The Design and Analysis of Pattern

Recognition Experiments

By W. H. HIGHLEYMAN
(Manuseript received March 2, 1961)

A popular procedure for lesting a pattern recognition machine is to
present the machine with a set of patterns taken from the real world. The
proportion of these patierns which are misrecognized or rejected s taken as
the estimate of the error probability or rejection probability for the machine.
In Part I, this testing procedure is discussed for the cases of unknown and
known a priori probabilities of occurrence of the pattern classes. The differ-
ences belween the lests that should be made in the two cases are noted, and
confidence intervals for the lest results are indicaled. These concepts are
applied lo various published pattern recognition results by delermining the
appropriate confidence tnterval for each result.

In Part I1, the problem of the optimum partitioning of a sample of fived
size between the design and test phases of a pattern recognition machine is
discussed. One important nonparametric result is that the proportion of the
total sample used for testing the machine should never be less than thal
proportion used for designing the machine, and in some cases should be a
good deal more.

PART I — ON ANALYSIS

INTRODUCTION

There are two distinet and consecutive processes usually involved in
the feasibility study of a pattern recognition method or machine, The
first process is the actual design of the machine. This might be based
upon a set of sample patterns which the experimenter has gathered,
from which he estimates the parameters of the machine. Alternatively,
the experimenter may base his design on some a priori knowledge con-
cerning the pertinent characteristies of the pattern classes under study.
The second process is then the testing of this machine either in its hard-
ware form or by its simulation on a general purpose computer. A differ-
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ent set of sample patterns from that used in the design is used in this
stage.

The popular procedure for interpreting the test results is to take the
proportion of patterns in the test data which have been misrecognized
or rejected by the machine as the estimates of the error probability and
rejection probability, respectively, for the machine. There are several
questions which might be raised concerning this testing procedure, such
as:

1. Are these estimates the best estimates?

2. If so, how good are these estimates?

3. How does the estimate improve as the sample size is increased?

Questions such as these are discussed in Part I of this paper. Two
cases are considered; one is the case in which the a prior: probabilities
of elass occurrence are unknown, and the other case assumes full knowl-
edge of the a prior: probabilities.

Case 1. Unknown a priori Probabilities — Random Sampling

Let the number of allowable pattern classes be ¢. It will be assumed
that, for each allowable class 7, there exists an a priori probability of
oceurrence w, , 8 probability of error e;, and a probability of rejection
r:. (For the rest of this paper, the term “error” will refer to an unde-
tected error; all detected errors will be assumed to be rejected.) These
probabilities are unknown to the experimenter, who is interested in esti-
mating the overall probability of error for the machine.

€= Z Wil (1)
i=1
and the over-all probability of rejection,
r o= wa?',-. (2)
=1

Let him perform the following experiment, which will be called random
sampling, Consider the patterns to be randomly generated by a “‘pattern
source” according to the a prior probabilities of occurrence. He takes a
pattern from the source, identifies it, and then lets his pattern recogni-
tion machine attempt identification. He notes which of the three possible
outecomes oceurs: correct recognition, misrecognition, or rejection. This
experiment is repeated n times, resulting in m, samples which have been
misrecognized and m, samples which have been rejected.

Since these outcomes are mutually exclusive, and each experiment
independent, then the resulting random variables, m, and m, , clearly
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are distributed according to the multinomial probability distribution.
That is, the joint probability distribution of m. and m, , P(m,. ,m,), is
given by

n P g
P(im,,m,) = (mﬂ m,)e Pl — e —r)" e (3)

The maximum-likelihood estimates for ¢ and r, denoted by & and #, are
then'

(‘) _ m,
-
n
(4)
PR
n’

which are the estimates in common use. Further, each of these estimates
is proportional to a single random variable having a binomial distribu-
tion; therefore, né and n# are themselves binomially distributed. The
mean value of each estimate is the parameter for which it is an estimate;
the variance of each is'

G’f:‘ = a (TFH(‘._ - - (6)

L (7)

Beeause it is known that né and »# are binomially distributed, con-
fidence intervals can be applied to these estimates.* These confidence
intervals require rather involved computations, but fortunately have
been plotted for several values of n by various people.”* In Tig. 1 is
shown such a plot of intervals for a 95 per cent confidence level computed
by C. 8. Clopper and L. 8. Pearson. The use of this graph is fairly simple.
A vertical line extended upward from the observed value of the estimate
given on the abscissa will intersect the pair of curves pertaining to the
particular sample size used. Projecting these two intersections horizon-
tally onto the ordinate axis gives an interval for the parameter being
estimated. The probability is 0.95 that the interval drawn in this manner
includes the parameter. I'or instance, if a sample size of n = 250 yielded
50 errors, then the estimate of the probability of error is 0.20. Using
Fig. 1 it can be stated that, with probability 0.95, the true probability
of error is included in the interval from 0.15 to 0.27.

