Approximate Solutions for the Coupled
Line Equations

By H. E. ROWE
(Manuscript received May 19, 1961)

The coupled line equations for only two modes, representing the THEy
signal mode and a single spurtous mode in circular waveguide, are solved
in series form by the method of successive approximations. Bounds are
found on the magnitudes of the lerms in the series solution. These bounds
decrease rapidly only for “short” waveguides; for long guides many terms
of the series must be included in the solution.

The coupled line equations are transformed to a new form, in which one
of the unknowns A s given by A = —In Gy, where Gy is the (complex)
Ty transfer funetion of the original coupled line equations. Thus Re A =
—In | Gy |, the TTy, loss in nepers, Im A = — £ Gy, the TEqy phase in
radians. These transformed equalions are again solved by successive ap-
proxvimations; the first term is the commonly used solution that has been
oblained by physical arguments. Bounds are determined for the magnitudes
of the terms in these series solutions; for a suilable restriction on the coupling
cocfficient that includes many cases of practical interest, these bounds
decrease rapidly for long guides.

In present caleulations of the TEqy loss statistics in random guides, only
the first term of the series expansion for A is considered. Unfortunately
this approximation has not so far been justified.

I. INTRODUCTION
Consider the coupled line equations:

Ig’(z) = —F(]fu(z) +jC(Z}[1(Z),

. (1)
!1’(2,') +‘]C{2)Iu(z) —_ F]Il(z).

These equations are of interest in many applications. Our particular
. . . . 1 - .
interest in them in a companion paper is that they desecribe the effects
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of coupling between the TE,, signal mode, represented by the complex
wave amplitude /,, and a single spurious mode, represented by the
complex wave amplitude 7;, caused by geometric imperfections in
circular waveguide. We have, of course, assumed that only a single
spurious mode has significant magnitude, so that all other spurious
modes may be neglected. For example, we may consider copper wave-
guide with a rather general straightness deviation; the most important
spurious mode under many conditions will be the forward TE" (both
polarizations must, of course, be considered unless the straightness
deviation is confined to a single plane). However, these equations apply
to a variety of other problems which may be described by only two modes
with varying degrees of accuracy.'

In copper waveguide if the wall losses may be neglected the propaga-
tion constants Ty and T are pure imaginary and the coupling coefficient
¢(z) is pure real. In helix guide, where loss is added to the spurious mode,
the propagation constant T has a significant negative real part; further,
as shown by H. G. Unger,’ the coupling coefficient ¢(z) also becomes
complex.

The case where the geometric imperfection (e.g., straightness devia-
tion) and hence the coupling coefficient is a stationary random process,
perhaps Gaussian, is of great interest; here it is desired to compute the
statistics of the TE, transmission 7, in terms of the statistics of the
coupling coefficient ¢(z). Since exact solutions to (1) are easily found
in only a few special cases, this has been done by using an approximate
solution to these equations that is essentially a second-order perturba-
tion solution, and by studying the statistics of this approximate solu-
tion." The present paper will discuss this approximate solution, will give
some bounds on the convergence of the approximation, and will indicate
a basic gap in our knowledge concerning this problem.

Equation (1) represents a drastic idealization of the real THy, trans-
mission problem, in that it contains only one spurious mode and neglects
all other spurious modes. The approximate solution includes all second-
order terms; a physical interpretation of this solution states that con-
version of TEy to each spurious mode and subsequent reconversion to
TE,, is considered at all pairs of elementary mode converters, but that
higher-order terms involving more than one pair of elementary mode
converters are neglected.' The exact solution of (1) includes all higher-
order terms involving the single spurious mode, but neglects many more
higher-order terms involving the many other spurious modes that have
been neglected in (1). In view of this it may appear questionable to try
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to deal with (1) in more exact terms for the TEy mode conversion
problem. However, a start has to be made somewhere, and it seems
unlikely that the general case involving an infinite number of modes will
be understood before the two-mode case of (1) is understood. FEven
this simple idealized case does not yet have a really satisfactory treat-
ment. Also, (1) does apply more or less rigorously to many other situa-
tions than the TEq mode conversion problem.'

