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In this paper we consider the problem of determining the maximum
fundamental power in a monlinear capacitance diode, when the charge
waveform has a given pertodicity and (¢) varies between prescribed maxi-
mum and mintmum values, (1¢) has a preseribed maximum and a pre-
seribed maximum slope. Under (i) the maximum obtainable fundamental
power 1s first determined. The charge waveform is then further restricled to
contain no higher than second harmonics, so that the diode is being used as
a frequency doubler, and the maximum power transfer is determined. The
maximum power transfer is also determined under (ii). Particular diodes
considered are the abrupt-junction and the graded-junction ones, with oper-
ation in the forward conduction region being permitted.

I. ENGINEER'S SUMMARY

This section of the paper is a summary which stresses some of the
contents of the introduction and summary that follow. It is hoped that
this will make it easier for the engineer who is involved in parametric
amplifier and varactor design to deduce the relevant applications of the
results contained in this paper.

In the first instance it should be emphasized that an idealized problem,
based on a mathematical model, is considered. The nonlinear capacitor
is assumed to be isolated from any external circuits, and we do not dis-
cuss how the power is fed into or taken from the device. Clearly there
will be some power lost in the external circuit, and the maximum ob-
tainable fundamental power determined in this paper is only a theoretical
maximum, but it would seem to be worthwhile to understand this
theoretical maximum. When the maximum power transfer from the
first to the second harmonie is considered, the charge waveform, and
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hence the current, giving this maximum is determined. Clearly there is
some relative phase between the first and second harmonies in the cur-
rent, and the reactance of the output cireuit must be adjusted so as to
obtain this relative phase.

Tt is also important to stress that some of the results obtained hold
for a general, i.e., arbitrary single-valued, voltage-charge relationship,
and are accordingly applicable to any particular such voltage-charge
relationship in which the engineer may be interested. We have, for
simplicity, considered just the abrupt-junction and the graded-junction
diodes as special cases, and have idealized the voltage-charge relation-
ship in the forward conduction region, but other particular diodes can
be considered as special cases of the general results. We discuss below
the results which are pertinent to the general voltage-charge relationship.

Firstly, we have derived the functional form of the charge waveform
(of given periodicity and varying between prescribed values) which gives
the maximum power in the fundamental. The charge waveform is
composed (see (33) below) of intervals in which it takes on either the
maximum or minimum prescribed value, or else follows a certain curve.
The form of the curve depends on the voltage-charge relationship and
involves parameters which are functionals of the charge waveform
throughout the entire period, and hence are not known a priori. These
parameters have to be determined for each particular voltage-charge
relationship, by solving simultaneous transcendental equations. It is also
necessary to allow for finite jumps in the charge waveform, and (36)
below must hold at such a jump. Of course, a jump is not physically
realizable, since it would correspond to an infinite current, and this
makes it evident that the maximum is a theoretical one, quite apart
from losses in the external circuit. It does, however, provide an upper
bound on the maximum realizable fundamental power.

In view of the fact that the maximum fundamental power has to be
determined separately for each specific diode, we derive upper and lower
bounds for the maximum fundamental power, (11) to (13), which apply
to a general voltage-charge relationship. For a wide class, the ratio of
the upper to the lower bound is 1.54. It turns out that, for the particular
diodes considered, the lower bound is quite close to the actual value.
Further use is made of the charge waveform giving this lower bound,
when the power transfer from the fundamental to the second harmonic
is considered, subject to the charge waveform containing no higher than
second harmonics. A good approximation to the maximum power
transfer is obtained by taking the Fourier approximation, up to second
harmonies, and suitably normalizing so that the approximating charge
waveform has the preseribed maximum and minimum values.
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In connection with maximizing the power transfer from the funda-
mental to the second harmonie, we consider the diode to be a harmonic
generator, there being input power in the fundamental only. In order to
make the mathematical problem more tractable, it is supposed that the
entire output is in the second harmonie. Equations (18) and (19) simply
state that the maximum power output in the second harmonie, when
there is input power in the fundamental only, is not greater than the
maximum obtainable fundamental power without such restrictions,
and is not less than the maximum fundamental power when there is no
output or input power in the third and higher harmonies. It is assumed
here that the charge waveform is continuous. We have already discussed
the maximum obtainable fundamental power.

The problem of determining the maximum fundamental power when
there is no output or input power in the third and higher harmonics is
still not very tractable, without additional restrictions on the charge
waveform, and it is thus further supposed that the charge waveform
contains no higher than second harmonies. The maximum subject to
this additional restriction is obviously not greater than the maximum
without it. The significant point about this restriction is that there is
then no power output or input in the third and higher harmonies, what-
ever the voltage-charge relationship. We thus determine a canonical
representation of the charge waveform which contains no higher than
second harmonics and has preseribed maximum and minimum values.
By suitable choice of the time origin, this representation contains just
two parameters which lie in a bounded region.

Now, it is a straightforward matter to compute numerically the funda-
mental power for any given voltage-charge relationship and a given
charge waveform. The numerical maximization of this power with re-
spect to the two parameters in the above canonical representation is
also a straightforward process. Thus it is clear that the above procedure
has general applicability. We add that in the numerical maximization
process, the two parameters which give the approximating charge wave-
form (obtained from the charge waveform giving the good lower bound
to the maximum obtainable fundamental power) are used for starting
values.

Consideration is also given to the current-limited diode, in which the
charge waveform has a prescribed maximum value and a prescribed
maximum slope (corresponding to maximum current magnitude).
Again, we determine a two-parameter canonical representation for the
charge waveform containing no higher than second harmonies, and the
numerical maximization of the fundamental power, for any given volt-
age-charge relationship, proceeds along the same lines as in the previous
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case, except that we no longer have predetermined starting values for
the two parameters. Lack of space has prevented inclusion of the de-
termination of the functional form of the charge waveform which gives
the maximum obtainable fundamental power (without restriction on
the harmonic content of the charge waveform) in the current-limited
case.

1I. INTRODUCTION AND SUMMARY

2.1 Introduction

We will be concerned with various nonlinear capacitance diodes, these
being characterized by a nonlinear voltage-charge relationship. Specific
examples are the abrupt-junction diode and the graded-junction diode,
which are composed of diffused p-n junctions. In the former case the
voltage difference, v, across the diode is proportional to the square of
the stored charge (per unit area), ¢, i.e., v « ¢*, while in the latter case
v « g}, provided, in both cases, that ¢ = 0, which implies that operation
of the diode does not take place in the forward conduction region. Now
as electric field strength and barrier width increase, ereation of electron-
hole pairs through secondary impact ionization by both holes and elec-
trons leads to avalanche multiplication, resulting finally in an effectively
infinite increase of current with added applied voltage, and this is termed
reverse breakdown. There is thus a maximum voltage vm.x , and a cor-
responding maximum value gmax of the charge density (which may be
related to max through the actual voltage-charge relationship), above
which it is not desirable to operate the diode.

We define the normalized voltage V and the normalized charge @ by

th

v=", q@=-L. (1)

UII]BX Q'nmx

Hence the normalized voltage-charge relationships for the abrupt-junc-
tion and graded-junction diodes, operated in the region between forward
conduction and reverse breakdown, are

@,  (abrupt)
B @},  (graded) ,

It is also possible to operate the diodes partially in the forward condue-
tion region, corresponding to @ < 0. The voltage is not very dependent
on the charge in this region and as an idealization we may assume that
it is zero throughout. A physical restriction is placed on the maximum
possible current magnitude, in that the electron velocity is limited by

v 0=@Q

1A
—
—
[®
-
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lattice scattering. Throughout most of our analysis we replace this
condition by a limitation on the minimum charge, so that

q = Guin = _Tn(qznnx)- (3)
Thus, in the forward conduction region,
V=0, -m=Q =0 (4)

We do, however, give some consideration to the current-limited diode
in which, instead of (3),

i i { é T:ltlﬂ,x - (5)

We will consider charge waveforms that are periodic in time, £, with
angular frequency w. We define the normalized time x and the normalized
current / by

1
T = wl; I = . (6)

Wmax

Thus Q(x) is periodic in x with period 27 and, since ¢ = dg/dt,

1="= g, (7)

The average real and reactive powers (per unit area) in the nth har-
monie, p, and r, , are given by

(pu + jr) = & ("’) (f q:e“f”'"(u) ([ v e da). (8)
2 \m 0 0

We define the normalized real and reactive powers in the nth harmonie,
P, and R, , by

20 (p + jra)

wqumxl?llmx

(I)ra + jRn) = {9)
We will be concerned with the maximization of the real fundamental
power, under various conditions, and summarize the results below. We
note that P, is not affected by a time shift in the charge waveform, but
it 1s reversed in sign by a time reversal of the waveform.

