Transmission in Multimode Waveguide
with Random Imperfections

By H. E. ROWE and W. D. WARTERS
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The effects of random geomelric imperfections on the transmission of the
TEy wave in circular waveguide are studied; the necessary theory of guides
with known arbitrary imperfections is first developed. The TEy transmis-
sion statistics are determined in terms of the statistics of the various types
of geomeltric imperfections. Both discrete mode converlers — 4.e., localized
imperfections such as tilts, offsels, or diameter changes at joinis belween
pipes that are perfect right-circular cylinders — and conlinuous geometric
imperfeclions — such as straightness deviation, diameter variation, ellip-
ticity, ete., that vary smoothly with distance along the guide — are con-
sidered. The average, variance, power spectrum, and probability distribu-
tion of the TEwy loss-frequency curve are discussed.

Continuous straightness deviation (aof the individual pipes of the guide)
appears to be the most serious lolerance in present copper waveguide, and
a significant factor in helix guide as well. The power spectrum of the straight-
ness deviation is all-important in determining the THEo loss due to mode
conversion. Fourier components of straightness deviation having wave-
lengths between roughly 1.4 and 4.4 feel are the significant ones for the
present 2-inch 1.D. guide operated in a frequency band from 35 to 90 kme.
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I. INTRODUCTION

Long distance waveguide transmission via the TEy, mode in circular
waveguide is an attractive goal because the theoretical TEg heat loss
decreases monotonically as the operating frequency increases. As is
well known, operating frequencies far above the TEy cutoff frequency
are required to realize sufficiently low heat loss and delay distortion,
so that the guide must operate far into the multimode region. Thus,
considering a typical case, a 2-inch I.D. perfect copper circular guide
operating at 55 kme will have a theoretical TEq heat loss of 1.54 db/
mile; but this guide will propagate 223 additional modes, which we
call spurious modes, at this frequency.'

The TEy transmission loss will approach the theoretical THy heat
loss in a copper waveguide only if the waveguide is a geometrically
perfeet right-circular cylinder over its entire length. Any departure
from this ideal geometry will couple the TEy mode to some of the
spurious modes 27 the net effect of this coupling will be to increase
the TE, transmission loss above the theoretical heat loss, and to cause
the TEq transmission loss to vary with frequency."*

Two types of geometric imperfections are of interest:

(a) Intentional deformations introduced in the guide for various
reasons, e.g., to go around corners?®7 to taper from a small guide to
a larger one," etc. Mode conversion effects control the design of such
devices, but we will not discuss them further.

(b) Random geometric imperfections arising during the manufac-
turing or the laying of the guide; these imperfections will increase the
TEny loss and eause it to vary randomly with frequency.’ The study of
such effects is the purpose of the present paper.

The transmission characteristics of multimode waveguide with such
random imperfections may be improved by adding heat loss to the
spurious modes while keeping the TE, heat loss low, ie., close to its
value for ideal copper guide. Examples are helix waveguide' and copper
waveguide with a thin lossy dielectric lining.”"" This additional spuri-
ous mode loss will reduce the Ty loss fluctuations with frequency,
but will not reduce the average TTEy loss. (In contrast, for large in-
tentional bends, it is desirable to alter the phase constant of one par-
ticular copper guide mode without increasing the heat loss to either
TEp or any of the spurious modes.*™)
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The present paper is concerned primarily with determining the
statisties of the TEy transmission in terms of the statisties of the vari-
ous geometric imperfections. The results of this analysis will indicate
the required tolerances on the various types of geometric imperfections
in different types of guide as a function of the allowable transmission
degradation. Finally, the computed transmission statistics will be use-
ful in determining the over-all degradation in various possible communi-
cation systems using imperfect waveguide as a transmission medium.

II. THEORY OF GUIDES WITH KNOWN IMPERFECTIONS

In this section we summarize the theory of circular waveguide with
known geometric imperfections. These results yield, at least in prinei-
ple, the TEy transfer function for a cireular waveguide with an arbi-
trary, known departure from perfect geometry. If the various geometric
imperfections are assumed to be random processes, then the T, trans-
fer function will also be a random process. In Sections I1I and IV these
results for known imperfections are used to determine the TEy trans-
mission statistics in terms of the statisties of the various geometric
imperfections.

We first require a solution to Maxwell’s equations, in terms of the
normal modes of the guide in question, for boundary conditions given
by different types of geometric imperfections in various types of guide.
Several people have studied these problems over the past ten years;
we will give below a brief deseription of some of this work.