* Mattson? has used a similar argument for determining convergence of an
adaptive system. However, he used Tchebycheff’s inequality to obtain confidence

intervals which are necessarily larger than if he had used such intervals pertaining
to the binomial distribution.
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Fig. 1 — 95 per cent confidence intervals for a binomially distributed variable.

Case 2. Known a priori Probabilitics — Selective Sampling

It is now assumed that the a priori probability of occurrence for each
class, w;, is known. To take advantage of this knowledge, the experi-
menter takes n; samples from each class 7 such that

nq
— = Wi, (8)
n
where n is the total number of samples. This process will be referred to
as selective sampling.* (It will be assumed that the w; are such that (8)
can be fulfilled with the desired sample size, n.)
* This sort of sampling dichotomy has been previously noted by others. For

instance, Bowley® and Neyman® have referred to these two methods as ‘‘unre-
stricted’’ and “‘stratified” sampling.
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The machine is again allowed to attempt recognition of these patterns,
resulting in m,, samples from class 7 being misrecognized, and m,, sam-
ples from class 7 being rejected.

For any class 7, the joint probability distribution for m,, and m,, again
is multinomial:

P(m..,- ] mr.') = (ni'ﬂ;.'ai'?nri)(""'e‘7'imr‘ (1 — eé; — Ta')"iimﬂumr'.- (9)
Since each of these distributions is independent of the others in this ex-

periment, then the joint probability of the outcome for all ¢ classes is
the product of the individual probabilities (9):

Plmey, oo yme My, s o ymy)
: n
=11 (7’%.- m e (1 — e — r)" e T
i=1

This is no longer a multinomial probability distribution. However, since
the maximum-likelihood estimate of a sum of independent variables is
the sum of the maximum-likelihood estimates, then these estimates for
e and r are

(10)

s - 2 (11)
n 3

™ (12)

r o= n )

which again agree with the popular practice of using the proportions as
estimates. The random variables of which né and n# are values are not
now binomially distributed, since a sum of binomially distributed vari-
ables is not itself a binomial distribution in general.

The mean of each estimate is again the particular parameter being
estimated. The variance of each of these estimates can be computed:

c 1o c 1 [
0t = -1— Yo, = L el —e) = 13wl —e), (13)
n- i=1 & n- i=1 n i=1
in which use of (8) is made, and the prime distinguishes this variance
from that for random sampling. Similarly,
0’;’2 = %Z w,-r,-(_l - ?','). (14)
=1

It is of interest to compare these variances for selective sampling
with those obtained for the case of random sampling. Since the variance
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for # has the same form as & in both cases, it is necessary to consider
only one of them, say é. First note that o,” can ke written, using (1) and

(6), as
ol =1 (): w,-e,-) (1 Y w,-.-ek). (15)

TFrom (13),
c c 2
o; — Ué’g = 1 ) w;c’,-2 - 1 (Z w.'!?s) . (16)

Noting that D i w; = 1, (16) can be written as

c

€ 2 €
0',32 - 0'9,2 = 120},‘ (3,' — Z@H;ek) = E Zwi(ei - 6)2 = 0'62 g 0. (17)
N i=1 k=1 n =1

Hence, the variance in the case of random sampling is greater than
the variance in the case of selective sampling, the difference being what
might be interpreted as the variance of the class errors. That is, if e; is
treated as a random variable with probability distribution w;, then
o, is the variance of ¢; . (A similar derivation holds for the variance
of the rejection probability estimates.) That the selective sampling
variance should be smaller than the random sampling variance might
be expected, since in selective sampling more information is used, namely
the a priori probabilities.

Although statements have been made concerning the mean and
variance of the estimates in the selective sampling case, nothing has
been said yet concerning confidence intervals. This is a much more
complicated problem than that in the case of random sampling, since
the estimates do not have a simple distribution funetion. In fact, the
confidence intervals will in general depend on the particular set of
e’s (or ry’s) pertaining to the machine, and not simply on e (or r).