9,2 The Marvimum Obtainable Fundamental Power, When the Charge
Waveform ts Subject to Bounded Variation

The functional form of the charge waveform which, subject to the
restriction —m =< Q(x) = 1, maximizes the fundamental power, P, is
found for the general voltage-charge relationship, V = V(Q). The
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specific form is determined for diodes of interest and the corresponding
value of max P, , the maximum obtainable fundamental power, caleu-
lated. Thus, for the abrupt-junction diode operated in the region between
forward conduction and reverse breakdown, (2), max P, = 0.687 and
the charge waveform @(x) giving rise to this value is depicted in Fig. 1.
The corresponding value of the reactive fundamental power is B, =
2.43. For the graded-junction diode, operated in the region between
forward conduction and reverse breakdown, it is found that max P; =
0.408, with B, = 2.48. The charge waveform giving rise to these values
is depicted in Fig. 2. The abrupt-junction diode is also considered when
the region of operation includes forward conduction. Thus, from (2)
and (4), V(Q) = [max(0,Q)", —m = Q(x) = 1. Fig. 4 depicts max P,
and the corresponding £, as functions of m. The charge waveform Q(z)
which gives these values when m = 1 is shown in Fig. 5. The somewhat
idealized voltage-charge relationship given by V(@) = max(0,Q),
—m £ Q(z) = 1, m > 0, may be treated analytically. It is found in
this case that

(m +2). (10)

max P, = -

| STV

2

The charge waveform giving these values is composed of Q(x) = 1,0
and —m in consecutive intervals of z of length 2x/3.

It is observed that the charge waveform which gives rise to max P, ,
for the various diodes, contains at least one discontinuity (or jump) in
a period. A jump, of course, is not physically realizable, since it would
correspond to an infinite current, so max P; cannot actually be attained.

Finally, upper and lower bounds are obtained on the maximum ob-
tainable fundamental power, max P;, for the general voltage-charge
relationship V = V(Q), with —m < Q(x) = 1. Thus, it is shown that

%Lgmaxfﬁ < 4(1 +m)U, (11)
where
L= max [(p—7)V(e)+ (r—a)V(p)+ (e —p)V{(r),. (12)
—m< (g,p,7)51
and

U = min { max [Ae — V(o)) — min [Ae — V(a)]}. (13)

A —m<£og1 —m=oc=<1
Moreover, it is shown that

L=< (l+mU < 2L (14)
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The bounds in (14) cannot be improved without restriction on V(Q),
but if [(p + m)V(1) — (m + 1)V(p) + (1 — p)V(—m)] does not
change sign in —m =< p £ 1, then L = (1 + m)U and the ratio of the
upper to the lower bound in (11) becomes 1.54. The class of voltage-
charge relationships

V(@) = [max (0,Q)), —m = Q = 1; m =0, » =1, (15)

which includes the particular diodes considered, satisfies the above
condition, and in this case

L=m+ (1 - }) [(1 4+ m)y V"0, (16)

For the particular cases considered, the lower bound in (11) is fairly
close to max P; .

A lower bound is also obtained, for a general voltage-charge relation-
ship V = V(Q), with —m = Q(x) < 1, for P, such that P, + P, = 0
It is shown that

max [Py | Py + P, = 0] = (1.87)L. (17)

2.3 The Maximization of the Power Transfer in a Frequency Doubler,
With Bounded Charge Waveform

Here we are interested in maximizing the power transfer from the
fundamental to the second harmonie, when the diode is being used as
a harmonie generator. Thus there must be input power at the funda-
mental frequency only, i.e., P, > 0and P, = 0,n = 2. In order to make
the problem more tractable we suppose that the entire power output is
put is in the second harmonic, so that 7, = 0, n = 3. It follows that
P, 4+ P, = 0, provided that the charge waveform is continuous, since
then Dmei P, = 0. We observe that

max [— P | P, =0, n = 3
(18)
=Smax [P | P, 20

= , n=3] = max P,
and
max [—P, | P, =0, n=3]Z2max[—FP.|P, =0, n=3]

19)
3). (

= max [P, | P, = 0,

v

n
Even the problem of determining max [, | P, = 0, n = 3], that is,
max f”; subject to P, = 0, n = 3, is not very tractable, without addi-
tional restrictions on the charge waveform. Thus, it is supposed that



684 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 10062

the charge, and hence the current, contains no higher than second har-
monies. The conditions P, + P. = 0 and P, = 0, n = 3, are then iden-
tically satisfied, independently of the voltage-charge relationship V' =
V(Q).

Now, a change in the time origin does not affect the power transfer.
Hence, the canonical representation of a charge waveform which con-
tains no higher than second harmonics and is such that @(7) = Quin =
—m and Q(2 tan™' §) = Qumax = 1, is constructed. In addition to the
parameter s there is the parameter y which is sub_]ect to the restriction
0 <y = (1 — "), which of course also unphes that s < 1. It is found
that P, = 0 ony = O and on y = (1 — s*), independently of the vol-
tage-charge relationship. Moreover, Pi(s,y) = —Pi(—sy) and in
particular P; = 0 on s = 0 also, so that it is sufficient to consider only
the region —1 £ s 0,0 =y = (1 — &) and to maximize | P; |. The
abrupt-junction diode, operated in the region between forward conduc-
tion and reverse breakdown, may be treated analytically, and it is found
that the maximum power transfer is 0.281, as compared with the max-
imum obtainable fundamental power of 0.687. The corresponding re-
active fundamental powers are 1.46 and 2.43, and the charge waveform
giving the maximum power transfer is depicted in Fig. 6, which should
be compared with I'ig. 1.

In order to determine the maximum power transfer for a general
voltage-charge relationship, recourse must be made to numerical com-
putation. However, a prior step is the determination of a charge wave-
form which provides a reasonable approximation to the maximum power
transfer, and hence provides starting values for s and y in the numerical
maximization process. A good lower bound was obtained for the max-
imum obtainable fundamental power. Furthermore, for a wide class of
voltage-charge relationships V' = V(Q), the charge waveform Q(x)
giving this lower bound satisfies Quax = 1 and Quin = —m. The class
of voltage-charge relationships (15) falls within this class. Thus it would
seem feasible that a reasonable approximation to the maximum power
transfer will be obtained by taking the Fourier approximation, up to
the second harmonics, of the charge waveform giving the good lower
bound for the maximum obtainable fundamental power, and suitably
shifting and expanding (or contractmg) the Fourier approximqtion S0
that the resulting charge waveform Q(z) satisfies Quax = 1 and Omin =
—m. This is the procedure adopted and, for the abrupt-junction diode,
operated in the region between forward conduction and reverse break-
down, it actually yields the charge waveform that gives the maximum
power transfer,
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The results of the numerical maximization process are tabulated in
Section 5.4. Tables IT and III, for the cases v = 2 and » = £, in (15), show
the values of max P , the maximum power transfer, and the correspond-
ing values of R, and K., the reactive powers in the fundamental and
second harmonie, /.y, the maximum normalized current magnitude,
and (0 + ¢*) and (&* + ¢, the squares of the amplitudes of the first
and second harmonies in the charge waveform, for several values of m.
Tables IV and V show the values of —s and y which give max P, and
also 4" and P,"", the value of P, corresponding to the starting values
¥ and —s" = 1/4/3. It is interesting to observe how close P, is
to max P, , particularly for the smaller values of m. Table VI compares
max P, with the maximum obtainable fundamental power, max P, , in
the case v = 2, for several values of m. It is also worth noting that in
the case » = §, m = 0 we have mar PP, = 0.162, whereas max P, =
0.408.

2.4 The Maximization of the Power Transfer in a Frequency Doubler,
Jor the Current-Limited Diode

We finally turn our attention to the current-limited diode in which
(5), instead of (3), holds. Thus, from (5) to (7),

[Q(x) | = mex =K (20)
(@Gmax ) w
I'or the PN abrupt-junction diode of germanium'*
Vmax = 1.03 X ]0]3(AV)_0.725 VOltS,
(21)

Toax > 1.6 X 107N amps/em’,

where N is the donor concentration in em ™. But, from the voltage-
charge relationship,

o
fmax = 2e e !\rl’umx 3 (22)

where e denotes electron charge. Hence,

Guax =~ 2.16 X 107 (N)""™ coulombs/em’, (23)
and
. = Z ~ 074 X 107°(N)"** sec?, (24)

For N = 2 X 10", a reasonable value, x =~ 10" sec¢™

range of angular frequencies of interest.