In dealing with these equations it is convenient to introduce the

following change of variables:

Io(z) = ¢ ™. Gy(2).

o (2)
I(2) = ¢ "F-Gy(2).
Then (1) becomes:
Gl (2) = je(z) ™ Gy(2),
L an (3a)
G(z) = je(z) e =7 Go(z).
AT = Aa + jAB = Ty — Ty
Ae = ay — o < 0, (3h)
Aﬂ = Bn - .‘31 .

Note that we assume Aa < 0, because in circular waveguide the Ty,
signal mode will have lower heat loss than any of the spurious modes.
We will always take as initial conditions at z = 0 a TEy wave of unit
magnitude and zero phase, and a spurious mode of zero magnitude:

(y(0) =1 Gh(0) = 0. (4)

11. SOLUTION OF THE COUPLED LINE EQUATIONS BY SUCCESSIVE APPROXI-
MATIONS (PICARD’'S METHOD)

We summarize the solution of (3) by successive approximations. Let
Goy (2) and (7, (2) be the n™ approximation to the solution of (3).
Let the initial approximation be given simply by the initial conditions
of (4):

Gouny(z) = 1, (i (z) = 0. ()

T . . 3,4 . : .
Then following Picard’s method™ we obtain the successive approxima-
tions as follows:
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Gooy(2) = 1, Gun(z) =0

Gou)(z) =1 +jj‘; C(S)BAHGL(())(S) ds
=1

Ginl(z) = _-jfn c(s)e'”"Gg(m(s) ds

= jf c(s)e ™ ds
0

Gow() = 1+ [ e(5)e* Guan(s) ds
[ ATs ' _ATt (6)
=1 j[;c(s)e dsj; e(t)e di

Gl(g)(Z) = j./; C(S)B—AF.G[)(U(S) ds

= jf e(s)e ™ ds
[}

Gomy(2) = 1 + .7]; C(S)EAFSGJ(Hf})(S) ds

Gl(n)(z) = J.,; C(S)C_AF!GU(n_l)(S) (1:8.

The nth approximation is obtained by substituting the (n — 1)* ap-
proximation in the right-hand side of (3) and integrating. Writing
Goy(2) — Gowm—n(2) = goan(2), (7)
_ 7
G|(n)(Z) — Gian-n(2) = i (2),

we have

Gum(z) = 1 + E;gﬂ(k)(z), (8a)

Gio() = 3 gun(2), (8b)
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where the ¢’s are given as follows:

Goon (2) =jf c(8)e* gron(s) ds, n = 1. (9a)
0

hn(2) = If C(S.)l’_-\rsﬂu(n—u(s) dﬁ', n = 1. (9b)
0

QU(IU(Z) =1, gm.)(z) = 0. (9e)

It is readily seen that

o (2) = 0, n odd
. (10)
G (2) =0, n even

so that only even terms appear in the summation of (8a) and only odd
terms in the summation of (8h).

In the standard proof of Picard’s method the series of (8) are shown
to converge to the unique solution of the coupled line equations, (3),
and bounds are given on the magnitudes of the terms in (8). Thus we
may write

Gy(z) = Z{}u(n)(z), (11a)
(fi(z) = Zﬂgl(u)(z); (11b)

where the ¢’s are given in (9) and (10). However, better bounds than
those given by Picard’s general method may be found for the present
special case. We show that

|:j | e(s) | ds:ln

< o , neven.
w(z (12a)
| () | = 0 , nodd.
= 0 , meven.
- z n 2
| hm(2) | |:f le(s) | d'q:l (12b)
=t e e nodd.
n!

Suppose that (12a) is true for some even value of n. Then from (9b)
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[ 1eto) o]

[rewpes=bte —
T v as]al [ as] )
[[rewias]™

CEE T
where we recall from (3b) that Ae < 0. Substituting (13) into (9a),

[[ 1t 1as]” .

[nesn() | 5 [ 10127 2y,

(n+1)rf U | e(s) | ]ﬂﬂdutlc(s)lds] (14)
=[f et s |

(n+2)1
Noting (9¢), the results of (12) hold for all » by induction.

