowhere differentiable. In this latter case, if a realization
X(t) has a zero at t = 0, it almost certainly has infinitely many zeros
in every right neighborhood of ¢ = 0. In discussing F[\,»(7)], the
distribution of the interval, [, between successive zeros of X(t), we ac-
cordingly restrict our attention to covariances for which r”(0) exists.

The quantity P[T,(7)] — P[T + Ayr(r)] is the measure of those
sample functions which are nonnegative in (0,7') but are not nonnega-
tive in (—A,0), ie., the measure of those sample funections that are
nonnegative in (0,7') and have at least one axis crossing in (—A0).
Divide this quantity by the probability »A + o(A) that X(¢) have one
or more upward axis crossings in (—A,0) and allow A to approach zero.
There results

_ld
vdT
Here Q[T,r(7)] is the conditional probability that X(¢) be nonnegative

QITr(7)] = P[Ty(r)] =1 — F[Tx(+)]. (19)
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in (0,T) given an upcrossing of the axis at ¢ = 0; FIxr(r)] = Pr(l £ A)
is the distribution function for the interval I between zeros. One should
note carefully that the condition in the definition of Q is in the “hori-
zontal window sense” (see Ref. 10, Section 2 for a more complete dis-
cussion of this term). We shall find Q[7,7(7)] more convenient to deal
with than F[T,r(7)].

From its definition, Q[T,r(7)] is nonincreasing as a function of 7. It
assumes the value 1 for T = 0. Like P[T,r(7)], it satisfies the scaling
laws

QIT (7)) = QIT,r(7)]
QIT,r(Ar)] = QINT,r(7)] (20)
A> 0.

For most purposes, then, it suffices to consider only class 2 covariances.

L and (19) becomes

In this case (see Ref. 19, Equation (3.3-10)) » = 5

QT ()] = —2x A PITr()L, (21)

Clearly upper and lower bounds on Q[7',r(7)], say
QulTr(n)) 2 QTr(7)l, O0=T=T,
QT r(n)) = QITy(7), 0=T=T,,
furnish bounds on P[T,r(7)] by integration:
1 T
~ o [ uter as,

0=T="T.

| " Quler(1)] do < PITr(r)] <

DI -

However, since Q is nonincreasing, it is also possible to obtain weak
bounds on @ from known bounds on P. For example, since  is non-
increasing, if b > a = 0,

(b — a)Qlar(] = [ Qv dy 2 (b = a)Qlbr(r)]

or from (21) i

. Pla,r(7)] — Plbyr(r)]

5 = Qb,r(7)]. (22)
— a

Qlayr(7)] =2 2
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Thus if Py(7T) and P.(T) are respectively upper and lower bounds for
P[T,r(7)] valid for all T,

PL(TT) - P[r(.l') <

max 2w =< QIT;r(7)]
=T r — T (2?')
. PU(.C) —_ PL(T)
= mn 29 —————— "~
0gz=T T —=x

Note that the left inequality of (22) for @ = 0, b = T again gives (18).
Also from (21) and the fact that @ is nonincreasing, it follows that
P[T,r(7)] for class 2 covariances must be convex downward.

To the author’s knowledge, when the scaling laws (20) are taken into
account, the only covariance for which Q[7,r(r)] is known explicitly
is r2(8,7) of (#1), Section 1.1. One has

ro(Br) = 1—.62-1—52005(;—;), 0<B =1,
T‘
COSs _j‘
Hi4— ( B) . 0=l <o
Aro) = | g1 e () g
ra(r)] = 4 2%
0, 21r§%§ o

1.8 A Comparison Theorem for Q[T ,r(7)]

Imposing the condition that X(¢) have an upcrossing at ¢t = 0 in the
horizontal window sense greatly complicates computation of probabil-
ities associated with the process. For instance, when X ({) is conditioned
in this manner, the random variables X(¢,),X(t), -, X(¢,) are no
longer jointly Gaussian. If »(7) is of class 2, their joint density is

27 f d«‘f Ep(f: Lo, Ly, - ',-U:;)z:u——_[],
0

where p(§ x,, 21, - - -,2,) is the Gaussian density of the unconditioned
variables X'(0), X(0), X(t,), -, X(t.).

It is possible, nevertheless, to derive a comparison theorem for
Q[T,r(r)] and Q[T,q(7)] for class 2 covariances somewhat in the spirit of
Theorem 1. (See Section 2.9 for proof.) The function g(t) = ¢7'[r(1)]
plays a role here. Writing » = g(t), then ¢(r) = »(f). For a given value
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of t, we choose g(f) as the smallest positive value of = for which ¢(r) =
r(f). At ¢t = 0, we have 7 = 0. As ¢ increases from 0, so does 7. One of
two difficulties can oceur as { increases: #(f) may reach a local minimum
r(t,) at t = t, before g(7) has reached its first local minimum, say q(r1);
7 may assume the value =, when t assumes the value §; £ ¢,. In the
former case we define g(t) only for 0 = ¢ < ¢, ; in the latter case, we
define g(f) only for 0 < ¢ £ & . The comparison theorem can now be
stated as follows:

Theorem 10 — Let r(7) and q(7) be of class 2 and let g(t) = q [r(8)]
be defined as above. If for all nonnegative x and y withz +y = T,

g(z) + g(y) = glxz + y), (24)
then for0 = T = T,
QIT,r(7)] = Qlg(T),q(7)]. (25)

It is easy to show that if »(+) = ¢(7) in some neighborhood of the origin,
then g(¢) has the subadditive property (24) in some sufficiently small
neighborhood of the origin so that the theorem is not vacuous.