, which is in the
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We consider the problem of maximizing the power transfer from the
fundamental to the second harmonic, when the diode is being used as
a frequency doubler, and, as previously, the additional assumption is
made that the charge waveform Q(z), and hence the current, contains
no higher than second harmonics. The first step is the construction of
the canonical tepresentatlon of Q( x) such that Quax = 1, @'(7) =
Qmm = —kand Q'(2tan'5) = Quax < k. In addition to the param-
eter s there is the parameter y which is subject to the restriction 0 =
y < 3(1 — &), which of course also implies s* < 1. It is found that
P, = 0ony = %1 — 5°), independently of the voltage charge rela-
tionship. Since, if @(z) = Q(w= — z), then Omax = 1, Qrax = k and
Ouin = —k, it is sufficient to consider the above cauomcal representa-
tion and to maximize | P, |, in order to maximize P, subject to Quix =

, | Q lmax = k. We denote this maximum by II(k). For the abrupt-
junction diode operated in the region between forward conduction and
reverse breakdown, the determination of I1(k) is carried out analyt.wally
for k sufficiently small that @, = 0. It is found that I1(k) = 0.73 1%,
for 0 < k < 0.681. Combining this result with that obtained when the
charge waveform is subject just to bounded variation, 0 = Q(z) = 1,
it is shown that, from the viewpoint of maximizing the actual funda-
mental real power p; , the optimum operating frequency lies in the range

1209 < (@mx) < 468 (25)

?’ max
and that

54 (max p;) < 2(4)!

1.06. .
Gondm) = 3 < (26)

1<

For the abrupt-junction diode which is allowed to operate partly in the
forward conduction region, the maximization of the power transfer is de-
termined by numerical computation. For the values of s and y which give
max | P, |, i.e., TI(k), the reactive powers R, and R, and Quin, ie.,
— M (k), were calculated, the results being given in Table VII (Section
6.4). It is shown that max P; subject to Qmax = 1 and | Q' |max = kis at-
tained with Qu.x = 1 and | @ |mex = k. For k < 0.681 it can also be at-
tained with 1.468% < Quax < land | Q" |mux = k. Optimizing with respect
to the frequency it appears that 20(max p1) ~ imaxVmax - Thus a consider-
able improvement is obtained by permitting operation in the forward
conduction region. The optimum frequeney in this case is roughly one-
fifth that in the case when operation is not allowed in the forward con-
duetion region, although close to max p, may be obtained at one-third
the frequency.
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In conclusion, we add that lack of space has necessitated the omission
of several aspects of this problem, and in particular of the determination
of the maximum obtainable fundamental power when the periodic
charge waveform is restricted only to have bounded slope.

II. THE CHARGE WAVEFORM WHICH, SUBJECT TO BOUNDED VARIATION,
MAXIMIZES THE POWER IN THE FUNDAMENTAL HARMONIC
3.1 The Functional Form of the Charge Waveform

From (1), (6), (7), (8) and (9),
P, + jR, = (f Q'(x) ™ d.r) (f VIQ) rh) (27)
0 0

It is noted that P, is not affected by a time shift in the charge waveform
Q(x), but it is reversed in sign by a time reversal of the waveform. On
the other hand, R, is not affected by either a time shift or a time re-
versal in the charge waveform. Integrating by parts the first integral
in (27), and remembering that @(z) is periodic with period 2w, and
then separating real and imaginary parts,

P, = nla.bd, — B.va); R, = nlawy. + B.5.), (28)

where
a, = f Q(2) sin nx dx; B, = f Q(x) cos na dx;
0 0
(29)

Yo = f VIQ(x)] sin na dx; &, = f V[Q(x)] cos nx da.
( 0
From (28) and (29) we may express P, as a double integral,
i P, = f f QUx)VIQ(y)] sin n(x — y) dx dy. (30)
0 0

To find the functional form of Q(x) which, subject to the restriction
—m = Q(z) =1, (31)

maximizes P, , we set
Q(x) = [(1 + m) sech R(x) — m], (32)

so that the inequalities in (31) are satisfied. A variational procedure
applied to (30) then shows that for stationary values of P;, we have,
for each z,
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Q(W) = —m, or Q(’U) =1, or
{1 cosx — & sin x) (33)

(ancosx — Bisinz)’

VIQ)] =

where a; , 81, 71, and 8, are as defined in (29). This, then, is the func-
tional form of Q(x) which maximizes P;. Evaluation of the integrals
in (29) will lead to four equations for the four unknowns a;, 1, 11,
and & . Note, however, that

d I:(-y. cos x — & sin .1:)] (edy — Biy1)

(ay cos v — Brisinx) (ay cos x — By sin x)?

dx

34)
_p, (34

" (ancosx — Bisinax)?’

from (28), is of one sign. Since we are not interested in P, = 0, which
case arises in particular if Q(x) = const, it follows that allowance must
be made for discontinuities in Q(x), since we require that Q(x) be peri-
odic. Supposing that Q(x) is discontinuous at x = ¢, we obtain a con-
dition by integrating the equation

VI0)Q () = (yreose = dsin) oy (35)

(a1 cos v — Prisina)

fromz = ¢ — 0 tox = ¢ + 0. This gives

Vigilsts = (reose Z RSOl gyl (36)

.2 The Charge Waveform for the Abrupt-Junction Diode

In normalized form the voltage-charge relationship for the abrupt-
junction diode operated in the region between forward conduction and
reverse breakdown is

V) =@, 0=Q) =1, (37)

so that m = 0 in (31). We make use of the fact that P, is invariant
under the transformation Q(x) = Q(x — 8), and choose 8 so that g, =
0, since this leads to a simplification of the analysis. Let us define a and

b by the equations
11 = 2a0;, 8 = 2ba ; B8 = 0. (38)
Then, from (28),
Py = 2bay’. (39)
It is clear that max P, > 0, and hence that b > 0. The functional form
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of @(x) for max P, is, from (33), (37) and (38),
Qx) =0, or Qe) =1, or Q(x) = (a—btanzx). (40)

Rejecting combinations which lead to P, = 0, we are led to the con-
clusion that, within a cycle, @(x) = 1 for an interval, it then follows
the curve Q(x) = (a — b tan x) and then @(z) = 0 for an interval,
after which it jumps from 0 to 1 and the cycle is repeated.

Let ¢ be a value of & at which a jump in @(x) from 0 to 1 occurs.
Then (36), (37), and (38) give

tan ¢ = % (41)
Thus we obtain max P°; by taking
( 1, for ¢ <& =w+tan”" [(a — 1)/b];
(a —btanx), for « + tan"'[(a — 1)/b] £ 2
Q(x) = . (42)
< x4+ tan " (a/b);
l 0, for =+ tan"'(a/b) €2 < 21 + ¢,
where
ﬁg < tan ' [(a — 1)/b] < ¢ < tan™" (a/b) < g, (43)
and
Q(x + 27) = Q(2), all z. (44)

Now ay, 81, 71, and 8§ may be calculated from (29), (37), (42) and
(44). Substitution into (38) then leads to

20f[(a — 1)" + b — (a* + b);
{(a+ 1)[(a — 1)" + b7

— a(a’ + b")Y;
sing = {[(a—1)°+ b = (¢ + )1,

(2a — 1) cos ¢

20 cos ¢ + sin ¢ + 3br (45)
5

where
r = bltanh ' {a(a’® + B)7H — tanh ' [(a — D[(a — 1)* + b‘z]_%]}. (46)

It would appear that we now have one too many conditions on a, b and
@ because of the relationship in (41), which was obtained from the jump
condition at x = ¢, but it is observed that the first and last equations
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in (45) are consistent with (41). Since | ¢ | < #/2 and b > 0, (41) gives
cos @ = 2b[(2a — 1)* + 4%
sing = (20 — 1)[(2a — 1)* + 40" (0
Substituting into the first equation in (45), we obtain

(20 — D[(2a — 1)* + 4077 = {[(a — 1)’ + V] = (@ + b)), (48)

A solution to (48) is @ = % and, moreover, this is the only solution
since if a >3 the L.H.S. > 0 and the R.H.S. < 0, and vice versa. Thus,
a =1 p = 0. (49)

The second equation in (45), using the definition of = given in (46),
now leads to an equation for b, namely

30% tanh™ [(1 + 4697 = [2(1 + 4b)! = b), (50)
and (39) and the expression for a; give

1

% 20 + (1 + 46", (51)

Py = 2b{1 + 2b tanh'[(1 + 4b")7H])*

using (50). Equation (50) was solved numerically and it was found that
b = 0.14136;  max P; = 0.6868. (52)

The shape of @(2) which gives this maximum value of P, is shown in
Fig. 1. From (28) and (38) the corresponding reactive fundamental

1.0 \ r==-- -
1
\
1
0.8 |- ‘ - |I|
0.6 \
~
N, \
o
0.4} \\
0.2 i A
\
1
1
‘ \
1
T T T 21T 72 a7 577 27 17 BW
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Fig. 1 — Charge waveform for maximum obtainable fundamental power in
abrupt-junction diode operated in the region between forward conduction and
reverse breakdown.
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power is given by

a9 P]
= %2 = — L = 249 5¢
Ry = 2aq, (20) 2.429. (53)
Note that the reactive power is about three and a half times as large
as the real power.