Transmission of TEy through bends was first studied by M. Jou-
guet,’ and by 8. O. Rice in unpublished work. S. E. Miller made use
of these results to devise several methods for transmitting TSy, around
intentional hends.’

S. P. Morgan first computed via perturbation theory the first-order
spurious modes scattered from a unit incident TEq wave by small,
abrupt tilts, offsets, and diameter changes in ideal lossless metallic
guide.'” These results were derived independently and published by .
TIiguchi.'® Such discontinuities will often be called diserete mode con-
verters, because the guide possesses perfect cylindrical geometry except
at isolated, discrete points along its axis.

Next, Morgan determined the first-order spurious modes scattered
by an arbitrary small continnous deformation of the surface of an
ideal lossless metallic guide, again via perturbation theory.” These
results may be used to determine the first-order spurious modes excited
by small continuous diameter variation, straightness deviation, ellip-
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ticity, and higher-order ecross-sectional deformations of metallic guide.
In addition, Morgan used these results to evaluate the expected value
of the additional TEy loss due to mode conversion caused by random
distortion of the guide for a rather speecial mathematical model of the
guide distortion.

Finally, Morgan applied the generalized telegraphist’s equations of
Schelkunoff* to the problem of lossless metallic waveguide with an
arbitrary curvature of its axis;? if desired, the dielectric constant of the
material filling the guide may be an arbitrary function of position.
By this analysis, Maxwell's equations are reduced to an infinite set of
coupled differential equations, the coupled line equations,'” in which the
dependent variables are the complex mode amplitudes of the normal
modes of the unperturbed metallic guide. In prineiple, the coupled line
equations provide an exact description of a lossless metallic waveguide
with an arbitrary straightness deviation, and are not subject to the
severe restrictions of the perturbation theory which was described in
the preceding paragraph. Thus, if this infinite set of differential equations
could be solved for an arbitrary straightness deviation, we would have
an exact solution for Maxwell’s equations for the particular deformed
guide. As will appear below, solutions to these equations in the general
case are not available, and useful results are obtained only by applying
perturbation theory of one form or another to the coupled line equa-
tions;® however, the equations themselves are an exact description of
the field problem.

Sinee the loss in real copper guide is low, we expect that the above
coupling coefficients, which strictly speaking apply only to lossless
metallic guide, will provide a good approximation for copper guide, and
that the coupled line equations for lossless metallic guide need be modi-
fied only by changing the propagation constants for the various modes
to take account of the small losses actually present in copper guide.

Equivalent results have been derived by H. G. Unger for various
geometric imperfections in helix waveguide via the generalized tele-
graphist’s equations;' these analyses have been carried out both in
terms of metallic guide modes and helix guide modes.* Unger has stud-
ied straightness deviations? and cross-sectional deformations!®?® in
helix, as well as winding imperfections?! in helix, and has given propaga-
tion constants and coupling coefficients for the various cases.?? He has
similarly studied continuous diameter variations (tapers),’® which have
identical behavior in both helix and metallic guide.

Thus, the study of random geometric imperfections in copper or helix
waveguide has been reduced to the study of solutions to an infinite set
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of differential equations with random coupling coeflicients. However,
this latter problem is a formidable one for which there is no really
satisfactory treatment except in rather special cases. In the present
paper, we use perturbation theory to approximate the solution to the
coupled line equations; however, there is so far no rigorous justification
for this approach. The convergence of this approximate solution is
discussed elsewhere in this issue for the idealized case in which there
are only two modes (rather than an infinite number of modes).!® Even
in this simple case, we do not know how good an approximation the
perturbation solution provides.

It is obvious that the various results of S. P. Morgan for metallic
guide must be related to each other, even though they may appear
somewhat dissimilar. In this section, after first developing the necessary
theory for a long guide with many discrete mode converters, we show
how the coupled line equations and Morgan’s results for discrete mode
converters may be derived from each other, and how perturbation
theory derived from either the discrete case or from the coupled line
equations yields equivalent results to perturbation theory applied
directly to the field equations.® This discussion is intended to provide
a better physical understanding of the coupled line equations themselves,
as well as of the approximate solution that we use, than would be ob-
tained by merely a formal treatment based entirely on the coupled
line equations. We will often simplify the problem by including only a
few of the spurious modes (sometimes only a single spurious mode),
in addition to the TEgy signal mode. While this procedure is useful in
studying some of the basic problems, it of course does not provide a
rigorous treatment for the real problem, which involves an infinite
number of modes. However, experimental results for copper guides
show that often only one or two spurious modes are present with sig-
nificant magnitude,® and thus provide some additional justification
for the study of the idealized problem.