The steps which led from Theorem 1 to Theorems 2 and 3 are no
longer valid when X (t) is conditioned to have an upcrossing at £ = 0.
We have found no analogue of these theorems for Q[T,r(7)].

By using (21), one can integrate the inequality (25) to obtain a more
complicated comparison theorem for P[T,r(7)], namely

a(T)
PITy(r)] = & + f h’(.s)d%ms,q(f)] d& = Plg(T),q(r)l/g'(T)

g(T) ”
- fn Pleq()IK" (&) de,
valid for0 < T < T,. Here h(£) = g (&) = r '[g(¥)].
PART 1I — PROOFS AND SUPPORTIVE MATERIAL

2.1t The Geometric Approach fo P,

We wish to consider the probability P.(r) that n jointly normal
variates, each with mean zero and normalized covariance matrix r, be
nonnegative. Throughout this section we assume that r is nonsingular.
Then P.(r) can be written as in (5). Denote the eigenvalues and nor-

t The material in this section was developed in 1952. Many of the results have

been obtained indeEendently by other workers and have been reported in the
literature. Cf. Plackett!! in particular.
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malized eigenvectors of r by A; and ' = (o' ', ') i = ,2,---m
One has

); rae = Al
; v = kZ v = 6y,
rij = Zk VST 2

(26)

'i!j = 112:' tn
In (5) make the substitution z; = D, ¥:*a/A . There results

P = ey [ oo [ e dgas,
R

where the region R is defined by
Hi= 2 ¥ 20, i=12,---n
k

Denote by A, the (n — 1)-dimensional content of the intersection of
this region with the surface of the unit sphere having center at the origin.
Then, by changing to a spherical coordinate system,

A,

S—” ’

where S, = 27"*/T'(n/2) is the area of the unit sphere. Thus, P, is the
fraction of the unit sphere on the positive side of the n hyperplanes
H; = 0. The unit normal a' to H, directed into R has components ak =
¥:*4/\: . From the last of (26), we find for the angle ;; between a' and
a’, cos 0,; = a"-a’ = r;;.

As mentioned in Section 1.2, expressions for the content 4, of the
spherical simplex in terms of the angles between its bounding surfaces
are not known for n > 3. However, for the determination of P[T,r(7)]
one is concerned with the limit as n — « of P, where the angles 6,,'"
are given, for example, by cos 6:;;'” = r[(i — j)T/n] with r(7) a given
positive definite function. Thus, sufficiently tight bounds for P, might
in the limit yield useful results concerning P[T,(7)]. The geometric
picture suggests a large number of such bounds. Unfortunately, none
has been found which yields useful limits. Since, however, approxima-
tions for the n-variable normal integral P, are of interest in their own
right, we digress to mention several such bounds which may be useful.
(See Ref. 42 for a bibliography on the multivariate normal integral.)

P, = (21!')_“2‘4,,_[ dr" e =
0
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Cireular cones with vertices at thie origin can be inscribed and cir-
cumseribed about the region R. The half-angle of the inscribed cone is
found to be given by

sin 0; = ————

1/2?‘:‘;'_1, (27)
i
and the half-angle of the circumseribed cone is given by
1

A/ T VoV (28)

cos B, =

The fraction of the unit sphere cut out by a circular cone of half-angle
8 is

Fa(8) = —— ’ (%)

. . . 43
where I is Pearson’s incomplete beta function.” One has

fﬂ de sin" " ¢ = 3l (n —1 1) (29)
0 2o 2 '2

F.(0:;) = P, = Fo(6.). (30)

Bounds for P, can also be written in terms of inscribed and circum-
scribed Euclidean simplexes. The planes H; = 0 intersect n — 1 at a
time in lines which pass through the origin and a vertex of the spherical
simplex. Let b® denote the unit vector from the origin to the vertex not
contained in H; = 0. One finds for the components b’ = i Onr )T
and for the content of the Euclidean simplex determined by the origin
and the end points of the b’,

1
CoalA VIt

This simplex lies within the region of interest. The hyperplane through
the end points of the vectors b’ sec 6, is tangent to the unit sphere. The
Euclidean simplex determined by the origin and the ends of these vec-
tors therefore contains the region of interest. Thus,

G,
Vﬂ

G, (31)

<p, < sec GGG,,, (32)

- 1‘, n

1A

where V, = 7"*/T(n/2 + 1) is the content of the unit sphere, 6 is
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given by (28) and (7, by (31). Incidentally, for the cosines of the angles,
between the b’s one finds the interesting reciprocal relations
sii=bi-b = i o= s
t Vit T Vs s
which is the natural generalization of the usual relationship between the
sides and angles of a spherical triangle in three-space.

One can expect the bounds in (30) to be close to each other when the
b* are nearly coplanar, e.g., when all the entries of r are near unity. One
can expect the bounds in (32) to be close to each other when the b* are
nearly codirectional, e.g., when all the entries of r™' are nearly equal.