We may ask whether the bounds of (12) are the best that can be
obtained in general, or if by being sufficiently clever we can do better.
It is easy to find examples whose terms are actually as large as those
given in (12), so that no improvement in these results is to be expected
unless suitable restrictions are placed on the problem. Thus, consider
the following special case:

1A

| 91(n+1)(3) |

IIA

IA

AT = 0. (15) -

The coupling coefficient is non-negative but otherwise arbitrary. The
general solution to (3a), subject of course to the initial conditions of
(4), is'

Gy(2) = cos I:fz c(s) ds]. (16)

Expanding the cosine in power series,
z 4
c(s) ds
[[ewa]

o]

Go(z) =1 — ¥ 1

The suceessive terms of (17) are simply the gooy given in (9) and (10).
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It is readily seen that the magnitudes of these terms are equal to the
bounds given in (12a) if we require 0 = ¢(z) so that | ¢(z) | = e(2).

As another similar example, let AT # 0 and ¢(z) be a single §-function
located at z, ,

e(z) = C-8(z — z). (18)

In our present case, i.e., straightness deviation, a discrete coupling of
the type given in (18) corresponds to a discrete tilt located at z = z,.
The solution to (3a), subject again to the initial conditions of (4), is'

Go(z) = cos C, > . (19)
Iixpanding the cosine,
o? C4
GG(Z)Zl_a+4F_“.' (20)

Again the terms of (20) are the goey of (9) and (10), and their magni-
tudes are equal to the bounds given in (12a). Of course, this above solu-
tion, which mathematically is valid for an arbitrarily large tilt in the
present, idealized two-mode case, must fail for large tilts in the physical
case, the error being caused by neglecting the higher-order spurious
modes excited by the tilt. While this serves as a further warning against
uneritical application of the results of the two-mode theory to the
physical problem, it is still of interest to inquire into the mathematical
properties of the solutions to (3).

It is often desirable to express the TEy loss in db rather than as the
magnitude of the TEq normalized gain, | 7y | . Define the complex TE,
loss A as

A= —In(f =4 — jO. (21)
Then
A= —=In|Gy],
0= 2 G.

A is the TEy loss in nepers; the TEq loss in db is simply 8.686 A. If
we have a number of sections of waveguide separated by ideal mode
filters, the over-all TEy, gain, Gor, and loss Ay, are given by

("nr = (T‘Dvl Gn.u Ty,
AT = A1+ Ag + Tty
Ay = A1+ A0+ -+,

Oy =0+ 02+ ---
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The statistics of A and 0 for the composite guide may thus be expressed
simply in terms of the statistics of A and © for the individual guide
sections.

Suppose that the series solution for Gy(z) given in (1la) converges
very rapidly, so that only the first two terms need be retained. Then
we have from (8-11)

Go(z) = Gy (z) (24)

so that approximately
Gy(z) =1 — f- c(s)e™ dsj e()e 2T dt. (25)
0 (1]

Then, assuming that the second term is small compared to 1, we have
approximately:

| Go(z) | = Re Gy = 1 — Re ff (26a)
A= -G = ff (26b)
A= -ln|G|=Re [ (26¢)
0=2G=—Tn [ (26d)

where f f is shorthand for

ff = fuz c(s)e™ ds j: e(t) e 2 dt (27a)
- fu ¢ du j:_" e(s)els + u) ds (27b)
= % ‘/: j: e(s)e()e ™ ds dt. (27¢)

If the coupling coefficient ¢(z) is pure real but the differential propaga-
tion constant is complex (possibly not a physical case), (26c) becomes,
using (27¢), '

z L—u
A= —-In|G]| = f 2™ cos ABu duf; e(s)e(s + u) ds. (28)
0

If ¢(z) is complex, it turns out that for uniform waveguides its phase
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angle remains constant and only its magnitude varies, so that we may
. a2
write”

e(z) = (C, + 7 C;) &(2), (29)

where &(z) is real. Then (28) becomes

A= —=In|G| = (CF =10 f e**" cos ABu du
0
L—u z
f e(s)e(s + u) ds — 2C,C; f ¢ sin ABu du (30)
0 0

-f:_" &(8)2(s + u) ds.