2.1 Scattering Mairices of Discrete Mode Converters

While S. P. Morgan has performed a field analysis for discrete mode
converters in lossless metallic guide, many of the general properties of
the scattering matrices for discrete mode converters may be derived
from conservation of energy, reciprocity, and the symmetry properties
of the different mode converters. We give such a discussion in the present
section, making use of Morgan’s results’™'® where necessary. Most of
the discussion will be confined to cylindrical guides of infinite conduc-



KNOWN IMPERFECTIONS 1037

%‘ ._.—IDT

-—

In ___Rot, S Ro"::‘]:r
=—Rq Ryp —

- — Rl REP“—--
| | |
o |
i ! | |

Fig. 1 — Generalized mode converter.

tivity. We choose the particular case of the discrete tilt to illustrate the
general approach;-briefer discussions are given for offsets and diameter
changes.

2.1.1 (feneral Properties of Scattering Matrices

Consider the general mode converter illustrated in Iig. 1. On the
left of the obstacle we have the modes 0/,17,2(, - - -, and on the right
the corresponding modes Or,1r,2r,3r, - - -, where the letters [ and r
stand for “left’” and “right” respectively. The subseript zero will de-
note the TEy mode and the other subseripts will denote the spurious
modes. This convention will be used throughout this paper. We assume
that there are the same number of propagating modes on each side of
the obstacle, thus ruling out cases in which one of the spurious modes
is below cutoff on one side of the obstacle, above cutoff on the other
side. Cutoff modes are neglected throughout this analysis.

Denoting the normalized complex amplitudes of the modes incident
on the obstacle from the right and left as 7,, and /,; respectively, and
of those leaving the obstacle as R,, and R, respectively, the matrix
equations™ of the obstacle may be written:

® = 849

R, 1,

R =|-— g =1--

_Rr LI"
[ Ru [ Ro.”

Ry | R

Bi=1R| 57| R 1)
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Morgan’s results show that except very close to the cutoff of a spuri-
ous mode, the power scattered from TEy, to the forward modes greatly
exceeds the power scattered to the backward modes for “small” mode
converters. Consequently, in the following treatment we shall neglect
all reflected waves. Using this assumption, and the fact that 8§ must be
symmetric (reciprocity),

Spo So1 So2

s = _O_E_S_ S = S Su Szt (2)
S0 ’ S0 S; Sz - |’

.............

BEEA

where S denotes the transpose of the submatrix S. Thus,

and from (1),

R = 81, (4a)

R, = SI;. (4b)
1f the obstacle is assumed lossless

§s* = [1], (5)

where the * denotes the complex conjugate and [1] denotes the unit
matrix. I'rom (2) we thus have

S8* = [1] or equivalently SS8* = [1]. (6)

2.1.2 Scattering Matrix for a Tqlt

Consider the tilt of I'ig. 2(a). Neglecting reflected waves, this mode
converter may be characterized by the matrices of (3) or (4). Since the
tilt is symmetric about the plane 4-A4’ of Fig. 2(a), its input and output
terminals may be interchanged without altering its behavior. From this
fact and (4), we have

S =25 (7)

the matrix S is symmetric for a tilt. If we consider a tilt in perfectly
conducting guide, so that energy is conserved, we have from (6) and (7)

SS8* = §*S = [1]. (8)
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(b)

Fig. 2 — Waveguide with tilt.

Next, consider a cascade connection of the tilt of Fig., 2(a) and an
identical tilt rotated 180°, as shown in Fig. 2(b); we may consider that
the first tilt has an angle 4«, the second an angle —q. Let the seatter-
ing matrix for the first tilt be S, for the second (rotated) tilt be S’. Then
as the distance ¢ between the two tilts approaches zero, the over-all
scattering matrix of the two tilts becomes S'S (neglecting reflected
waves). But it is clear from physical considerations that this cascade
conneetion of two opposite tilts of equal magnitude must be equivalent
to a straight piece of guide (of zero length); thus we must have

S’S = JS’ASU = []] (9)
Trom (8) and (9) we have in the lossless case
S* = S’. ( 10)