3.3 The Charge Waveform for the Graded-Junction Diode

We now turn our attention to the second diode of interest, namely
the graded-junction diode, and suppose that it is operated in the region
between forward conduction and reverse breakdown. In normalized
form the voltage-charge relationship is

VQ) =@, 0=Q) = 1. (54)

The determination of the maximum obtainable fundamental power,
max Py, is carried out along the same lines as for the abrupt-junction
diode, although the details are more involved. The analytical form of
the charge waveform Q(x) which gives max P, is
1, for y <z =w+tan'[(a —1)/b];
(a — btan 2)®, for =+ tan™' [(a — 1)/b] = x
Q(z) = . (55)
=7+ tan (a/b);

0, for =4 tan '(a/b) £ x < 21 + ¥,

where
_g < tan' [(a — 1)/b) < ¢ < tanYa/b) < :’—;, (56)
and (44) holds. Here
3 3 -
Y1 = :-2 Aoy g 51 = ‘—2 bau i Bl = 0, (-'77)

which leads to three equations for a, b and . These equations are con-
sistent with the jump condition (36) which gives

tan ¢ = (3a — 2)/(3b). (58)

Elimination of ¢ leads to two equations for a and b which were solved
numerically, giving

b = 0.11098; a = 0.67375. (59)
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These values lead to
max P; = 0.4084; Ry = 2479, (60)
The corresponding charge waveform Q(x) is depicted in Fig. 2.
3.4 The Abrupt-Junction Diode When the Region of Operation Includes
Forward Conduetion

In this case the normalized voltage-charge relationship is, from (2)
and (4),

V(Q) = [max (0,Q)F, -m=Qx) =1, m>0. (61)

As previously, we translate Q(x) so that 8, = 0 and again define a and
b by (38), so that (39) for P, also holds. From (33), (38), and (61),
the functional form of Q(x) for max P, is

Q) =—m, o Q) =1,

or max [0,Q(x)] = (a — b tan x).

(62)

Thus we are led to the conclusion that within a cycle Q(x) = 1 for an
interval, it then follows the curve Q(x) = (a — b tan x) until the point
at which Q(x) = 0 where it jumps to the value —m, and after Q(z) =
—m for an interval it jumps to the value 1 and the cyele is repeated.
Thus in this idealized case there are two discontinuities in Q(x) in one
cycle. Note that according to (36), together with (38), the jump of
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Fig. 2 — Charge waveform for maximum obtainable fundamental power in
graded-junction diode operated in the region between forward conduction and
reverse breakdown.
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Q(x) from 0 to —m oceurs at x = ¢ where (@ — b tan ¢) = 0, since
V(0) = 0and V(—m) = 0. Hence we obtain max P, by taking
I, for ¢ <a <=+ tan ' [(a — 1)/b];
(a — btanx), for =4+ tan '[(a — 1)/b] £ x
Q) = L (63)
< 7 + tan— (a/b);

—m, for =+ tan”' (a/b) <z < 27 + ¢,

II

where (43) and (44) hold. In this case the jump condition at x
gives

@,

[2a(1 4+ m) — 1]

2b(1 + m) (64)

tan ¢ =

The caleulation of e, 81, v, and &, and substitution into (38),
leads to three equations for a, b, and ¢, which are consistent with (64).
The elimination of ¢ leads to two equations for a and b, which quan-
tities of course are functions of m. It was found to be possible to elim-
inate m analytically from these two equations, so that instead of solv-
ing the two simultaneous equations for @ and b for given values of m,
the single relation between a and & which did not involve m was solved
for b for given values of a. Thus a parametric solution was obtained in
the form b = b(a), m = m(a). From this @ and b were plotted graph-
ically against m and the results are shown in Ilig. 3. It was shown ana-
lytically that

1 < 4a(l +m) £ 2, (65)

the upper bound being attained for m = 0 and the lower bound being
approached for m = =, Also, as m = = it is found that

b ~ /3a; max P; ~ 3\0/3 m; Ry ~ g m, (66)

-

where R) is the reactive power in the fundamental. Fig. (4) shows
max P; and the corresponding R, as functions of m. It is interesting to
note that the ratio (max P,)/R, increases with increasing m from its
initial value of 0.28, its asymptotic value being /3, from (66). The
(]’ldl{.,(‘ waveform Q(x) giving rise to max P, is shown, for m = 1, in
Fig. 5

3.5 The Charge Waveform for an Idealized Voltage-Charge Relationship

We now consider a special voltage-charge relationship which may be
handled analytically. Thus we suppose that the capacitance has a finite
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Fig. 5 — Charge waveform for maximum obtainable fundamental power in
abrupt-junction diode operated partly in forward conduction region.

constant value for reverse bias and is infinite for forward bias, and
hence in normalized form

Since V/(Q) is constant except possibly at @ = 0, where it is indeter-
minate, we deduce from (33) that @(x) has one of the values 1, 0, and
—m at each point. Omitting further details, it is found that max P, is
given by
fl, 0 <z <2r/3;
Q(x) = {0, 27/3 < x < 47/3; (68)
|—m, 47/3 <z < 2m

Also,

max P, = ‘3\0{3

m; R =

€

[SVIRVA]

(m + 2). (69)

Note that, as might be expected, these values are asymptotically, as
m = =, the same as for the voltage-charge relationship in (61), as is
seen from (66).
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IV. BOUNDS ON THE MAXIMUM OBTAINABLE FUNDAMENTAL POWER

4.1 Lower Bounds

We now derive some lower bounds for the maximum obtainable power
in the fundamental, for a general voltage-charge relationship, by the
simple expedient of choosing specific charge waveforms. Any P, which
we obtain is, of course, a lower bound for max P,. Thus we consider
the charge waveforms

g, onl}y;
Q(x) = 3p, onTy; (70)
Lr, on I'y,

where each T';(j = 1,2,3) is a finite collection of nonintersecting inter-
vals, open at the left and closed at the right, and furthermore

3
LNTe=0, j=k UT;= (02r] (71)
j=1

From (28), (29), (70) and (71),

P, = nL(a,p,7) I:(f COSs NT d;v) (f sin ne da:)
T, T
- (f sin ne d:u) (f COs n d;t:)],
Iy Ty
where

L(op,r) = [(p — D)V(e) + (r = a)V(p) + (¢ — p)V(7)]. (73)

The significant point here is that we can choose the intervals I'; and
T, to make P, as large as possible, for the waveform class of (70), in-
dependently of the functional form of the voltage-charge relationship,
V = V(Q). This is still true if we wish to make P, as large as possible
subject to the condition P; + P, = 0, say, since the factor containing
V, namely L(e,p,7), occurs in each P, . Note, from (73), that L(e,p,7)
vanishes unless ¢, p, and r are unequal. Also, if (¢,p,7) undergo a cyclic
permutation then L(g,p,7) is unaltered, but if (o,0,7) undergo an anti-
cyclic permutation then L(e,p,7) is reversed in sign. We suppose that
the charge waveform has bounded variation as in (31) and define

L = max [L(a,p,7)] = O. (74)

—m=(opr)=1

(72)
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Also from (72) it is seen that P, changes sign if Ty, and T, are inter-
changed, which is equivalent to an anticyelic permutation of (o,p,7).

Thus we are interested in making the modulus (or magnitude) of the
bracketed expression following the factor L(e,o,7) in (72) as large as
possible, in order to obtain as large as possible a lower bound for
max F?; . We will restrict ourselves to special I'; and find the maximum
modulus of the bracketed expression in (72) for these subclasses. In par-
ticular, we consider

I = (0A]; s = (g, 0 <ANZEp<vwv <2 (75)
Then, from (72),

P, = }1 L(ap7r)F(n\nunv), (76)

where
F(Au,v) = [sin (¥ — A) — sin (&g — A) + sin g — sin »]
= 4sgin [(v — p)/2]sin (A/2) sin [(v + 2 — X)/2].

We first set A = g and determine g and v to maximize F(u,u,») which
from (75) and (77) is seen to be positive. The stationary values of
[sin (¢ — u) + sin g — sin #] are given by

(77)

cosu = cos (g — v) = cos » (783

Hence F(u,u,v) is a maximum for ¢ = 27/3, » = 47/3 and from (74),
(76), and (77) the corresponding maximum of P, is

=

Now for the voltage-charge relationship (37) it is readily verified that
L{a,p,7), as defined in (73), has a maximum value of $ which is attained
fore = 1, p = 3, + = 0, and hence in this case we obtain the value
Py = 0.650, which is quite close to the value of max P, given in (52).