These approximate expressions of (26-30) may be regarded as the
first terms of series expansions for the various quantities. The above

S

order terms may be neglected. From the above analysis it would appear

approximations will be valid when <« 1 and when the higher-

that when

f ] ‘ >> 1, all of the above approximations would fail, since,

in particular, (26a) obviously fails. In spite of this fact, (26b-d), (28)
and (30) may remain valid for a wide class of long guides of practical
interest; roughly speaking, the required conditions are that the differ-
ential loss | Aa | be large enough and that the coupling coefficient ¢(z)
be sufficiently small and uniformly distributed in an appropriate sense.
This result has been suggested by simple physical arguments;' a formal
mathematical derivation starting with the appropriate restriction on
¢(z) and Ae is given in the following section. These results are of im-

portance because in a random guide the expected value of the j f term

increases linearly with distance z;' while the approximations of (25)
and (26a) fail, the results of (26b-d), (28) and (30) may remain valid,
and so provide us with a theory for long guides.

It is apparent that further restrictions are required to obtain these
additional results, by considering the example of (18-20). Thus, let
the magnitude of the é-function coupling coefficient be #/2, so that we
have in (18)

C=", clz) =580z = 2) (31)
Then from (19)
Gy(z) =0, 2>z (32)
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so that
A= —-InG, = . (33)
However, the approximate result of (26b) yields
c_
A= —-InG, =~ 5 =g (34)

The approximation of (34) is obviously invalid; since these relations
are independent of Ae, this approximation remains invalid no matter
how high | A« | becomes. Cases such as this are ruled out by the addi-
tional restrictions that require the coupling coefficient to be more or
less uniformly distributed with z in a certain sense, deseribed in the
following section.

III. TRANSFORMATION OF THE COUPLED LINE EQUATIONS TO LOGARITHMIC
FORM, AND SOLUTION BY SUCCESSIVE APPROXIMATIONS

We repeat for convenience the coupled line equations, given in (3),
together with the desired initial conditions, (4).

Gy'(z) = je(z) T Gi(z),

(35)
'(2) = je(z) e Gylz).
Go(0) =1,  (1(0) = 0. (36)
Next, the following transformation of variables is made:
Gy(z) = e 7. (37a)
Gi(z) = ¢ "7 H(z). (37b)

The transformation of (37a) is dictated by the desire to obtain a series
solution for A, defined in (21). That of (37b) was obtained partly by
trial and error and partly by intuitive means. Substituting (37) into
(35), we obtain:

A(z) = —je(z) ™ H(z) (38a)
H'(z) = je(z) "™ + A(2) H(z). (38h)

By substituting (38a) into the second term on the right-hand side of
(38b), we have:

A(z) = —je(z) ™ H(z) (39a)
H'(z) = je(z) € *™ —je(z) " H(2). (39b)

The initial econditions of (36) transform via (37) to
A(0) =0, H(0) =0. (40)
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The method of successive approximations may now be applied to (39)
(or 38), subject to the initial conditions of (40). We note that A(z) is
absent from (39h), so that this equation contains only a single dependent
variable, H(z). Thus the successive approximations to H(z) may be
found without reference to (39a) or to A(z); the corresponding approxi-
mations for A(z) are then found by a simple integration of (39a). We
note further that (39b) for H(z) is a Riccati equation.®

Thus, let A,(z) and H,(z) be the nt" approximation to the solution
of (39), subject to the initial conditions of (40). Then:

Hy(z) =0

Hiz) = jf e(8)e " ds
0

Hy(z) = j fz e(s)e ™ ds — j f c(8)e* " H, (s) ds
0 0

(41a)
= jf c(s)e ™ ds
0
+ ,'f e(s)ed™ d.sf f e(De(w)e T dt du
0 0 0
H.(z)=j j:] e(s)e " ds — fﬂ e(s)e*™ H, *(s)ds
A(2) =0
Az) = —_jf e(8)e*™H (s) ds
0
= fy e(8)e" ds f e()e ™ dt
0 0
Ao(2) = — ] f c(s)e* " Ha(s) ds (41b)
0