However, for small probabilities, the binomial distribution is quite
closely approximated by the Poisson distribution, the fit beccming
perfect as the probability approaches zero. For any reasonable recog-
nition machine, one would expect the probabilities of error and rejec-
tion to be small; consequently, the marginal form of (9) for m., or m,,
may be approximated by a Poisson distribution. The estimates given
by (11) and (12) are now sums of random variables with Poisson
distributions (approximately) which are then themselves Poisson
distributed. If the over-all error is also small, as is usually the case, the
binomial-Poisson approximation can now be used in reverse, and one
may state that, for small error rates, the error and rejection estimates
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(11) and (12) are approximately binomially distributed. Consequently,
one can use Fig. 1 to obtain 95 per cent confidence intervals for the
error and rejection probabilities. Further, from (17), we would expect
this confidence interval to be on the safe side, that is, the actual 95
per cent confidence interval should be slightly smaller than this.

APPLICATION TO PUBLISHED RESULTS

To illustrate the ease of determining these confidence intervals, some
published results in pattern recognition are listed in Table 1 along with
the 95 per cent confidence intervals as determined from Fig. 1. It should
he emphasized that Table I is not meant to compare one method against
another, since the methods obviously treat problems of various com-
plexities. Rather, the table is meant to compare the accuracies of the
various evaluating experiments.

Three points of caution should be noted concerning the validity of the
confidence intervals in this table. First, the author is not positive that
the test data is different from the design data in every case. Second, to
the best of the author’s knowledge, in every case the number of samples
taken from each allowable pattern class was predetermined. This is
selective sampling ; therefore, it is assumed that the proportion of samples
taken from each class represents its a priori probability of oceurrence.
The third assumption is that the patterns used to test the machine are
a reasonable sampling from the real-life world of patterns, and are not
biased toward either well-formed or poorly-formed (noisy) patterns.

CONCLUSION

Two important cases concerning the testing of pattern recognition
methods or machines have been considered: Random sampling for the
case of unknown a prior: probabilities of class oceurrence, and seleetive
sampling for the case of known a priori probabilities. The most pre-
dominant form of testing in the present day art is to assume that the
pattern classes have equal a priori probabilities of oceurrence, and conse-
quently to use equal sample sizes for each class; this is a special case of
selective sampling.

It has been shown that, for both cases, the maximum-likelihood esti-
mafe for the error probability or rejection probability is simply the
proportion of samples misrecognized or rejected. In the case of random
sampling, the estimates are binomially distributed, and accurate confi-
dence intervals can be obtained. In the case of selective sampling, tighter
estimates are obtained which are approximately binomially distributed



wI}2ads odvloAs
07 9INSBIW IIUB]SIP UBIP

%81-%0 | %0 0% -I[oN-U0U JO UOT}BZIWIUI | BIjpads awr} sa Aouenbaig s7131p uayodg pruA)seqeg
saInsevaul SjuewWdas JuUl[ JUAID} (A[uo
JO uoNQLIISIp [RULIOU FUL -J1p 1qde duoe adpe plAy adwexs sv auop)
2201-%1 | %¢ 06 -WNSSE UOTJoUNy POOYIRYIT | WOLJ I219%I8Yd Jo aguvisy] | DY  UdliLmpuvy e U9y ‘[[LIBIN
19yBads suwres Wo.j
rIjoads padwiaas snotaard
e1-%T | %9 66 jsurede  uone[aL100-ssor) | wvIjdads awr} sa Louanborg s181p uayodg | pseua(q ‘SMmayIvIy
("on0
‘s [eads  ‘saansold S191197 UdILIM
0L0%-%28 | %1 1% | GIF 201} uo1s139(]| ‘sdsno) sainjeaj [wotdojodo], | -puvy  pojudwdasuf) puouLw |
Arguonaip SOUWIAI}XD UIIMII( SUOT)
94129528 | %89 091 jsurede  UOI)B[ALIOD-SSOI)) | -93UUOIIIIUL PUE ‘SIUWAIIXY SPIOM U}LIMPUBH rjdoyysLy
(uonyenby seluq) L1qe SaINEay B0 LSHONNTIHV
L01-%0T | %21 | 0S¥~ | -qodd wwopiapsod p eziwixvyy | -13o[0do} painseowr Apdung pojuLL] - pusH aPlAo(T
(*910 ‘suorjaasiajul
‘saull Jy31edls Jo UOLIRIUD SOLIWIN N
%520 | %0 Z11 991} UOISINA(] | -w0) sainjeaj [watdojodo], |-vyd[y pojuLl] - puBy sBquog
a[qu) 1suTedE SIUIWI[I XLIJBUI G] X (] JO Sjuaw SOLIaWN N Jdur
Y,62-%CT1 | %9718 | 081 NIIJBUL Jo so[dny-g Suroivy | -9[@ Ul MJEW Jo ddudsald |-vqd[y PIIuLLI- PUBY | -umolg ‘20spalg
(uoryenbry sedvg) LIIqe XLIJBW gE X (g JO EREN]
UBTl-%L | %6 08F -qoad 240112)80d D SZTWIXBIY | SITSWA[A UL UL JO SIUISALJ | -~WNN PIJULLT dUTYIBIA JULISH ‘umaeg
nWMMwMHMNWMv o115 u_m.mﬂmnm soﬂ.mwammm._wuﬁ muﬁwwwwwwwwmnu Sasse[) uIaieg Joyiny