By utilizing the symmetry properties of the various modes involved,
further restrictions on the elements of S are easily found. For the sake
of definiteness, consider the case where the only modes considered are
the signal mode, TEy , and the first-order forward spurious modes scat-
tered by a discrete tilt from TEy , i.c., one polarization of the forward
TMy; and TE;,, modes, denoted by TMy ™ and TE;,", as shown by
Morgan.'™"" It is obvious by symmetry that only the (linear) polariza-
tion having an asymmetrie transverse field distribution with respect
to the plane of the tilt will be excited by an incident TE, wave.” While
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the backward TE,,, modes, denoted by TE,.. , are excited to first order
by a tilt, their magnitudes are much smaller than the magnitudes of
the corresponding forward spurious modes, as stated earlier, and conse-
quently we neglect the backward modes for the present. We recall the
convention of (1), i.e. the top elements in the R and / column vectors
of (4), having the subscript 0, denote the TIy signal mode; the other
elements denote the various spurious modes. Let the elements of the S
and S’ matrices be s;; and s;;’ respectively. Thus, for example, if a unit
TEn wave is incident on the tilt of Fig. 2(a) from the left, a TEy wave
of (complex) amplitude sy will emerge on the right. We now observe
that rotation of the tilt by 180° leaves the TIy mode unaffected, but
reverses the sign of the field components of all of the spurious modes,
since their field components vary as cos ¢ or sin . Consequently, the
matrix components s,;/ for the rotated tilt are related to the matrix
components s;; as follows:

o = 0, 7 = 0.
e #0, j=0.
8if = . 0 . 0 (11)
=1, J =0
TS k0 jo
From (10) we have
Sf.i'* = S;j’- (12)
Equations (11) and (12) thus yield
ure imaginary; =9 j =0
P EHALY; # 0, ji=0.
8i; = ) (13)
ure real; i=0, i=0
P ’ i=0, j=0.

The coupling coefficients between TEy and the spurious modes are pure
imaginary, while all other matrix components are pure real.

Summarizing the above results, the scattering matrix S of a discrete
tilt in lossless metallic guide must satisfy the following relations, if we
include only TEy and the propagating first-order forward spurious
modes:

S = S, 8i; = 8ji . (14)
SS* = [1]. (15)



KNOWN IMPERFECTIONS 1041

pure imagina.l'y'z: =0, J = 0.
"1 # 0, i=0.

8ij = ) . (16)
1= 0 J=0.

pure real; i=0 j 0

As an example, let us determine the form of S for the case where only
a single spurious mode is considered, in addition to the TEg signal mode.
(For a guide with a large intentional bend, the most significant spurious
mode might be one polarization of forward TM;, . For a guide with a
small random straightness deviation confined to a single plane, the most
significant spurious mode might be one polarization of forward TE;. , as
discussed in Section 2.3 below.) Then (14) to (16) yield for the S-matrix

':\/T:F je :l
je V1 — ¢

For small tilts in lossless metallic guide, Morgan'®'® has given the
coupling coefficients sy; [or je of (17)] in terms of the tilt angle « of
I'ig. 2(a) to first order in «, as follows;

Sp; = ij(_,')+'L\f + ey, j # 0, (18)

where the first 7 on the right-hand side of (18) represents 4/ —1, the
subscripts j indicate the spurious mode. €, " is a constant depending
on the (forward) spurious mode; formulas and numerical values at a
frequency of 55 kme in 2-inch diameter guide for the ,"’s are given in
Appendix A. In addition, the coupling coefficients €', to the correspond-
ing backward spurious modes are also given in Appendix A; as indicated
above, these are much smaller than the forward mode coupling coeffi-

S = (17)

clents.

Consider a tilt of angle a; followed by a tilt of angle as ; as the distance
between the two tilts approaches zero, it is obvious that the structure
approaches simply a single tilt of angle ey + a2 . If S(a) is the matrix
for a tilt of angle «, then the S-matrix must satisfy the further require-
ment that

S(CI])'S(CEQ) - S(Ofl + ﬂfg), (19)
for every value of a; and a. , where we again neglect reflected modes.
Consider again the idealized case where only a single spurious mode is

allowed, in addition to the TEy signal mode. We show in Section 2.3.3
that the “exact’” matrix for a large tilt for this idealized two-mode case
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is given by

jsin Cha  cos Cha

cos Ciae j sin Oy
S(a) = . (20)

where (', is Morgan’s coupling coefficient for the spurious mode in ques-
tion. The matrix of (20) can readily be seen to satisfy the consistency
condition of (19), and to approach the results of (17) and (18) for
(',a < 1. However, the reader should be warned again that (20) will
not be valid for large tilts in the physical case, because such large tilts
will excite many spurious modes with significant magnitude, and hence
can not be deseribed in terms of only two modes.