An important differential recursion relation first derived by Schlifli®®
for the content of the spherical simplex can be obtained in an analytic
manner from the expression (5) for P, . We write

P.(r) =f dry -+ f drag.(x1, -+, xr) (33)

where the n-variate Gaussian density is given in terms of its character-
istic function by

oo o0
(So b =38 ril
gn(;vls t ';'En;r) = f dEl e f dEu e Z)E“ lzl‘;kE;E.&.
-0 —o0

From this latter expression it follows that

3. _ 3'g.
67‘_,‘;_- a.l‘ja,t’;,- ’

k> j. (34)

Here we regard g, as a function of the n(n — 1)/2 variables rj , & > j,
and recall that ;; =1, rj = ri; . Regarding P, as a function of this same
set of variables, we find from (33) and (34)

apn(r) —_ f dll' f dl“ - J‘,‘(E[,"',(E";r).

dare

Perform the integrations indicated on a;, and x, . There results

aPn r) f dls ’ f f].l',,g,,(0,0,.ra, o -,.1',,;1‘) g 0' (35)
are 0

Now if g, is the density for the random variables X;, -+ X, ,
gn(vlll y el g ) = P( Xy, T2) ( Xy, 0, | Xy, ;lfg),
where p(z,, ,v») is the joint density for X, and X, and

plag, 2| 21, 22)
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is the conditional density of X3, - -*,X, given that X, = 2, and X, =
2, . In the case of Gaussian variates, these densities are well known
Evaluating this expression at x; = x» = 0, one finds

1
Qn(Q,O,fa, T ‘,.E,..l') = m Gnalxs, ',In,r-m).
When combined with (35) and generalized for arbitrary indices, this
yields

aP.(r) 1
L P, o(r.i) = 0. 36)
i 274/1 — ru? T ¢
Here 1+ is the customary notation of the statistician for partial corre-
lation coefficients (see Ref. 40, Section 23.4 and pp. 318-319), so that,
for example with g = j,k, v # j,k

Tuv Tuj Tuk
Tjv 1 Tk
Tky Tkj 1 |

Tuv- jk =
1 Tuj Tuk } 1 Tvi Tk 4

Tin 1 T ik Tjv 1 T ik
Tk Tkj 1 Tey Tkj 1

Equation (36) is Schlifli’s celebrated differential recursion formula.
His many relations connecting the angles of the boundary simplexes are
familiar to the statistician as identities among partial correlation co-
efficients.

We close this section with a simple demonstration that for odd n, P,
can be expressed in terms of the content of lower dimensional simplexes.
Let p: denote the probability that X; be nonnegative, pi; denote the
probability that X; and X; be nonnegative, ete. Then P, = pra...n . Set
M, = Zp:, My = 2.i<; pii, ete. Then from the well-known inclusion
and exclusion formula, the probability @, that none of the variates be
nonnegative is

Qu=1— M+ My — - +(=1)"M,.
But from symmetry, P, = @, = M, so that
n—-—(-)"P.=1—M +M,— - + (=1)""'"Mpy.

(Cf. Sommerville,” Chapter IX, Section 1.9.) No recursion is known for
even n.
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2.2 Proof of Lemma 1

Lemma 1 follows directly from (35). Note that in the derivation of
this result, it was not necessary to normalize the covariance matrix.
This result thus states that if g is a position definite symmetric matrix,
then

aP.(g)
apij
with P.(g) defined by (5).

Now let r and q be nonnegative definite n X n symmetric matrices with
rii = @i = 1. Then g = Ar + (1 — A\)q + €I, where I is the n X n unit
matrix, is positive definite for each ¢ > 0 and each A satisfying 0 <
A = 1. Consider P,(p) as a function of \. It is readily established that
P.(p) possesses a continuous derivative and indeed that

0, Jj>4 (37)

dk > Bp,-,- dk
aP,
= Z (o) (T'ij - q.-,-).
i>i  Opij

If now rij = ¢i;,j > 7, (37) then gives

dP,(p)
d\

Integration on A from 0 to 1 yields P.(r + ¢I) = P, (g + ¢ I). From
well-known continuity theorems (see Cramer,” Section 24.3 and 10.7),
Lemma 1 follows by letting ¢ tend to zero.

v

0.

2.3 Proof of Theorem 2

Let r(7) and ¢(r) both be of class & > 0 and suppose that r(7) =
g(7v) for0 £ r = T, . Then for any A > 1,

r(r) = q(7) = r(Ar)
0<7=mn(N),
for some suitable 7,(X). By Theorem 1, then, and the scaling law (2)
P[Tyr(r)] 2 P(Tyq(7)] =2 PINTr(7)]
0=T=n\.

To see how best to choose X to obtain a good lower bound for P[T,q( 7)],
it is convenient to define a version of h(7) = r '[¢(7)]. Let 7, be the

(38)

(39)
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smallest value of 7 > 0 for which ¢(7) is not decreasing. (Strictly speak-
ing, 7, = inf. of those T for which ¢(7) is not strictly monotone for
0 < r < T.If this T set is empty, define r, = =.) Define 7, in an anal-
ogous manner. The function r'(q) is defined for 1 = ¢ = r(7,) by the
branch having values between 0 and 7, . Similarly we define q '(r) for
1 = r 2 ¢(r,) by the branch having values between 0 and 7, . If ¢( 1) =
r(r,), we define h(7) = r'[g(r)] only for 0 < = < ¢ '[r(70)]. If g(7) 2
r( ), we define h(7) for 0 < 7 < 7. Clearly 2(0) = 0. As 7 increases
from zero, h(7) is at first at least as large as r, since r(7) = ¢(7) near
r = 0. For small 7, 7(h) = q(r), so that h'(7)r'(h) = ¢'(7) or

1(04) = tim £ = fim T = tim (h(’))” — K(04+)

twor 7' (R) a PR o t-+0+ T

so that h’(04) = 1. Three typical curves for y = h(r) are shown in
Fig. 1. Note that A(r) is strictly monotone in its domain of definition.