SITINSAY AEHSITENJ HNO0G HOd STVAUAIN] TINHAIINO) INHD ¥dd Cf— T TEV],

730



PATTERN RECOGNITION EXPERIMENTS 731

for small error rates. Conservative confidence limits may then be ob-
tained for these estimates.

Using these notions, the experimenter can now determine the sample
size required to obtain results which he deems significant. Alternatively,
if he has a limited sample size, he can determine the significance of his
results. Note that in both cases considered, the variance is inversely
proportional to the sample size. This does not mean that the confidence
interval is inversely proportional to the square root of the sample size,
however, since a binomial rather than a normal distribution pertains.
However, perusal of I'ig. 1 seems to indicate that this is a good rule of
thumb. Note also that the total number of samples required to obtain a
certain confidence in the results seems to be independent of the number
of allowable pattern classes. This is an interesting philosophical point
to ponder.

PART II— ON DESIGN

INTRODUCTION

Part I of this paper was concerned with the estimation of the per-
formance of a given pattern recognition machine. There it was shown
how confidence intervals eould be found for these estimates. These
results are nonparametric in that they hold for any categorization
machine (or procedure) regardless of its structure.

We now consider the following problem. An experimenter desires to
solve a particular pattern recognition problem. He has at his disposal a
set of different methods for solving this problem, but it is not clear to
him which is the best to use. Consequently, he desires to estimate the
performance of each method when applied to this problem, and choose
the best. Let us assume that each method is characterized by certain
key parameters which, when known, completely determine the recogni-
tion machine. To evaluate any particular recognition method, the experi-
menter plans to design the corresponding machine by estimating its
parameters on the basis of one sampling from the real world of patterns,
and then to test this machine based on another sampling (either hy
construeting the machine or by simulating it).

However, in many practical applications, the total sample size avail-
able to the experimenter for design and test purposes is limited. Ior
instance, he may be interested in building a machine to read hand-
printed numbers, but he may not have an automatic scanner available
to him. Since simulating a seanner by hand is very tedious, he may not
be willing to scan more than a certain number of samples.
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Or, he may be interested in distinguishing between radar returns
caused by missiles and those caused by decoys. Since it is expensive to
actually run the sort of experiment required to gather data for this
problem, budget limitations will certainly place a limit on the number
of available samples.

Another example is in the field of automatic diagnosis of diseases.
The experimenter may, for instance, be interested in building a machine
which would determine the presence of cancer based on a list of symp-
toms. However, records have been maintained for only a certain number
of people who have contracted this disease, and the sample size is thus
definitely limited.

The following problem then arises. If the total sample size is fixed,
what is the optimum partitioning of this sample between the design and
test phases? This is a rather loose, but concise, statement of the problem.
A more accurate one follows.

Assume that the experimenter is concerned with the study of a par-
ticular pattern recognition method as applied to some particular prob-
lem. The optimum pattern recognition machine based upon this method
would have an error probability e,. The experimenter is interested in
estimating e, so that he can decide whether the particular ‘method
under study is adequate for the solution of his problem, or alternately
whether it is better than another method. To do this, he takes a sample
of a certain size ¢ from the real-life world of patterns. He desires to use
part of this sample to design a machine according to the particular
method under study. The machine which he thus designs will have an
actual error probability e = e, (both quantities are unknown to the
experimenter). He then uses the remaining part of his original sample
to test the machine (according to the procedures of Part I). He thus
obtains an estimate of ¢, which will be denoted by é. It will be shown
that é is a biased estimate of e,, and that the bias can be computed.
Consequently é can be adjusted so that it gives an unbiased estimate,
é, , of e, . The optimum partitioning of the total sample will be defined as
that partitioning which minimizes the variance of & . Thus, if the
experimenter follows this procedure, he will obtain an unbiased minimum
variance estimate of e, , the optimum error probability. Of course, if he
finally decides that a particular method is applicable, he can then re-
design the corresponding machine with the entire sample size.