[ e(s)e™ dsf e(e M dt
0 0

z Fl t t
-4 f c(s)e™™ ds f e(t)e dtf f c(w)e(v)e ™™™ du dy
0 0 0 0

A,.(Z) = —sz C(S)CAFEHH(.‘J‘) ds.
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Note that A, is identical to the approximation of (26b). Writing as
before

An(z) - An—l(z) = ?\P(z)7

(42)
II,,(Z) - H,‘,]_(Z) = hn(z.):l
we have
Au(z) = kzz:]_kk(a),
. (43)
}.{"(Z) = I;hk(z).
The quantities A,(2) and h,(z) are given as follows:
M(z) = —j f e(s)e* ha(s) ds, n = 1. (44a)
1]
W) = —j [ e()e ™ MH, () = Hos(5)] ds
0
. (44b)
= =i [ e b (N Hoa(5) + Hoa()] dsym 2 2,
0
h(z) = Hz) =3 jw e(s)e ™ ds. (44¢)
0
Then under certain conditions deseribed helow,
Az) = 2 Na(2), (450)
n=1
H(z) = 2 hu(2). (45b)
n=1

We next obtain bounds on | XA.(2) | and | h.(2) | . As stated in the
last section, it is first necessary to impose additional restrictions on the
problem. We assume that the coupling coeflicient ¢(z) and the differ-
ential loss Aa are such that a number K exists satisfying the following
relation:

f | e(s) | **“ ™ ds < K foreveryz Z 0. (46)
0

We recall from (3) that Aa < 0. It will subsequently appear that
convergence of the approximate solution can be guaranteed in general
only for K =< 0.455; further, the smaller K the more rapid the bounds
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on | A.(2z) | and | h,(z) | decrease as n increases. The restrietion of (46)
was again obtained partly by physical reasoning and partly by trial and
error. Roughly speaking, for a given K it guarantees that the coupling
coeflicient ¢(z) is more or less uniformly distributed along z; we thus
rule out ecases where the coupling coefficient is zero over most of the
guide and large over a very short section (e.g., the example of (31)-(34),
where ¢(z) is a single §-function). Physically, such a condition says that
for small K the spurious mode is dissipated much faster than it is coupled
from the signal mode; the larger ¢(z) the larger must be | Aa | in order
to satisfy (46) for a given value of K. This will normally be the only
case of practical interest in long random guides.

Bounds on the first few h,(z) are readily obtained. From (44¢) and
(46),

| ha(z) | f | e(s) | e ds = ¢4 f | e(s) | e g
0 0

e

Next, from (44b), (43) and (41a),

z n—2
iz = =2 [ et hsto) | S mts) + 12 Ja a9)
0

Thus,

[ hao(2) | = f Le(s) | e | h 1(5)[[2 [ hr(s) |

1A

(47)

1A
(2]

(49)
NISEI
Equation (49) yields for the first few h,(z):
| hal2) | = 2 fz | e(s)] e™e Ii ds = ¢ *“K*
’ (50)

.f- | (’-(S) ‘r (!_\u(:—u) ds < ﬂ—'.\a:‘I\va
0
f | ¢ (S) | Elaa 7.\:1&]\—3 ef_\ua [‘I + I(i}

= ¢ 2K" [1 4 ‘%]f |e(s) | e ds (51)
EA 0

-2
é —Aa- ]xa [ _l_ I; ] .

| ha(2) |

IJA
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By an exactly similar process:

ik s X o

)

| ha(2) | = Pty (¢ [1 +

2 6
| hs(2) | < e 2°K’ [1 + _‘g] [1 + K+ K + —‘g]
uq (53)
K
'[1 + K* + 2K + 3K° + 3K" 4 3K" + 2K" + = ]