Consider now the plots of ¥ = h(r) and y = Ar as shown on Fig. 1.
For all values of A, these curves have the origin as a point in common.
When A = 1, the straight line y = A7 is tangent to y = h(r) at the
origin. As \ is increased from 1, a second point of intersection moves
out from the origin. It may happen, as in Fig. 1(a), that the line y =
Ar becomes tangent to y = h(r). If #o, we denote by T* the abseissa
of the first such point of tangency as X increases from unity and we de-
note the corresponding value of A by A*. If no such tangency occurs, we
denote by T* the largest value of 7 in the domain A(r). In this case we
set A* = h(T*)/T* (Note that \* may be infinite.) Observe that for a
given A < \*, the abscissa of the first point of intersection of ¥ = Ar
with 4 = h(7) to the right of the origin, say =, satisfies h(m) = Ay
or g(r1) = r(Ar). For = < m1, the right inequality of (38) maintains;
for r = m + er(Ar) > q(7) for small positive e.

The lower bound PNT,r(7)] on the right of (38) is a nonincreasing
function of A for a fixed 7. For a given T' < 7%, then, this bound is made
as large as possible by choosing A as the smallest value greater than unity
for which ¢(7') = r(AT). With this choice, AT has the value A(7") and
Theorem 2 is proved. The largest 7* for which the theorem as stated in
Section 1.3 is true is the value T* defined in the previous paragraph.

Note that if »(7) and ¢(r) cross at 7, > 0, ie., r(1.) = q(7), T* is
necessarily less than 7, , for in this case, y = h( T) crosses y = 7at
as in Fig. 1(a) and a tangency occurs as indicated. '

2.4 Proof of Theorem 3

Let T, > O and T» > 0 be given and set 75 = Th + 7. Consider
the approximation to P[T;, r(7)] given by the probability P,(r) that
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X(ty), - X (), X(m), -, X(70a)
all be nonnegative. Here 0 = t, < t, < --- < {,, = T, is a partition

of (0,7 )and Ty < 71y < 1 < -+ < 7,, = Tyis a partition of (7},
T, 4+ T.) and n; + ns = n. The covariance matrix r can be written in

block form
(A B
=8 ¢)

where A is an n; X n; normalized covariance matrix with elements
r(t: — t;) Cis an ny X n, normalized covariance matrix with elements

g:}\*r g:r
y=Ar y=hir)
i
|
f
|
v} |
I
| !
|
| |
I l (a)
| I |
I I
O nT*¥ 7o
r—
y=h(r) y=r
| y=7
i
i y=h(r) !
i
i
of | " |
! \
{ \
|
| I
! (b) I (c)
I L
[¢] T* o T*
T — T —

Fig. 1 — The curve y = h(7).
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r(r; — r;), and B has n;, rows and ne columns and elements r(&; — 7;).

Now
P A O
~\0 C/’

is also a covariance matrix, and if r(r) = 0 for 0 = 7 = T:, the ele-
ments of r are not less than the corresponding elements of £. From Lemma
1, it follows that P,(r) = P,(f). But f is the covariance matrix for two
independent sets of random variables so that

Pa(r) = P.(#) = P.,(A)P,,(C).

By refining the partition with mesh tending to zero, one has P[T;, r(7)]
> P[T.,r(r)|P[T:,7(r)] and the theorem is established. (It is trivi-
ally true if 74 or T’ or both are zero.)

2.5 Proof of Theorem &5

Theorem 5 is a consequence of the following more general

Theorem 11 — Let the random variables X, , Xz , -+ -, X, , n > 2 have
a joint densily p(x1, -+ ,x.) with the property p(—w1, =+, —¥) =
p(xy, - -xn). Then

1 4
.= ) = ‘e < —_ [ . > L > .
PI'{X, = 0,1‘, 1,2, ,n} = 4 ( 2) ;j PI‘{X; = O,X, = 0}

The proof of this theorem follows that of a theorem by Gaddum"
concerning spherical simplexes and their angle sums. We introduce the
following notations: P;; = Pr(X; = 0, X; = 0),P=Pr{X;=z 0,7 =
1,2,-- -}, R(ay, a2, ---,a.) = PrimXi 2 0, a: X, 2 0, -+ +,a,X, = 0},
a=x1,i=1,---,n. Thus P = R(1,1,---,1) and

E R(a'l y A2,y ° ":aﬂ-) = ]-r
aree e
where in the sum each a takes values +1 and —1. The 2" symbols R
are equal in pairs;
R((I]_ y A2y v 'Jan) = R(_al y —Q2, - ':Fan)-

We call R(—a,, —az, - -+,—a,) the complement of R(ay, @y, ***,0n).
One has

Pp=P 4+ ZR(1,1,a3,0a4, - ",02)
Py =P+ E’R(I;GE » Lag, - -,a,,) (40)