OPTIMUM SAMPLE PARTITIONING
We are interested, then, in minimizing the quantity

o, = Elé, — )] = E[&]] — e, (18)
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where E[z] and o,° denote the expected value and variance of z, re-
spectively.

Let us first digress and consider the biased estimate & Since é is
discrete (it is the proportion of test samples misrecognized), its expected
value can be written

Ele) = 22 ep(@),

where the summation is over all values of ¢, and p(a) denotes the proba-
bility of x. But

p(e) = [ ple]ple) de

where p(é | e) is the probability of é given ¢, and the integral is over all
(continuous) values of e (by definition ¢, = ¢ = 1). Hence

Bel = X [ p| plerde = [ [ epte] )] plede

Let us henceforth consider only the case of random sampling. Then é
is proportional to a binomially distributed variable (né) with parameter
e. Therefore the term in brackets, which is the expected value of &
given the parameter e, is just e. Then

Elé] = fep{e)dc = FElel. (19)

Ele] is a function only of the parameters of the problem and the design
sample size; it is not a random variable.

We next determine E[¢°]. By going through a process analogous
to the above, and by making use of (19), we obtain

ot = Bl(e - Ble)) = Bl&) — (o)) = L=,
where n is the size of the test sample. Hence
B¢ = E[“’(nln‘J + (Ele))®. (20)

We now determine FEle]. Let the optimum machine be described by
¢ different parameters §,;, 1 = ¢ £ ¢. The design of the machine con-
sists of estimating the parameters 8,; by making measurements on a
set of sample patterns (the design sample). Let the estimates of these
parameters be denoted 8;, 1 £ 7 = c¢. Then the error probability e
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of the resulting machine is a function of the estimates of the true param-
eters:
e = ()(6] ,62 ' -,Bc).

One ean now expand ¢ in a Taylor series expansion about its minimum
point, e,. Since this is a minimum point, all the coeflicients of the
linear terms will be zero. If the error deviation (e — e,) is small, terms
above the second order term may be neglected:

[

e 2
€=eo+%ZZ—ai

8; — 80:)(8; — Boj).
po R 651‘655 8o ( )( J 0 J)

The expected value of the error for the resulting machine is then

e € 623
E 4 = o 1 —_—
le] 3 ; j; 6,06

5, BI(8; 80:)(8; — 805)].

If it is assumed that the estimates are unbiased, i.e., £(8;) = 8o, then
the above equation may be written.as

E[B] = ¢, + % Z E ;i (21)
i=1 j=1
where
LA T

oi; is the covariance of the estimates for 8,; and é,; , and o = o is the
variance of the estimate for 8,;. (21) is valid for small values of the
quantity (e — e,).

It may be worth-while to digress here to a simple example which may
help to clarify the definitions of the above terms. Zachary Oglethorpe
is not only a crafty fisherman, but is also a good gadgeteer. He has
decided to try to build equipment which will determine each day
whether he should use a surface bait or a deep water bait in order to
catch the maximum number of fish. He has means available to meas-
ure the water temperature, the magnitude of surface ripple, and the
atmospheric pressure, and therefore decides to use these as his measure-
ments. He denotes values of these measurements by m;, ms, and ms
respectively.

Mr. Oglethorpe has been recording values of these measurements
every day for the past six months, and has noted on each day whether
he was more successful with surface or deep water bait. He thus has a
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total sample size of roughly 180 samples, some from one pattern class
(surface bait), and some from the other pattern class (deep water bait).
Since each sample was taken without a priori knowledge of the class
to which it belonged, then this constitutes random sampling; that is,
the proportion of samples in each class is an estimate of the a priori
probability of occurrence of that class.

Our crafty fisherman decides to build a decision making, or pattern
recognition, machine by building a correlator for each of the two possi-
ble decisions (or pattern classes). That is, the machine will make the
following two caleulations:

Surface bait

II

dymy + 8ame + Gymy ,
Deep water bait = dgny + 8:mas + 8emy .

The class achieving the highest value represents the desired decision.
Let us assume that, according to some theory, the optimum values of
the 8; are the means for each measurement within the appropriate pat-
tern class, normalized so that the sum of the squares of the coefficients
of each linear form is unity. That is, § is proportional to the mean
water temperature when surface bait should be used, and so forth,
and is normalized with 8, and 8 so that &° + 8" + 8 = 1.