We now consider the maximization of F (A u,») subject to the con-
dition

F(Aup) + 3F(202p,2v) = 0, (80)

corresponding to P; + P, = 0. Using the seccond part of (77), (80)
hecomes

I +dcos[(v— p)/2cos (N/2)cos[(v+p—N)/2]=0, (81)
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supposing that F(A,u,») # 0. It is interesting to note that (81) cannot
be satisfied with A = u. It is found that F(Ap,») is maximized, subject
to (75) and (81), by

A=2(r — 0); p =10 v = (2r — 0), (82)
where
cos f = —(1)3, (2r/3 < 8 <), (83)
and the corresponding value of P, , with P, + P, = 0, is
Py/(4L) = [L — (3)'} = 0.468. (84)

1.2 An Upper Bound, and its Relationship lo a Lower Bound

In Appendix A we give the derivation of an upper bound, for a gen-
eral voltage-charge relationship, on the maximum obtainable funda-
mental power, using the fact that the charge waveform is of bounded
variation, (31). It is shown that

max P; £ 4(1 + m)U, (85)
where
U= mhin{ max [Ae — V{(e)] — min [Ar — V{(eo)]}. (86)
—mza=s1 —m=c=1

In the previous section we showed, by example, that

max Py = 3\2/—3L, (87)
where L is defined by (73) and (74). From Appendix A, we have
1= (1l +mU/L =2, (88)

and these bounds cannot be improved without restriction on the voltage-
charge relationship. However, there is a large class of voltage-charge
relationships for which the lower bound is attained, namely those for
which [(p + m)V(1) — (m + 1)V(p) + (1 — p)V(—m)] does not
change sign in —m < p < 1. I'rom (85) and (87) it follows that

?%/ﬁgrﬂi—&g, i L=(4+mU. (89)
Also, for the above class, L in (74) is given with ¢ = 1, 7 = —m, or

vice versa, and [ in (86) is given with A = [V{(1) — V(—m)]/(1 + m).
A class of voltage-charge relationships of interest is

V(@ = [max (0,Q), —-m=Q =1 m=20 »z21 (9)
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of which we have already considered the cases » = 2, » = 1, and » =
2 (with m = 0). It is readily seen that this class satisfies the above
condition, and hence

L= max [(p+m) — (1 + m) [max (0,0)]'};

—mZpsl
U= _,Inllée];xél {-(—lﬁ_{—-nT) — [max (O,P)]v} (91)

min { s = (o,pw}.

Thus,
L=m+ (1 -~ %) (1 4+ m]™*™" = (1 +m)U,  (92)

and the bounds on (max P)/L in (89) hold. From (69) and (92) it is
seen that the lower bound is exact for the case » = 1, m > 0. For v =
2and m = 0, 34/3 L/2 = 0.385 as compared with max P, = 0.408.
Forv = 2, L = (2m + 1)*/[4(1 + m)], and Table I shows the ratio
2(max P,)/(34/3L) for several values of m, and it is noted that the
lower bound improves with inereasing m.

TaBLe I — (v = 2)

m 0 0.589 1.20 1.89 3.07 5.50

2(max Py) 1.058 1.042 1.027 1.018 1.012 1.006
3\/§L . . r . . . .. )

V. THE MAXIMIZATION OF THE POWER TRANSFER FROM THE FUNDA-
MENTAL TO SECOND HARMONIC, WITH BOUNDED CHARGE WAVEFORM
5.1 The Canonical Representation of the Charge Waveform

We wish to consider the problem of maximizing the power transfer
from the fundamental to the second harmonie, when the charge wave-
form contains no higher than second harmonics, so that

Q(x) = a+ bsina + ccosx + dsin 2¢ + e cos 2z. (93)
We also impose the conditions
anx = 1; Qmin = —m. (94)

Note that it does not follow a priori that the maximum power transfer
subject to (94) is equal to the maximum subject t0 Qmax = 1, Quin =
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—m. We observe, however, that for the voltage-charge relationship
(90),

max [Pl | Quax = 75 Quin = _Q]

(95)

= """ max [P | Quax = 1, Quin = —q/7], 0<r =1,
as may be deduced from (28) and (29). Thus it is sufficient to deter-
mine max [P; | Quax = 1, Quia = —m], that is, max P, subject to the

conditions of (94), for a range of values of m.

A canonical representation of @(x) is found in Appendix B. In addi-
tion to the two conditions in (94) it is supposed, by a suitable choice
of time origin, that

Q(r) = Quin = —m. (96)

Thus the five coefficients in (93) are given in terms of two parameters
and it is found that

a=[(c —e) —ml; b=2d=(1+ m)sy;
e = (14+m)E—s) — syl (97)
e =31+ my(l —s) — 31+ )7

The parameter s arises from the equation

Q(2tan "' s) = Quax = 1. (98)
The parameter y is subject to the condition
0sy=(1-5), (99)

which of course also implies that s £ 1. Thus we have a two-parameter
canonical representation of @(x), and these two parameters lie in a
bounded region. Moreover, it is shown in Appendix B that, independ-
ently of the voltage-charge relationship V = V{(Q),

P] |ii=0 = 0; Pl ‘y=(l—a!) = 0! (100)

so that P; vanishes on the boundary of this region. Also it is seen, from
(93) and (97), that changing the sign of s is equivalent to the trans-
formation Q(x) — Q(2r — ), and hence

PI(_S:H) = _IJI(SrH); Py ]n=[) = 0. (10')

5.2 The Abrupt-Junction Diode

We now consider the abrupt-junction diode operated in the region
between forward conduction and reverse breakdown. IFrom (28), (29),
(37), (93) and (97), with m = 0, it follows that

P, = —Z—s(l + &)1 — §°) — yl. (102)



POWER IN NONLINEAR CAPACITANCE DIODES

The maximum of (102) subjeect to (99) is

,n.‘.!
- = = 9
S5 = 02814,

being given by s = —(1/4/3), y = i Thus a charge waveform giving
max P is

_ 1 ¢
Qz) = é -+ 3—\/3 [‘2 sin (;r + -331') + sin 2 (.1, + %I)], (104)

and the corresponding fundamental reactive power is found to be

-L‘Jrﬁ_
- =

max P, = (103)

R, = 1.462. (105)
Q(z) = Q(x — (2x/3)) is depicted in Fig. 6. It is interesting to com-
pare (52) and (103), and Figs. 1 and 6. We comment that the above
results may be obtained quite elegantly, without using the canonical

representation of the charge waveform.

5.3 A Charge Waveform Which Provides an Approximation to the Maxi-
mum Power Transfer

In Section IV we obtained a lower bound to the maximum obtainable
fundamental power, (87), and it was seen to be a close bound in the
particular cases considered. The charge waveform giving this lower
bound is one which has values ¢, p, and = on consecutive intervals of
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Fig. 6 — Charge waveform for maximum power transfer from fundamental to
second harmonic in abrupt-junction diode operated in the region between forward
conduction and reverse breakdown.
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x of length 2x/3. Here o, p, and 7 are those values which, subject to
—m = (a,p,7) = 1, maximize L(a,p,7), as defined in (73). It was also
pointed out that if [(p + m) V(1) — (1 + m)V(p) + (1 — p)V(—m)],
ie., L(1,p,—m), does not change sign in —m = p = 1, then L(a,p,7)
is maximized with ¢ = 1, + = —m (or vice versa) and a suitable value
of p. The eclass of voltage-charge relationships given in (90) satisfies
this condition and then

p=[( 14 m) M. (106)

Now the Fourier coefficients, up to the second harmonic as in(93), of
the charge waveform giving the close lower bound to the maximum
obtainable fundamental power, are

a

Il

1
glot+etr); b=2d=;5 (0 —1);
vV

e —2e=—3(0'+'r—2p).
27

(107)

We will restrict ourselves to that class of voltage-charge relationships,
V = V(Q), for which L{a,p,r) in (73) attains its maximum, subject
to —m £ (o,p,7) = 1, when
o =1, T = —m, —-_m < p <1 (108)
It would seem feasible that we might obtain a reasonable approxima-
tion to the maximum power transfer from the fundamental to the second
harmonice, by suitably shifting and expanding (or contracting) the
above Fourier approximation, so that (94) is satisfied. Setting ¢ = 1,
r = —m in (107) and carrying out this procedure, we obtain the ap-
proximating charge waveform

0@ =L@+ —m) + X304 m)(2sinz +sin2)
(109)
+ é (1 —m — 2p)(2 cos z — cos 2z).

If we define Q(z) = @z + (2x/3)], then (96) is satisfied and in the
canonical representation of Q(z), (97), we have
1 _ 2(1 —p)
TTVE YT EaFmy
For the abrupt-junction diode operated in the region between forward
conduction and reverse breakdown, p = 3, setting m = 0, » = 2 in

(110)
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(106). Hence, from (110), s = —(1/4/3) and y = 1/3, so that, from
the previous section, the approximating charge waveform is actually
the one which gives the maximum power transfer.