Pn(n—l} =P+ E'R(al y A2, = yn-2, 1)1)
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Here the R symbol on the right of the equation having P;; as left mem-
ber has a 1 in the #t" and j*" places and a's elsewhere. In each equation,
the sum is over all combinations of plus and minus 1 for the a’s except
for the combination all a’s plus 1.
Now consider adding the n(n — 1)/2 equations (40). One has

2 Pij=[n(n — 1)/2IP + 8§,

i<j
where S is the sum of all the sums of R symbols on the right of (40). A
given R symbol with precisely 7 of its arguments 41 will oceur j(j — 1)/2
times in S, 7 = 2,3,---,n — 1. Denote by 7'; the sum of all R symbols
that have pre(-isely j of their arguments +1. Then

1) (n—1)(n —2)
§3 PU = 2 P + 2 Tu—l
(41)
E J(J )
Now

Fii=Dp Fh-—h—j-1,

i—2 2 = 2
so that
i —1 1 n—jn—j3—1
;J(JZ )TJ=§j=2|:J(J2 ), 4 ! J)(2 J )T,,_,-].

But since an R symbol and its complement are numerically equal, 7'; =
T,._;, so that (41) becomes

(n—1)(n—1)

Z<:P,,= n=Upy ; T,
153G — 1) (n—j)(n—j—n] |

Now, forj = 2,3,---,n — 2,

iG=1 (=P =j=1 , nn=2)

2 2 - 4 !
so that
_Z, Py = n(nz— 1) p + l)o(n —2) T,
l<] -
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However, the last appearing sum is 1 — 2P and Theorem 11 follows
directly.

In the case of a Gaussian process X (¢) with normalized covariance
function 7(7), we consider the application of Theorem 11 to the random
variables X; = X(iT/n),i = 1,2,---n. Then from (6), Pi; = § +
/27 aresin r[(i — j)T/n]. By taking limits as n becomes infinite, The-
orem 11 then yields

©

) T v
P(Tr(#)] = :%f (lyf dx aresin r(y — x).
m T- 0 0

Elementary manipulations then lead to the result stated as Theorem 5.

2.6 Proof of Theorem 6

Consider n random variables, X;, X», ---,X,, and the following
mutually exclusive events: (4) the variables are all nonnegative; (B;)
the first j variables are nonnegative and the (j + 1)™ is negative, j =
1,2,3,---n — 1. The union C of these events is the event X, = 0. We
suppose Pr{(C’} = 1 and write P, = Pr{4},V,; = Pr{Bj,j = 12,---n — 1
so that

But V; < Pr{X, 2 0,X,;, 2 0,X;1, <0},j =2,---,n — 150 that

] =
n—l1

Pozi—PrXi20,X, S0} — 2 PriX;20,X;20,X;, <0}. (42)
=2

Consider a stationary Gaussian process X (¢) with a class 2 covariance
r(7). In (42) set X; = X(j7/n). From (7), one obtains

Pr{X, =2 0X; = 0,X;;: < 0}

1, 1 : . T |l |
=3 + y |:alcsm r |:(_7 - 1) n‘:| aresin r [J E:I aresin r I:E]] )
and from (6)
= 4 27

PriX;:=20,X, =0} = L 1 aresin r (g)

Insert these values in (42) and pass to the limit as » becomes infinite.
Theorem 6 results.
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2.7 On Class 2 Covariances

Let r(7) be a class 2 covariance. From the Bochner representation

r(r) = fm cos At dIF(N),

0

where we now have

1 = f dF(\) = fo NdF()),
0
it is not hard to show that r is continuous, that »'(7) exists everywhere
and is continuous, and that »”(7) exists and is continuous everywhere
except perhaps at r = 0.
It the process X(¢) with mean zero has r(r) as its covariance func-
tion, then the four random variables X(0),X'(0),X(¢),X'(t) have

covariance matrix

1 0 r !
0 | —r —r”
7 —r 1 0
v’ —r" 0 1

where we write r = r(¢),»" = d/dt r(t),v" = d'/dt* r(1). For this to be

a nonnegative definite matrix it is necessary that the determinant of

all major diagonal submatrices be nonnegative. Evaluating these deter-
minants, one finds the system of differential inequalities

(1 — 27 =) (1 =" — ") — (7' + ") 20, (43)

1 =7 =2 =0, (44)

1 — T."-‘ _ ?,”2 g

0,
= 0.

1 ="

v

0, 1 -

These inequalities can also ke derived without raising the question of

existence of the derivative process by demanding that the covariance

matrix of the four random variables X(0), X(e) — X(0), X(1), X(t+¢€)

— X(¢) be nonnegative definite for arbitrarily small values of e.
Consider now the family of covariances

lIA

".Q(B:T) =1 — -82 + IBZ cos (é) ] 0 ,8 § 1: (45)

introduced in Section 1.1, In what follows, we shall be concerned with the
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family, F, of curves r = r(8,7), where for each 8 with0 < 8 =1 we
restrict our attention to the interval 0 = r = wB. Several members of
the family are shown in Fig. 2. The following statements, evident from
the figure, are easy to prove analytically. (1) The curves of the family
do not intersect each other except at + = 0. (2) A horizontal line r =
1, with | 7, | < 1 intersects exactly once each member of F with param-
eter value in the range 1 = 8 2 V(1 — r,,)/ For each value of «
satisfying —v/1 — r2 < a = 0, there is a unique member of the famly
that intersects the line »r = r, with slope a. If 8(«) denotes the param-
eter value of this member of F, B(a) is a continuous strictly monotone
decreasing function of @, —v/1 — 2 < a = 0.