Thus the parameters 8; completely characterize this pattern recogni-
tion machine in that, given values for each §;, 1 = 7 = 6, the machine
may be built. The optimum values for each 8, are the appropriate nor-
malized means, which are the §,; of the previous equations. Mr. Ogle-
thorpe obtains estimates of these optimum parameters by taking
normalized averages over a portion of the appropriate data. These
estimates are the §; of the previous equations, and are the actual num-
bers on which he would base the construction of his machine. Note that,
in this case, these estimates are unbiased and efficient, and may very
well be independent of each other (e.g., the probability distribution of
the water temperature when surface bait should be used may be inde-
pendent of the values of surface ripple magnitude and atmospheric
pressure ).

Having thus designed his fisherman’s aid with a portion of his data,
he now tests it with the remainder of the data to determine its accuracy.
He does not want to use it if there is a good probability that it is less
accurate than he has found his own intuition to be. This then leads
us to the basic problem being studied: How should Zachary Oglethorpe
split his total sample between the design and the testing of his machine
to obtain the best estimate of the accuracy of the machine? Again, if
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the estimated accuracy of his machine were sufficient, he would then
be wise to redesign it, basing the new design on the entire sample.

We now return to the study of this sample partitioning. Let each
parameter be estimated with m samples.* If each of these estimates is
an efficient and unbiased estimate, and if the estimates are independent
(either because the estimates are statistically independent, or because
different samples are used to estimate each), then all o;; = 0, 7 # j,
and all ¢;° will be proportional to 1/m. Hence one can rewrite (21) as

Bl = e+ 1, (22)

where b is some constant ealeulated from (21). (Often, Kle] is in the
form (22) even if the estimates are not independent. )

Let ¢ be the total sample size, and p be the number of sets of m sam-
ples used to design the machine. p is chosen to be the smallest number
which insures that K[e] is of the form (22). It is often simply the num-
ber of allowable pattern classes, since, of course, parameters of different
classes must be estimated with different samples. If n is the test sample
size, then

t=mn+ pm. (23)
From (19) and (22),

Hlel = Blel = eo+ 2. (24)
m

Consequently, & is a biased estimate of ¢,. The adjusted estimate &,,
given by

éu = é - (25J

is an unbiased estimate of e, , with variance given by (18). This variance
can now be rewritten using (25):

b 2
o, = E&] — e = E[(e - _)] — e
m

2

2
— B — 22 B + (-ll) — el
m m

* This is not always desirable, since some parameters may be easier to estimate
than others, or there may be more data available for some parameters than
others. However, this condition is assumed here for simplicity, as are the following
assumptions of efficiency, unbiasedness, and independence.
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Trom (20) and (24),

g2 Ble(l =)l (Ele])? — o b, (E) et
n m

&y

_ ]L“n_—“_” + (Ble)* - (eo+ E)H.

Thus, from (24),
2 _ Ble(l — o)

n

(26)

Uﬁu

If 6/m <« 1 (which will certainly be true for any reasonable design),
then

b pb
)(U+:@=(1—Cu) i —mn, (27)

n n

1 Ele(1 — €a)]
~

=(1—e

9,

where the relation (23) was used.
We wish to choose n such that (27) is minimized. Differentiating
(27) and equating to zero, one obtains

— 3, (28)
=
!

where n, is that value of n satisfying (28); it is the optimum test sample
size in the sense previously discussed. n,/f is of course the proportion of
the total sample used for the test. One interesting rasult is immediately
obvious: n,/t must be greater than 0.5 for all cases. The equation (28) is
plotted in I'ig. 2, from which the following general statements can be
made.

1. The proportion of the total sample that should be used to test

the machine should never be less than 50 per cent.

2. If ef/pb < 0.1, then the proportion used for design should be
about 50 per cent.
The proportion of the total sample that should be used to test the
machine becomes larger as:
a. The total sample size increwses,
h. the error of the optimum machine incereases,
¢. the effectiveness of the design increases (pd decreases).
Here 1/pb is taken as a measure of the effectiveness of the design,

)
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Fig. 2 — Optimum sample partitioning,

since pb is the product of the expected deviation from optimum, Ele — e,
and the design sample size, pm.

These results indicate just how a sample should be split between the
design and test stages of a feasibility study of a pattern recognition
method. If the experimenter follows this procedure, he will obtain an
estimate &, of ¢, which is unbiased and has minimum variance.