It is difficult to continue the above process and write out explicitly
the nth term. However, by accepting a slightly poorer bound the analysis
may be greatly simplified. We show that

|haz) | £ e * = M" K", nz2 (54)

M is a constant to be determined, as a function of K. Assume that (54)
is true for some value of n. Then, from (49)

n—1

| hoya(2) | < 2 f | e(s) | M" K" e~ I:K + >, MR
0 k=2

1A

n—2 yrun+l
+ M_K_] ds

2

&

n—3 Mn—— Kn:l

= e“’-zM"—%{"”[ + K* Z MK* + (55)

f | e(s) | e*“ ™ ds
0

n—3 n—2yrn
< A g [1 + K'Y MK+ L ]

If (54) is to remain true for n — n + 1, we have from (55)

n—3i n—2grn
oMK [1 +ry w4 K
E=0 ~

:’ g MriflKrﬁﬁ’
(56)

n—3 n—2g-n A
K|:1+K22 M*‘K"+MzK]§%‘—r.
k=0 2

But since the left-hand side of (56) is increased by allowing n — o and
dropping the final term inside the brackets, the inequality of (56) will

be satisfied if
K M .
| - < = 7
K [1 1 — JWK] =2 (57)
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Fig. 1 —M vs K

0.7,

A plot of M vs K taking (57) as an equality is shown in Fig. 1; the
inequality of (57) is satisfied to the left of this curve. If for a given K
we have chosen M to satisfy the inequality of (57), then sinee (54) holds

true for n

2, (50), it is valid for all n by induction. For a given K we

should choose the smallest value of 1 satisfying (57) in order to obtain
the best bound. This smallest value of M is given by the solid curve of
Fig. 1 (i.e., M < 1.554); the other branch, indicated by the dashed
curve (ie., M > 1.554), thus has no significance for our problem. We
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note that convergence of the series solution of (45), and hence of the
successive approximations of (41), is guaranteed only for 0 = K = 0.455;
for greater values of K the present analysis cannot guarantee con-
vergence,
Summarizing the above results:
| (z)| < K
| ha(2) | € e**-M" K", nz2 (58)
0 = K = 0455.

M is given as a function of K by the solid curve of Fig. 1. If K is further
restricted and if we are willing to degrade the bounds slightly, their
form becomes simpler still. For example, if 0 = K = 0.3 we may replace
the bound of the solid curve on Fig. 1 by the slightly poorer dotted
chord drawn from the origin. For this chord M = 2.225 K and the
results of (58) become:

J hi(z) J = e K
| ha(2) | £ K (2225 KD m
0<K=03.
Finally, by (45), (57) and (58)

_ E:l B _ ]{3
r < Aaz gn—2grn+l = ¢ Acez -
| H(z)| < e I:K + > MK ] ¢ [A + =% MK],

n=2

v

2. (59)

(60)
—Aaz . III

? H

where M is again given as a function of K by the solid curve of Fig. 1.
Having found bounds on k,(z), we may now find bounds on \,(z),

our original ohjective. From (44a),

|H(z)| < e

[A.(2)] = f [e(s) ] e | hu(s) | ds; n= 1. (61)
1]
From (58):

M) | gK[|c(s)|ds.

[ A(2) |

IIA

MK f | e(s) | ds; n = 2.
0

%Ij:lc(s)[ds.

0= K = 0455,

(62)

| A(z) |
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M is again given by Fig. 1. Again, if K is further restricted, simpler but
slightly poorer results are obtained. For example:

Kf | e(s) | ds.
0

| A(2) | = K*(2225K%)" f le(s)|ds; nz2  (63)

| M(2) |

IIA

=K=0

Finally, the slightly better bounds of ( 01-53) may be used for the
smaller values of n.