We shall say that the curve » = r(r) intersects the curve r = g(r)
from below if at the point of intersection r' > g'.

Lemma 2 — Let r(7) be of class 2.

a. If the first local minimum of r(7) is at v, then r = r(7) cannot
intersect from below any member of the family F,

r=re(ﬂ,r)—1—62+ﬁ2008(:—;), 0<r=m, O0=p=1,

in the interval 0 = 7 = .

b. If r = r(-r) passes down through the point (7o ,7.) with slope r,’
satisfying — /1 — 12 = 1)/ £ 0, then there is a unigue translated member
of F,sayr = ro(Bo, T — i) whzch passes through (7, ,1,) with slope r,'.
If r2(Bo, 7 — u) and r(r) are nonincreasing for ¥ = 7 = 7o, then r(t)
Ern(Be,r—u)fori ET=10.

1.0y

o8 —/3=035 -
06 -
\_____ B=05
~ \\
02
r oo N A=0.707

\\

-0.4 ~
\\ T—p=085
-06 \
-0.8 ~
1o BA=10
"o 30 60 90 120 150 180

T IN DEGREES

Fig. 2 — The family F.
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Proof — Part a of the lemma will be deduced from part b. The first
conclusion of part b is the remark (2) above. The second conclusion of
part b follows from the inequality (43). If | r| # 1, this latter can be
written by elementary algebraic manipulations as

2 2 2
I -7 =7

1= = 1—r2= 1 — 2

The right-hand inequality can be rewritten as

”
r” r 1

T=—m T T ST

or,if ' £ 0, as
2r'y" 2" 2
(l—r) l—r)3 (1 —r)*’

or

d " {)i 1
df(l—?')” “drl — 7"

Integrate this expression from r to r, with r < 7, to obtain

" ’
r 2 To 2

(1_?')2_1—?'§(1—To)2_1—1’9’ (4())

where the subseript o refers to quantities evaluated at 7, . Denote the
right member of this inequality by — 1/A°, and note that, as is indicated
by the notation,

1 2(1—’)_7(: (l+])‘l“]) ofzkl_rug_ru’g

= = = =0
h2 (1 — r,)? = (1 =) I =r)p =7
by (44). Inequality (46) now becomes
P —2(1 — ) £ —~E, (1 —r)’,
or what is the same
" % (1 —r)(r — ),
where
=1 — 2% (47)
It follows then that
r 1
> =
V(I =) (r =M Tk’
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with h a nonnegative quantity. Integrate this again from 7 to 7, to ob-
tain

= (EN2 = (N2, o
arcsin ———(1 N2 aresin 1 =/2 = n .
Thus one finds
I1+x, 1 =X . |[rn—7 . 1o — (L4 2N)/2
r(ir) £ —5— + 3 sml: 7 -+ aresin —(-1_—7\)—/—2—] (48)

= ¢(7).

This inequality is valid in a r-range to the left of 7, until either ¢( ) or
r(7) has a local maximum.
Now by (47), ¢{ ) can be written

q(7) =1—h?+h*ms(7;“),

for suitably defined u, and one finds by using the various definitions

Q(To) =T
g (1) = 1.
Thus ¢(r) is the member of the family ' which, when translated in the
r-direction, passes through the point (7., 7.) with slope 7,’. To the left
of 7,, the curve r = r(7) remains below this translated member of F.
Part b is thus proved.

Now suppose that » = r(7) intersects a member of the family F from
below, say at (r,,r,) with 7, £ 7.. Let the parameter value of this
member of F be 8, . Since 0 = #'(7,) > /(8. , 7o), the translated mem-
ber of F passing through (7, ,r,) with slope r'(r,) has a parameter
value 8 = B, < B, . This translated version of r = rs(B1 , 7) has no local
maximum in the interval (0,7,), and its value at r = 01is less than unity.
One thus has the contradietion r(0) < 1 and the lemma is proved.

Theorem 12 — Let r(z) be a class 2 covariance. Then
r(r) = cos T, 0=r=m

Proof: In a region where r'(7) = 0, inequality (44) implies
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Integrating from r, to = > 7, assuming that () = 0 throughout
(74, 7), one finds

— (r — 1,) + arceos r, = arccosr = (r — 7,) + arccos r,,

where », = r(r,). This in turn implies cos[r — 7, — arccos 7,] = r(r)
and r(7) = cos[r — 7, + arccos 7], where the former inequality holds
from r = 7, until the cosine assumes the value unity, and the latter
inequality holds from r = 7, until the cosine assumes the value minus
unity. The result may be stated as follows: Let the class 2 covariance
r(7) pass downward ( = not upward) through the point (7., r,) in the
7-r plane. The curve r = cos 7 can be translated in the r-direction
to pass downward through (7., 7). Then to the right of ,, r = »(7)
lies above this translated cosine curve until either the cosine curve or
r(7) has its next local minimum. Similarly, a cosine curve can be trans-
lated to pass up through (7, , 7). To the rvight of r, , r = r(7) lies below
this translated cosine curve until either () has its next local minimum
or the cosine curve has its next maximum,

A similar result holds if »(7) increases through (7, , 7,).