5.4 The Numerical Computation of the Maximum Power Transfer, for
Particular Diodes

We have already obtained a two-parameter eanonical representation
of the charge waveform containing no higher than second harmonics
and satisfying (94). The two parameters s and y lie in the bounded
region given by (99), and P; vanishes, independently of the voltage-
charge relationship, on the boundary of this region. Also, since P, is
antisymmetric in s, it is sufficient to consider only half the region and
to maximize | P, | The maximization was carried out numerically for
particular diodes, by means of the iterative process of fitting a quadric
surface. As a starting point s 5" in the process, that point correspond-
ing to the approximating charge waveform, derived in the previous
section, was used.

The results of the numerical computations for the voltage-charge
relationship of (90), with » = 2 and » = 3, and several values of m,
are tabulated below. Tables II and III give the values of the maximum
power transfer, max P, , together with the corresponding values of the

TaBLe II—(» = 2)

m max Py Ry Ra I'max (b2 4 ¢2) (d? + e2)
0 0.2814 1.462 0.7310 0.7698 0.1482 0.0370
3 0.7773 1.966 1.060 1.160 0.3289 0.0865
1 1.284 2.300 1.300 1.549 0.5947 0.1573
2 2,198 2.921 1.561 2.310 1.451 0.3484
3 3.366 3.854 1.679 3.422 3.616 0.7414
5 4.371 4.788 1.642 4.515 6.869 1.250

7 5.544 6.020 1.474 5.951 12.92 2.097

9 6.586 7.228 1.230 7.372 20.95 3.096

TaBre 11— (v = §

m max Py R R Tmax (b2 + ¢?) (d? + e2)
0 0.1623 1.514 0.7389 0.7684 0.1499 0.0366
3 0.6782 2.137 1.182 1.162 0.3257 0.0878
1 1.246 2.428 1.529 1.560 0.5635 0.1652
2 2.271 3.023 1.882 2.330 1.367 0.3682
3 3.575 4.034 2.006 3.445 3.479 0.7703
5 4.691 5.115 1.907 4.533 6.710 1.277
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reactive powers in the fundamental and second harmonic, R, and R, ,
and the maximum current [..x associated with the charge waveform
Q(z), that is the maximum value of | Q'(x) |. It is worth noting that
R. does not continue to increase with m. Also included are the squares
of the amplitudes of the first and second harmonics in the charge wave-
form, (b° + ¢*) and (d® + ¢'). These, together with the real and re-
active powers, determine the normalized impedances. Tables IV and V
give the values of —s and y which given max Py, and also y*” and P,"",
the value of P, corresponding to ¥ and —s" = 1/4/3 = 05774. Tt
is interesting to note how close P, is to maz Py , except for the larger
values of m. Table VI compares max P; with the maximum obtainable
fundamental power, max P, , as obtained in Section III, for the case
» = 2 and several values of m. It is also worth comparing the value of
max P, = 0.162 for the case » = §, m = 0 with the corresponding value
of max P, = 0.408.

TaBLe IV— (v = 2)

m —s ) y Py max Py
0 0.5774 0.3333 0.3333 0.2814 0.2814
4 0. 5839 0.2963 0.2942 0.7770 0.7773
1 0.5848 0.2500 0.2426 1.283 1.284
2 0.5716 0.1852 0.1782 2.192 2.198
1 0.5465 0.1317 0.1301 3.307 3.366
5 0.5246 0.1019 0.1046 4.199 4.371
7 0.5008 0.0781 0.0844 5.197 5.544
9 0.4816 0.0633 0.0717 6.047 G.586
TaBLe V—(» = 3)
m -5 y ¥ P = max P
0 0.5742 0.3704 0.3704 0.1622 0.1623
Y 0.5871 0.3566 0.3562 0.6775 0.6782
1 0.5977 0.2963 0.2829 1.241 1.246
2 0.5875 0.2112 0.1989 2.262 2.271
3 0.5591 0.1449 0.1419 3.518 3.575
5 0.5331 0.1097 0.1130 4.536 4.691
TaBLE VI—(» = 2)
m l 0 ’ H 1 2 | i ‘ 5
maz Py 0.281 0.777 1.28 2.20 3.37 4.37
max P, 0.687 9.33 13.15

1.83 3.02 5.50
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5.5 On the Power Transfer From the Fundamental to the Third Harmonic

Breitzer et al’ were also concerned with the abrupt-junction diode
operated in the region between forward conduction and reverse break-
down and considered charge waveforms containing no higher than third
harmonics. They treated in detail the power transfer from the funda-
mental to the third harmonie, subject to P; = 0, and obtained a max-
imum value of

P, = (0.0242)7° = 0.238 = —Ps, (111)

making allowance for the difference in notation. This value of P, arose
from two distinet charge waveforms. One was

Q(x) = (0.5) + (0.310) sin x + (0.168) sin 2x + (0.155) sin 3z, (112)

and the other was quite close to this. We saw previously how by taking
the Fourier approximation, containing up to second harmonics, of a
charge waveform which gives a good lower bound for max P, subject
only to restrictions on Qu.x and Q.. , and suitably shifting and ex-
panding (or contracting) so that the restrictions on Quax and Quin are
satisfied by the approximating charge waveform, we could obtain a
good approximation to the maximum power transfer from the first to
second harmonic, when no higher than second harmonics are allowed.
In the case of the abrupt-junction diode operated in the region between
forward conduction and reverse breakdown, which is the diode that
we will consider in this section, it was found that the charge waveform
so derived was precisely one that gives the maximum power transfer.

Now, it is found that the best mean square approximation containing
up to third harmonics, and subject to P, = 0, to the charge waveform
which gives the good lower bound to the maximum obtainable funda-
mental power is

o =1+ 2w, (113)
where

f(a) = [(0.4) sin & + (0.25) sin 2¢ + (0.2) sin 3x].  (114)
We shift and contract Q(x) by setting

M

=

Q) =1 [1 +"(~“’)} M= max [f2)],  (115)

so that Quax = 1 and Quin = 0. For this charge waveform,
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P, = (00075)7° /M = —Py;  Py=10. _  (116)
It is found that
| M = 0680; P;,'= 0.235, (117)
and Q(x), as given by (114) and (115) is plotted in Fig. 7(a). The value
of Pyin (117) is very close to the maximum value obtained by Breitzer

et al, (111), and it is interesting to compare Fig. 7(a) with Fig. 7(b)
which depicts Q(x) as given by (112).

T

. 1\
AV

\ |

0.2

27 T 47 57 21
3 3 3
T

o
wiy

Fig. 7 — Charge waveforms giving (a) approximately, and (b) exactly, the
maximum power transfer from fundamental to third harmonic in abrupt-junction
diode operated in the region between forward conduction and reverse breakdown.
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VI. THE MAXIMIZATION OF THE POWER TRANSFER FROM THE FUNDA-
MENTAL TO THE SECOND HARMONIC, FOR THE CURRENT-LIMITED
DIODE

6.1 The Canonical Representation of the Charge Waveform

We are concerned with charge waveforms as in (93) and impose the
restrictions
Qmux - ]-, IQ’ !mux = k. (]-18)
We observe that, for voltage-charge relationships of the form given by
(90),
max [P | Quax = P, Q [mux = 1

! (119)

= '.D(H-]} max [Iji 1 Qmux = 1: [ Q’ |"mx - 'B:I, 0< P = h

In Appendix C we determine a canonical representation of Q(x), sub-
ject to the conditions

Qmux - 1; Q:uax é }\', Q:;lin = _k, (120)

by making use of the canonical representation obtained in Section 5.1,
when the charge waveform has preseribed maximum and minimum
values. Note that if Q(x) = Q(x — x), where Q(x) satisfies the con-
ditions of (120), then

Quax = 15 Qs = ki Quin Z —Fk. (121)

From Appendix C, the five coefficients in (93) are given in terms of
two parameters s and y. It is found that

kw kz ksy
= —) 2[ = e N = — Y = _]:J 22
(w—z)’ ‘ (w— z)’ ‘ (w — 2) e, (122)

where
w= (31— s) — sy == 1yl — &) — 31+ ), (123)
and that

a = [l — max (bsinx 4 ccosx + dsin 2x 4 e cos 2u)], (124)

which in general has to be determined numerically. The waveform is
translated so that
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’

Q’(TI') = _]‘- = Qmin- (125)
The parameter s arises from the equation
Q(2tan™"s) = Quax = F, (126)

and the parameter y is subject to the condition
0=y =<i(1—5), (127)
which of course also implies that s* £ 1. It is shown in Appendix C that
Pr=0 for y=4(1—5). (128)

In order to maximize P; subject to (118), it is sufficient, in view of
the correspondence between Q(x) and Q(z) = Q(r — z) given by
(120) and (121), to use the above canonieal representation and to
maximize | Py |.