The value of this minimum variance can be expressed as

P

=6u(l_eo) 1+7_ t-

N
2}— 1

[ .
“min

which was obtained by eliminating pb between (27) and (28). Note that
this is the variance that would have been obtained if the optimum
machine were tested with n samples, inereased by a factor which accounts
for the design error,

AN EXAMPLE OF OPTIMUM SAMPLE PARTITIONING

As an illustration of these ideas, consider the following example
(perhaps the simplest of the n-dimensional problems). A pattern recog-
nition machine is to be designed using the optimum decision function''®
which will distinguish hbetween ¢ classes. The occurrence of each class is
equally probable a prior?, and all costs of misrecognition are the same.
The receptor makes a set of & measurements m;, 1 = j = k, on each
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input pattern. It is known that each measurement is normally dis-
tributed with variance o, and that all measurements are independent.
If'urther, it is known that the distances between the mean vectors in
measurement space®* are all equal. (Consequently, there can be no
more than & + 1 pattern classes. The tips of the mean vectors are the
vertices of a regular polytope.)

It can then be shown that the optimum decision function partitions
the measurement space into polytopes which are bounded by those
hyperplanes which are the perpendicular bisectors of the line segments
joining all pairs of means. The hyperplane separating two classes, say
classes 1 and 2, is the set of all points (a,---,x), represented by the
vector X, which satisfy

T — f2) = (@A — f2efa), (29)
where g is the mean vector of class ¢."

The design procedure consists of estimating each mean vector from
a sampling; denote the estimated mean vector for class ¢ by ;. The
distribution of the estimate of a mean vector from a normal distribu-
tion with covariance matrix [V] is also normal with covariance matrix
1/m [V], where m is the sample size used in the estimate.'” Since the
measurements are independent in this case, then so will be the estimates
of the means of the various measurements. I'urthermore, each estimate
will have a variance of ¢*/m. Consequently, only one set of samples of
size m from each pattern class is required to insure that the form (22) is
ralid, and p is henee equal to the number of allowable pattern classes, ¢.

It is shown in the Appendix that b is given by

p — g = 1) Au N(A#)j

4 20 20

where Ap is the distance between any pair of mean vectors, and N ( Ap/2q)
is the value of the standard normal density funetion for the variable
Ap/20. The equation (28) then becomes

de,t _ i
g — 1) %‘N(‘%‘) (1 - %) (30)

* A geometric interpretation of categorization problems is often useful. By
measurement space, we mean a k-dimensional space in which each coordinate
represents one of the & receptor measurements. Thus any set of measurements
which have been made on an input pattern may be represented as a point in
measurement space. The decision function may be thought of as partitioning the
measurement space into regions corresponding to the different allowable pattern
classes and into rejection regions.
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Fig. 3 — Optimum sample partitioning for symmetric Gaussian case.

Some curves representing (30) are plotted in Fig. 3 in which the pro-
portion of the total sample to be used in the test, n,/t, is shown as a
function of ¢, the total sample size, with the number of allowable pattern
classes, g, as a parameter. ¢, was held constant at 0.05 (which involves
the choosing of the proper value of Ap/27 for each ¢).

I'rom Fig. 3 it is seen that, for many cases, the sample should be split
evenly between design and test, as one might intuitively suspeet. How-
ever, there are some drastic deviations from this. For instance, if the
categorizer is to separate only two classes, and 1000 samples are avail-
able, then only 50 of these should be used to design the machine, and
950 should be used to test it. Consequently, it is seen that intuition may
go wrong in some cases,

CONCLUSION

This paper has begun an analysis of some of the problems which arise
in the design and analysis of pattern recognition experiments. In Part IT,
the problem of optimum sample partitioning between the design and
test phases of a pattern recognition machine was investigated for the
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case of a fixed total sample size and no overlap between the design and
test samples. The general relation between the optimum partitioning
and the total sample size, optimum error rate, and design efficiency was
derived. I'rom this, it was apparent that the test sample size should
never be smaller than the design sample size. These results are non-
parametric in the sense that they do not depend on the detailed structure
of the recognition machine. It is only necessary that the deviation of the
designed machine from the optimum machine be small, and that the
design of the machine be done in such a way that (22) holds.

However, the actual computation of the optimum sample partitioning
does depend strongly on the detailed structure of the machine through
the quantity b. Since this computation is quite difficult even in the
simplest of cases, the interesting question arises as to the possibility of
estimating b from the sample. Another interesting phase of this problem
which has not been attacked here concerns the case when the design
sample and test sample overlap — that is, some of the sample patterns
from the design sample are also used in the test sample. In the limit,
this reduces to using the total sample for both design and test purposes.
In this case, the results of the test are usually not very reliable. Conse-
quently, there may be some sample partitioning with overlap which is
better (in the sense discussed in this paper) than for either the case of
no overlap or the case of total overlap.
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APPENDIX

We determine here the coefficient b in (22) for the example discussed
in this paper. It the mean vectors are more than about 3¢ apart, then
only a small error is made if the total error is approximated by adding
the errors of each hyperplane taken alone. That is, the integrals on the
wrong side of the hyperplane that are counted more than once will be
quite small compared to the integrals counted only once.