Now let 7, = 0,7, = 1. Then r = r(7) lies above r = cos = until the
first minimum of either. If the first minimum of r(7) occurs at r, = T,
the theorem is proved. Suppose now 7, < = and that » = 7(7) crosses
r = cos r in (0,7r). The first such crossing must be downward, since
r(7) = cos 7 from 0 to 7. If the crossing is at 7, then r(7) = cos 7,
and »'(7) = — sin 7. If indeed »'(7) < — sin 7, one obtains from (43)
the contradiction 1 = #*(7) + *(#) > cos% + sinF7 = 1. On the
other hand, if the crossing takes place with +'(7) = — sin 7, then b of
Lemma 2 shows that »(7) = cos 7 for + < 7 which contradicts the
assumption that the crossing was downward. Thus, the theorem is
proved.

Theorem 13 — If v(7) s of class 2 and

rir) 20, 0=

9
1A

H

(S]]

V'

then

_ N T
+ 1 cos V27 = cos’ ( )

=
—_
-
—
v
=]
%
~
| "
2
-
—
Il
[~

D)

for
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The theorem is a consequence of repeated applications of Lemma 2.
We prove the theorem by supposing it false and then arrive at a con-
tradiction. We refer to the curve r = r2(1/4/2,7),0 < 7 < x/4/2 as C.

Suppose now that 7(7) = 0for0 = r = =/ 4/2 and that some point
P,onr = r(r),say (7., "), lies below C. Denote 7'(r,) by r,. We can
suppose P, chosen so that r,/ < 0, since r = r(7) cannot be nondecreas-
ing at all points where it lies below C. Let the horizontal line r = 7,
through P, intersect C' at P; and denote the slope of €' at Py by C'(ro).
The point P; has larger abscissa than the point P, . The curve r = r(r)
possesses a continuous derivative. As the height r, of the horizontal line
r = 7, is continuously decreased to zero from its initial value, a value
must be found with P, to the left of Py and r,’ = C'(r,). By b of Lemma
2, a curve of the family ' with parameter value 8 = 1 /4/2 can be trans-
lated to the left to pass through P, with slope »,'. In the interval 0 =
r £ 7,, this translated member of F lies strictly below €' and is mono-
tone. The first local maximum of » = r(7) to the left of P, therefore
lies below € as must also the local minimum just preceding this maxi-
mum. A curve of F can then be translated to pass through this local
minimum with slope zero, and repetition of the argument shows that
all local maxima of r = r(7) for 0 £ r < 7, lie below C. In particular
#(0) < 1, which contradicts the initial assumption concerning r(r).
Q.E.D.

Theorem 14 — Let the covariance r(+) have the behavior
2 4
r(n) =1 -5 +mg+o(),

near r = 0. Then

1
T'(T)g""z(\/ﬁ,'r), 0_5_T§T1,

with r(B8,7) given by (45). Here Ty = min(Bm,7,) and 7, s the smallest
positive value of 7 for which r(v) = 1 — 2/m.

Proof — The first four derivatives of »(7) exist at + = 0. From the
Bochner representation for »(r), it is easy to show using Schwarz’s
inequality that

Y=m—12=0. (49)

It also follows that »”(r) exists everywhere and is continuous.
The Gaussian process X (¢) having covariance r( ) has first and second
derivates X'(t) and X”(t) almost everywhere with probability 1. The
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covariance matrix of the random variables X (0),X(¢),X"(¢),X”(t) is

"

S NS e

ror
10

d 01 0}
=10 m
The determinant of this matrix cannot be negative. This is equivalent
to the inequalities

r 4 r”
_U_V_—l—rz—r’gév'
In any region where »" = 0, the right-hand inequality gives
r(r 4+ ") d

——— = — /1 — 2 — 2= .
V19—t =" Y

IA

Integrate this from 0 to 7 to obtain

V1= =2 Z0(l — 7). (50)
Note that if 7, is the first positive value of r for which #'(7) = 0, (50)
gives

2

v —1
4+ 1°

3"('1'1) =

Thus we have the interesting side result that if »(7) is everywhere non-
negative v = 1orm = 2.
Squaring the inequality (50) and rearranging the terms, one finds

= (1 + v)(1 — r)(r — a),

where

R
Il
|

< 1. (51)

+|

Since v = 0, this implies

VI-nG—w s Vits

if r > a. Integration from 0 to = yields

. T
aresin
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where it is assumed that = < 7, . If then

g_\/m"- Sg’
T—r{i(—i%(;—g/%ébm( \/l-l-vﬂ)

or, what is the same thing in virtue of the definitions (49) and (51),

— %ﬂ + 77:_112 cos (mr).

rir) £1
The theorem is thus proved.

2.8 Proof of Theorem 9

Let h(£) be nonnegative for 0 = £ = 6 and zero elsewhere. Then

Y(t) = f ) h(t — )Xt dt’ ff du h(w) X (t — u) du,

will certainly be nonnegative for 0 = ¢ < T whenever X(t) is nonnega-
tive for —8 < t < T. The probability that the ¥ process be nonnega-
tive in (0,7T) is therefore not less than the probability that the X process
be nonnegative in (—6,7). If X is Gaussian with mean zero and covari-
ance r(7), then ¥ is Gaussian with mean zero and covariance

EY()Y(t+ 7) = [wdufqdu AW EX({t — WX+ 1 —0)

re(7)

f duf dv h(w)h(0)r(z — u + v)

= [ dx r(r — x) [ di h(x + £)h(E).
One has then P[T,rs(7)] = P[T + 6,r(7)], which is Theorem 9.