6.2 The Abrupt-Junction Diode

We now consider the abrupt-junction diode operated in the region
between forward conduction and reverse breakdown, for which the
voltage-charge relationship is V(@) = @°, 0 £ @ =< 1. We first maxi-
mize | P; | subject to the conditions of (120), and suppose that % is
sufficiently small that Q... = 0. Using the canonical representation ob-
tained in the previous section, P; may be expressed in terms of s and .
Omitting the details, it is found that | P; | is maximized, subject to the
restriction (127), for s = %, ¥y = 0. The charge waveform giving this
maximum is

Qx) = 1 + k[S(x) — Suaxl, (129)
where
S(x) = (4 sin x (,_ sin 2x) . (130)
It is readily verified that S,ux = ¢ = — Swin, where
= m = 0.734. (131)

24/2(3)*

Thus Quin = (1 — 2gk), so that Q... = 0 for 2gk =< 1. This Q(2) ac-
tually gives a negative value of P,, so that @Q(x) = Q(x — ) maxi-
mizes P, , and it is found that
275 4 3 1 .
max P, = k" = 07311k, for & £ — =068l (132)
27 2g

Fig. 8 depicts S(7w — 2).
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Fig. § — Shifted and normalized charge waveform for maximum power trans-
fer from fundamental to second harmonic in current-limited abrupt-junction
diode, with maximum current less than a eritical value.

The fundamental reactive power corresponding to max P; is
Ry= 5T (1= gk (133)

But, for the voltage-charge relationship V(@) = @°, the addition of a
constant to the charge waveform does not affect ;. Hence, if instead
of requiring Quux = 1 we just require 0 = Q(x) = 1, we have

R = §9£a1.:2 = 878ak*;, gk = a = (1 — gk). (134)

6.3 The Optimum Operating Frequency

So far, no discussion has been made of the angular frequency w of
the actual periodicity of the charge waveform. We here consider this
factor in the case of the abrupt-junction diode operated in the region
between forward conduction and reverse breakdown. Now the physical
limitation placed on the maximum current magnitude takes the form

Q' (x) ]| ==, (135)

K
w
from (20). Also, the actual fundamental power p, is, from (9), propor-
tional to «P;. We thus consider the maximization of wP, as w varies,
where the charge waveform Q(x), containing no higher than second
harmonies, is subject to 0 < Q(x) = 1 and the condition in (135). We
make use of results from Section V, as well as from the previous section.
Thus, we define

max [P | Quix = 1, Quin = —m| = P(m), (136)
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and let the value of | Q' |max for the charge waveform which gives P(m)
be denoted by K(m). Then, remembering that the addition of a con-
stant to the charge waveform does not affect P, , since V(@) = Q’, we
obtain from (95) and (103),

Pom) = (1 4 m) (137)

T 813
and also, from (104),
4
= m)K = —_— . X
K(m) = (1 + m)K(0) 3\/g(l-l-m) (138)

Similarly, we define
max [P | Quax = 1, | @ |max = k] = T(k), (139)

and let the value of Qui for charge waveforms which give II(%k) be de-
noted by —M (k). Then, from the previous section,

2

27

(k) = o=

B, M(E) = —(1 — 2gk), (140)

where g is given by (131).
Now if Q(z) is subject to just the restriction 0 = Q(z) = 1, then

max P, = P(0), from (137). But, from (138), if (w/x) < (34/3)/4
then the Q(x) which give this value of max P, satisfy (135). Hence,

(9) max P, = 0.2814 (i") 0= (f) <1299,  (141)
K K K

Note that if (w/x) > 1.299, then this gives an upper bound on
(w/x) max Py . Also, if (w/«) > 1.299, then max P, = P(m) if K(m) =
(k/w), and henee, from (137) and (138),

2
(9) max P, = 0.617 (5) , (‘—") > 1.200. (142)
K w K

TFrom (140), setting & = (x/w), we have

(“’) max P, = 0.731 (5) (9> > 1.468, (143)
K w K

and if 0 £ (w/k) < (1.468) = 2g, then this provides an upper bound
on (w/x) max P;. Also, if 0 £ (w/x) < 2¢, then max P, = II[1/(2g)],
from (140). Hence,

(9) max P, = 0.231 (‘i’) 0= (f) < 1.468. (144)
K K K
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FFig. 9 shows (w/k) max P, as a function of (w/x). For

1299 < (9) < 1.468, (145)
K
the curve lies between the dashed lines, Thus, from the viewpoint of
maximizing the actual fundamental real power, the optimum operating
frequency, when the diode is not allowed to operate in the forward
conduction region, lies in the range given by (145). Also, we can assert
that

I

_ #2 w 2(4)
03665 = —— < max | (=) P | = & = 0.387. (146)
K

6.4 Maximization of the Power Transfer, When the Region of Operation
Includes Forward Conduction

In a previous section we obtained a canonical representation of a
charge waveform §(x), containing no higher than second harmonics,
for which Q. = 1, Q:mx = kand Q,’.lin = —k. This canonical repre-
sentation is given by (93), (122), (123) and (124), and involves two
parameters s and y which lie in a bounded domain given by 0 < y =
1(1 — §°). It was shown that, independently of the voltage-charge
relationship, P, = O on ¥ = 1(1 — s°). Moreover, it was seen that in
order to maximize P, subject t0 Qmax = 1 and | @ |nax = &, it is suffi-
cient to consider this canonical representation and to maximize | P, |.

0.4 !

0.3

[=]
n
V4

(w/K) MAX P,

/

o 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 36 40
w/K

Fig. 9 — Maximum power transfer from fundamental to second harmonic in
current-limited abrupt-junction diode operated in the region between forward
conduction and reverse breakdown, vs. frequency.
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The maximization was carried out analytically for the abrupt-junction
diode when % is sufficiently small that the diode does not operate in the
forward conduction region. We treat here, by means of numerical com-
putation, the abrupt-junction diode when partial operation in the for-
ward conduction region takes place, the normalized voltage-charge
relationship being given by (61).

Again, the maximization process was that of fitting a quadric surface,
and this time it was also necessary to caleulate ¢ in (124) numerically.
Further, it was desirable to first compute the value of P, over a rough
grid, and then to pick appropriate values s® and y, as a starting point
in the maximization process. Thus, for several values of &, max | P |,
i.e., I(k) in the notation of (139), was computed in the manner de-
seribed above. For the values of s and y which gave max | Py |, the cor-
responding values of R, and R, the reactive powers in the fundamental
and second harmonie, and of Quin , i.e., —M (k) in the notation of the
previous section, were caleulated, together with (b° + ¢*) and (d* + ¢),
the squares of the amplitudes of the first and second harmonies in the
charge waveform. The results of the numerical computations are tabu-
lated in Table VII. We note that the values of P, corresponding to the
given values of s and y are negative. If Q(x) is the charge waveform
corresponding to s and y, (93), (122), (123), and (124), then the posi-
tive value of Py, that is II{(k), is obtained from the charge waveform
Q(x) = Q(x — ), or any translation thereof.

Now, from (119) with » = 2, and from (139),

max [P | Quax = P, | Q lmax = Il = ' (%) , 0<p =1 (147)

Tor Quax = 0 we have P, = 0, from (61). We may write

P (;%) _ (El:)ﬂ (;é)nm (148)

(k) /)y odk)’

The quantity & °TI(k) is depicted in Fig. 10(a), and it is seen to be a
nonincreasing function of k. It follows, from (147) and (148), since
(k) is a strictly increasing function of &, that max P; subject to Qumax =
1 and | @ |wax < k is attained with Quix = 1 and | @’ |max = k. For
k< 1/(2g) = 0.681, it can also be attained with 2gf £ @Qm.x < 1 and
| @ |max = k. We comment that for the voltage-charge relationship
V(Q) = max (0,Q), max P, subject to Quax = 1 and | Q' {max = k i

not attained with Qu.x = 1, for sufficiently small %, since in this case
Pr=0if Qunin = 0.
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Let us now consider the frequency factor, as we did at the end of the
previous section, so that (135) holds. Hence, setting & = (x/w).

max [‘f Pl:l = max [Hik):l . (149)
K :

The curve in Fig. 10(b) depicts II(%)/k and it is seen to be an increas-
ing function of & in the range shown, although it is to be expected that
it tends to zero as k => «. It appears that max [[1(k)/k] ~ 1, so that,
from (146), a considerable improvement is obtained if the diode is per-
mitted to operate in the forward conduction region. We must bear in
mind, however, that we have idealized the voltage-charge relationship
in the forward conduction region.