Due to the symmetry of the problem, the error associated with each
hyperplane for the optimum decision function is identical, and the deriva-
tives of (21) will also be identical for each hyperplane. Since there are
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q(q — 1)/2 hyperplanes, b may be expressed (from (21) and (22)) as

E — qlq — 1)li:|:32612
m 2 20| 0%

2 2
vl e
uyape | M

B1.H2 i g

where the hyperplane separating classes 1 and 2 is taken as typical,
and the independence of the estimates is used. e, is the error associated
with this hyperplane, g, and . are the mean vectors of these classes,
and # and & are the estimates of the mean vectors.

There is no loss in generality if g, is taken as zero, and all the com-
ponents of p (s, -+ ) are taken as zero except for w2 . That is,

M = (0!0) T 50)
Mo = (#’)0! U 70)’

where s is denoted g, u > 0. Consequently, the optimum boundary is
given by

Iy = ,u/2

A sampling of size m is taken from each class, and the mean vectors
are estimated, giving

&= (&0, Ty v yTr)
By = (T2, Ton, -+ yle2).

A boundary given by (29) is computed based on the above estimates,
and this, together with the other estimated houndaries, determines
the structure of the machine,

The error e, associated with this particular boundary for class 1 is

k o0
1 1
h =Hf_mma“p'v( ) s

j=2
o 2
1 1{x
f exp —5 ) dx,
E1(ze,. . 21k) 27 2 \C0

where £ (az, - -+ i) is the value of 2, on the boundary, and is given by
(from (29))

k f.l'l‘—'lqg 1 k (21311 _rll)
Blwg, e, ) = — 2 20— +,,Z

=2 .1 — T2 2931 T — T

_ I + T 1 & 2(Fy — ﬂ:‘{z)xi — (Fa® — i)
2 22 T — T '
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Then
66’1 k fﬂ 1 ( J)
99 _ - — d
9T 31;]; i ‘\/2.”0_ exp B) i
( exp _1 (EI)) (i‘ — f‘l) , 24 = n.
Qra 2 \e T — L1
a'e, k f“‘ 1 1 (.LJ)2 ( 1 1 (51)")
= exp —5 | =) da exp —5 (=
0.1-3.'12 E —o v/ Iro : 2 ’ A 2ra p 2 \e¢
.[_E_l_ (M)Q —_ (;)] 2<71<n
2 = = = = )y = = = .
o\ — Xy2 T — Tie

626’]
aTi®

1 1 ;.,/2)2)
= (‘x — —_—
1Ky ( 2w P 2 ( a
H -

=1N(i) 2=21=n,

;;’ 2q/’

where N(u/20) is the value of the standard normal density function
for the variate u/2¢. In a like manner,

&es 1 1 .

_P“ =—-WN(—£)=——N(£), 2=17=mn,

AT |uy.ps o 20 no 20
where e, is the error associated with this boundary for class 2. Since the
total error for this boundary is ¢;» = ¢; + e2, then

au_ﬁi = 8:010 B:Pl. =0, 2=i=n
AT |y e OFir® |y o AT i® |y p
A like result holds for 8%, 2 < ¢ = n. Going through this same
procedure for &, , OFin”
k o \2
2 gl (O]
din j=1 Ve Ora 2\ 20 a

6281 _ k * ] : _1 (.13' 2 [_ 1 El El
— —H . \/ng exp i ; d.v; E’ ; N ‘; .

6.?]12 J=2
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Similarly,

2

: 1

) _‘iN(ﬁ)

a‘.l'n' “y.8y 8 ¢° 20
Hence

2

aélﬂq ey (“ .

AT1® |uy s 44 20

It would also be found that

2
d €12

kot

_le ﬂ)
H1.H2 44 N (20' '

This analysis is perfectly general for arbitrary mean vectors, providing
that u is merely interpreted as the distance between a pair of mean
vectors (all such distances being assumed identical). This distance will
henceforth be written Ax to indicate that it is a difference of means.
Therefore, from (31), we find that

_qlg — 1) A Au
b= 4 20 N(Qo’)'
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