We may again ask whether these bounds are the best that can be
ohtained. The answer is that we might be able to do a little better, but
not much. Thus, consider the following special case:

AB =0,
‘ (64)
c(z) = ¢y = pure real.
I'rom (46) we have
- Ca -
K = . 67
* —Ax (65)
The solution to the coupled line equations, (35), subject to the initial
conditions of (36), for this case may be written in the following form.'
— (2
Gu(z) = — \/1 (2K )*
24/1 — (2K)*
1 4+ 41— (2K)?
" ex
24/1 — (2K)*
For K < 0.5, all of the radicals in (66) are pure real. Under these con-
ditions the first term of (66) has a smaller coefficient and a more rapidly
decaying exponential factor than the second term. Therefore, for a large
enough value of z the second term dnminates, and we may write
14+ 41 — (2K)°
ex
21 — (2K)?
— (2h (92 )2
= —In Gy(z) =~ —In L+ V1 - (CK)
241 — (2K)®

exp —a 1+ 1 — (2K)?] =

(66)

p I — VT = 2Kk

Gol2) ~ — V1 — (2K)%z  (67a)

(67b)

— 20— VT 2K
K <05 A >>_"'1—_ (67¢)
v < )y —aaz \/f_——(?.ﬂl iC
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The first term of (67b) is constant and the second increases linearly
with z, so that we may write for large z

_ ha L 1—+/1- @Ky
AN——Q—[l—"\fl—(gK)]Z— oK - CoZ, (68)

large z.

The bound of (62) becomes simply

Al = %603- (69)

Therefore, a comparison between the bound of the present analysis and
the exact results for the special case of (64) for large z is obtained by
plotting
1 — /1 — (2K)?
K
on Fig. 1 and comparing this quantity with M.

We see that for K < 0.36, the exact solution is indistinguishable from
the bound of (69) on the plot of Fig. 1; consequently, little improve-
ment may be obtained in these bounds without further restricting the
problem. We also note that for K > 0.5, the above approximations made
in the exact solution of (66) no longer apply. For K > 0.5 the character
of the solution changes from monotonic to oscillatory; Gy(z) now has
periodice zeros, at which In Gy(2) must approach infinity. Consequently,
the series expansion for A in this case will diverge for KX > 0.5. The
present analysis guarantees convergence only for K < 0.455; while
this might be a little smaller than necessary, the series solution may
diverge for values of K not much larger.

IV. DISCUSSION

If K of (46) is very small compared to 1, K<< 1, the bounds of (62-
63) on | A,(2) | converge very rapidly. Under these conditions it is
tempting to assume that A(z) is satisfactorily approximated by the
first term of the summation of (45); i.e., from (41b),

A A(2) = j c(s)e™ ds f c(De " dt, (70)
0 0

or one of the alternative forms given in (27). [Alternately we might
wish to make a similar statement for Gy(2), as in Equation (24), when

f | e(s) |ds << 1.] This assumption has been made in all caleulations of
0

transmission statistics that have so far been made.’
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Unfortunately there is,” at present, no satisfactory justification for
this assumption. If | A:(z) | turns out to be equal to its bound, as given
in (62), and if K << 1, then, of course, we are guaranteed that the higher
terms will have much smaller magnitudes than the principal term X\, (z).
However, this situation is quite improbable, and oceurs only in very
specially selected cases. Thus if | A\;(2) | is much smaller than its bound,
as will be the usual case, we have no assurance that the magnitude of
the next term | As(z) | or higher terms may not be much greater than
| M(2) | . However, no instance is known in which | A(2) | is not small
compared to | Ai(2) |, for K < 1.

We do not know whether or not the perturbation solution of (70)
provides a useful approximation for all cases of interest (i.e., for all
cases where ¢(z) satisfies (46) for some small value of K, e.g., K = 0.1).
LEven if this approximation fails in some cases, we may still hope that it
holds true in most cases, so that (70) will yield the correct statistical
properties of the loss and phase when the coupling coeflicient is a sta-
tionary random process, perhaps Gaussian, with a sufficiently small rms
value, at least for the simpler statistics of interest. Although this is be-
lieved to be true by a number of people, there is nothing in the present
paper that bears on this question (and no other information known to
the author). It would be most desirable to obtain further information
on the way in which A;(2) of (70) approximates the true solution A(z);
e.g., does A;(z) approximate the fine structure of A(z) as well as its
average value as A8 (which varies with the frequency of the applied
wave) varies,
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