0.8

0.6

0.4

m(k)y/k?

0.2

TI(k)/k

TFig. 10 — Maximum power transfer from fundamental to second harmonic
divided by (a) the eube of the maximum current, and (b) the maximum current,
for current-limited abrupt-junction diode with operation in forward conduction
region permitted, vs. the maximum current.
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TasLe VII

k (k) R Ry M(k)
0.75 0.3058 2.167 0.3033 0.0896
1.0 0.6159 2.440 0.5075 0.3980
1.5 1.265 2.840 0.8274 1.027
2.25 2.169 3.483 1.058 2.013
3.0 2.979 4.153 1.135 3.024

k —5 ¥ (b2 4 ¢2) (d? 4+ e?)
0.75 0.5988 0.0018 0.2404 0.0169
1.0 0.6647 0.0288 0.3653 0.0393
1.5 0.7035 0.0834 0.7159 0.1124
2.25 0.7058 0.1354 1.613 0.2775
3.0 0.6996 0.1663 3.006 0.5039
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APPENDIX A

From (28) and (29), for any X (which we take to be real),

P, = (fn“ IAQ(x) — V[Q(2)]} sinx d:v) (f:1r Q(x) cos x dL)
- (j:' IAQ(x) — VI[Q(x)]} cos x d.v) (‘/:'Q(m) sin @ dn:) (150)
=A j:r AQ(x) — VI[Q(x)]} sin (x — @) dx,
where

2 2
Asin g = Q(x) sin x d; Acosf = f Q(x) cosx dx, (151)
0 1]

Hence,

2w

=
Il

Q(z) cos (x — @) dx, (152)
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Now, max P, = max | P, |. Since

2r

fl2) sin {x — ¢)dr| £ 2(max f — min f), (153)

0

(31), (150) and (152) lead to (85) and (86) in Section 4.2. We next
derive the inequalities (88), where L is defined by (73) and (74). Now,

L 2 max L(e1,—m)

—m<o<l
= max [(L4+m)V(e) = (m+ a)V(1) + (¢ — 1)V(—m)]
—mgo=l (154)
= —bm) {oml()l :—I?;I()_m)] B V(a)}
= [mV(1) + V(—m)).
Also,
L = :‘E’-il L(l’p:—m)

st —5122’;1{’)”7(1()111()_?11)] - V(")} 1o

+ [mV (1) + V{—m)].
Hence, from (86), (154) and (155),

2Lz (1 +m)U. (156)
Also, from (73) and (74),
L = max {(r — p)he — Vi(a)] + (e — 7)Ap — V(p)]
st (157)

+ (p — o)A — V(2)]},
for any (real) A. In view of the remarks preceding (74) we may assume
either that —m S ¢ S p =7 = l,orthat —m £ r = p = ¢ = 1,
without loss of generality. In the former case

(r = p)Ae — V()] + (¢ — 7)Ap — V(p)] + (p — a)[Ar — V(7)]
S(r—p) max [ — V(k)] 4+ (¢ — 7) min [Ax — V(«)]

—mzZx=1 —m=x<1

+ (p— o) max [Ax — V{(x)] (158)

—m=x=l

= (r — o) max [ — V(x)] — min [xx — V(«)]}.

—m=x=1 —m=x=1
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Hence
(r—p)Aa — V()] + (o — 7)Ao — V(p)| + (p — a)[Ar — V()]
< (1 4+ m) max [a — V(x)] — min [ — V(«)]}.

—m=x=<l —m=xk=1

(159)

Equation (159) may be derived, in a similar manner, when —m =
r < p = ¢ = 1. Thus, from (157),

L = (1 + m){ max [ — V(«)] —7min l[?uc — V(x)]}. (160)

—m=x<1
But this is true for all (real) A. Hence, from (86)
L=(1+mU. (161)

If we do not restrict the voltage-charge relationship then the bounds
given by (156) and (161) cannot be improved. This is demonstrated
by considering the (somewhat artificial) relationship

1, @ = [(l + m)a — m];
V(Q) =4¢—1, Q=1 — (1+ mal; (162)
0, otherwise; m > —1, 0<ac<i
It may be verified that in this case
L=(14+m = (1—-a(l+mlU. (163)
We now find a class of voltage-charge relationships for which the
bound in (161) is attained. If ¢ = =, then, by the definition of U in
(86)!
(¢ — 1)U = = max {[V(e) — V(7)lp — (¢ — 7)V(p)}

meest (164)
—_mm<l:1<li[V(0) = V(r)le — (e — 1)V(p)}.
Let =m = 7 = ¢ £ 1. Then,
Lz ~max I[(p —)V(e) + (v — a)V(p) + (¢ — p)V(7)]
= _TB-‘:IIWM) — Vid)e — (¢ — 7)V(p)}
+ [oV(r) — V(o)
2 (e — 1)U+ [V(r) — 7V(d)] (165)
+ min [[V(e) — V(r)lp — (¢ — 7)V(p)}
—mgpg]
= (¢ — 1)U

+min [(p — 1)V(e) + (+ — a)V(p) + (¢ — p)V(7)].

—mzps1
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Q(r/2) = [3(3 =2y)(1 +m) —m] = [1 — (1 4+ 2y)(1 +m)], (181)
80 that Quax > 1fors = 0,y < —} and Quin < —mfors = 0,y > &,

Hence Quux > 1fory < 0, and Q. < —mfory > (1 — ). The re-
gion of interest, i.e., Quax = 1 and Quin = —m, is given by
0y =(1-5). (182)

We next consider the fundamental power when the charge waveform
Q(x) contains no higher than second harmonics. From (28), (29) and
(170),

P=n f ’ VIQ(x)](b cos x — ¢ sin x) dx. (183)

We determine conditions under which P; = 0, independently of the
voltage-charge relationship V' = V(Q). This is clearly the case if
b =0 =¢ orif Q(x), as given by (170), is a single-valued function
of (b sin x + ¢ cos x), for then the integrand in (183) is the derivative
of a periodic function. Noting that

2(bsina + ccosx)’ = (b* 4 ¢*) + 2be sin 22 + (¢* — b*) cos 2x, (184)
it follows from (170) that the latter condition holds if
d = 2\be; e = N = b), (185)
for some A. Combining this condition with b = 0 = ¢,
2bce + d(b* — ) = 0= P, = 0. (186)

We now consider the canonical representation of Q(x), with Quax = 1
and Quin = —m, wherein the coefficients in (170) are given by (97).
Then condition (186) becomes, upon reduction,

y=0 o y=(1-=4) or s=0=P =0. (187)

APPENDIX C

We here determine the canonical form of Q(x), as given by (170),
such that

Qumx = 1, Q::mx = I‘; Q:nin = Q’(W) = _" (188)
) Now, when the charge waveform Q(z) is subject to Quax = 1 and
Quin = —m, the five coefficients corresponding to those in (170) are



720 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962
given in terms of two parameters s and y, from (97), by

a= (¢ —é& — ml b=2d= (14 m)sy;
(1 4+ m)w; eg=(1+m)z

(189)

Y
Il

where
w=[31—s") — sy, z=13iy(l =) — 31+ ) (190)

The charge waveform is translated so that Q(r) = —m, which may be
done without loss of generality. The parameter s arises from the condi-
tion Q(2 tan™" s) = 1, and the parameter y is subject to the condition
0 <y = (1 — &), which of course also implies s* < 1. If, in addition,
d = 0, then

(1 +m)(w—z) =m, (191)
and hence, from (190),
(1 + 38) = [(1 + §)(5 — 35°) — 8m/(1 + m)]. (192)
Now 0 =y £ (1 — &), but if we require m = 1 then
0sy=i(1—+), (mz1). (193)

Turning to a charge waveform (x), as given by (170), which satis-
fies the conditions of (188), we may write

, k =
Q (.13) = — Q(-l:)) m g 1: (194)
m
where (191) and (193) hold. Hence,
Q' (z) = klsy(sin x + § sin 2x) + w cosx + 2 cos 2.1?]. (195)
(w — z)
Integrating, and remembering that Qu.x = 1,
Q(x) = {1 + k[S(x) — Sumaxl}, (196)
where
z
w sin & + - sin 2r — sy(cos » + § cos 29:)]
S(z) = [ 2 - (197)

(w — z)

In general, Su.x = max[S(x)] is determined numerically.
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We now turn to the fundamental power, P, , when Q(x) has the above
canonical representation. I'rom (170), (186), (190), (196) and (197),
we find that P, = 0, independently of the voltage-charge relationship,
if

(1 — &) — 201 — (1 4+ 3¢°) — (1 = s — 2y} =0. (198)

In view of (193), the second factor vanishes only if & = 1, y =0
Hence we conclude that

Pr=0 for y=2%1—=¢). (199)
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