2.9 Proof of Theorem 10

Let0 =t <t < --- < t, = T be a partition of (0,7). Define Q. (1)
by

Pr(X(t) < 0,X(t;) 20,i=2,3,---,n)

Pr(X(4) < 0,X() = 0) ,  (52)

Q.(r) =

where X (1) is a Gaussian process with zero mean and class 2 covariance
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r(7). As the partition is refined with mesh tending to zero, Q,(r) ap-
proaches Q[7,»(7)] as a limit. The numerator on the right of (52) is
P, (%) where

1 _f(!.') _f'((:l.) e —)"(t,.)
—7(ly) 1 r(ty — ) ot — )
= '-?'(fa) ?'(ts — tg) 1 v 7'(tu - t:i) ’ (03)
) e — ) r(ly — tg) 1

and as usual P,(r) denotes the probability that » normal variates of
mean zero and covariance matrix r Le nonnegative. Note that the de-
nominator of the right of (52) depends only on r(f,).

Let another Gaussian process, Y(t), have class 2 covariance ¢(7).
Wedefine r'(7), ¢ '(7), h(7) = » '[q(7)] asin Section 2.3 and set g(t) =
q '[r(£)] = R7'(1). Note that g(¢) is strictly monotone within its domain
of definition. Assume that 7' is within the domain of definition of g.
With the points {; given as in (52), set r; = g(t;),7 = 1,2,---n. The
points 0 = 7 < 7, < --- < 7, = g(T) form a partiticn of the interval
(0,¢(T)). The mesh of this partition tends to zero with the mesh of the
t; partition.

Consider now the approximation to Q[g(7),q(7)] given by

Pri¥Y(n) <0Y(r,) 204 =1,2,3,---,n)

Q.(q) = Pri{Y(n) <0,Y(r) = 0]

(54)

The numerator here is P,(q) where § is given by (53) with r replaced
by g and ¢ replaced by 7. Since 7 = g(t:),¢(7i) = r(t;),7 = 1,2,---n, s0
that the first row and column of £ are the same as the first row and
column of §. For any other entry of # with ¢; = ¢; , one has

r(te — &) = qlg(ti — ;)]
= glri — 7; + lg(ti — ;) — g(t:) + g(t)}].
Since ¢(7) is nonincreasing
(i — &) = q(ri — ;)
and hence by Lemma 1
Pu(1) = Pu(q),
provided

gt — t;) — g(t.) +g(t;) = 0.
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or what is the same thing, provided
g(x) +gly) = gz + y), (55)

where0 =z =1; < li=2x+ .

When (55) is satisfied, the numerator of (54) is not less than the
numerator of (52). The denominators of these expressions are equal
since they are the same function of r(f;) = ¢(r2). Therefore, Q.(q) =
Q.(r). The conclusion of Theorem 10 results by passing to the limit as
the ¢ partition is refined.

2.10 Generalizalions

A number of the results presented in this paper can be generalized in
a direct manner. We only mention here an obvious extension of Theorem 1.

In the derivation of Lemma 1, the lower limit of integration for z; in
(33) can be replaced by a;. Now choose a; = a(i:) with a(f) a given
function defined for 0 < t £ T, and where the points ¢; form a partition
of (0,7). Proceeding as in the derivation of Theorem 1, one arrives at
the following more general result. Let X(¢) be a Gaussian process with
EX(t) = 0, EX(t)X(s) = r(st). Let Y(¢) be a Gaussian process with
EY(t) = 0, EY(t)Y(s) = g(s,t). Then if

r(s,s) = q(s8), 0=s=T
and
r{st) = q(s,t), 0=st =T
Pr{X(t) Z a(t),0 St =T} = PriY(t) 2 a(),0 =t = TJ.

IV

2.11 Asymptotics

As already remarked in the introduction of this paper, there appears
to be little in the literature concerning the asymptotic behavior of
P|T,r(7)] for large 7. Intuition would indicate exponential falloff for a
wide class of covariances. Example (i) of Section 1.1, though special
in nature since ry(8,7) is periodic, provides a counterexample to expo-
nential behavior, and so the class must be carefully defined. Here, by
the two bounds presented in Section 1.4, we have shown exponential
behavior for nonnegative covariances that vanish identically for =
greater than some 7, > 0. Recently, by using Theorem 1, M. Rosenblatt
has established an asymptotic exponential upper bound for P[T,r(r)] for
all covariances which are ultimately majorized by a decaying exponen-
tial. This, together with the lower bound of Section 1.4, establishes the
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asymptotic exponential behavior of P[T,r(7)] for all nonnegative co-
variances that themselves decay exponentially. Professor Rosenblatt has
also established that if () — 0 with increasing r, then T"P[Tr(7)] — 0
with increasing 7' for every n > 0.

We conclude with the remark that from (23) of Section 1.7, one can
show that asymptotic exponential behavior of P[T ()] implies asymp-
totic exponential behavior for Q[T,r(7)].
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