The above results for tilts in metallic waveguide include only one
polarization of each of the forward spurious modes, ie., TE;,." and
_ TMy . We wish to extend these results to include both polarizations of
each of these spurious modes so that we will be able to treat a long line
containing arbitrary tilts with arbitrary angular orientation, i.e., not
confined to a single plane.

We first write the general results of (4b) as follows, dropping as un-
necessary the subseripts [ and r since we will always assume that all
modes travel in the forward direction, from left to right.

R] = [S]-1]. (21)
EX | Lo

Rl=|R]|, II=1]}; (22a)
L
Ry, | Ry, I, 1y,

R) =|Rsy |, RJ]= R.Ey , L] = 1-21 , Il = I?y . (22b)

In these and following matrix relations, we adopt the convenient nota-
tion that column vectors (n X 1 matrices) are denoted by the symbol ].
row vectors (1 X n matrices) by symbol _,, and square matrices by
the symbol [ ] where it is not obvious from the context that something
else is intended (e.g., the column vectors on the right-hand sides of (22a)
and (22b)). The top elements in (22a), Ry and [, , represent the trans-
mitted and incident TEy, wave. R.], I.] and R,], I,] are column vectors
whose elements represent the two orthogonal (linear) polarizations of
cach of the spurious modes.
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Fig. 3 — Geometry of a tilt in waveguide.

Consider the tilt of Fig. 3, in which the two polarizations of each of the
TE;,," and TMy," spurious modes are defined along the x and y axes.
To use the previous treatment including only a single polarization of each
spurious mode, we must set # = 0 in Fig. 3, so that the plane of the tilt
lies in one of the planes defining the spurious mode polarization. Then,
using the notation of (22), we may write the results for the z-polarization

as follows:
R() I:-S'm] }JC‘} [:I()J
= = e (23)
[RJ] GOV IDL L]

€1
Cl =]e|, jei = so. (24)

The components of the column veetor of (24) are given to first order by
(18). In (23), we have partitioned the S-matrix to conform to the par-
titioning of the R and 7T column vectors. The restrictions of (14) to
(16) become respectively, in terms of the submatrices of (23):

[D] = [DI. (25)

2 2
800 +ZC,‘ = 1,
7

Il

I

(s — [D])C]
¢|-¢ + DY

0l, (26)
[].
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Soo , ], (D] pure real. (27)

In (26), [1] denotes the unit matrix.

Now by symmetry an incident TEqy wave in this particular tilt (8 = 0)
will not excite the y-polarization of any of the spurious modes as stated
earlier, and by reciprocity the y-polarization of any of the spurious
modes will not excite TEy, . Further, the a- and y-polarizations of all of
the spurious modes are uncoupled from each other by symmetry. There-
fore, we may expand the matrix relation of (23) to include the y-polariza-
tion of the spurious modes as follows:

Ry Soo :Jg: | Q: I
RGP HOR AL (28)
R, 0] 1 [o] 1011 1]

where (18) and (24) to (27) still apply.

Now let us rotate the axes by an angle —6 with respect to the plane
of the tilt, as shown in I'ig. 3, and write the field in the guide in terms
of modes referred to these new axes. The geometry of the rotated tilt
may be specified precisely in the following way. Imagine that before
the guide is tilted, lines ¢ = constant are drawn on the surface of the
guide parallel to the guide axis. Then the tilt, of orientation 6, is con-
structed at a specified point on the axis by tilting the guide in the plane
defined by the axis and the ¢ = 6 line, by an angle «. If

p = distance from the (tilted) guide axis in a plane perpen-
dicular to the guide axis, (29)
s = distance measured along the (tilted) guide axis,

the three coordinates p, ¢, s constitute ‘bent cylindrical coordinates,”
as used by Morgan for continuous bends confined to a single plane.’?
In subsequent analysis for a guide with many tilts of arbitrary orienta-
tion, we will adopt the convention that e > 0 while # is unrestricted;
in contrast, for a guide with tilts confined to a single plane, we will set
8 = 0 and allow a to be unrestricted.

Now let Ro] and [y] denote the fields with respect to the old axes and
Rs] and Ty] the fields with respect to the rotated axes. First, we note
that TEgy is the same in both sets of coordinates. Next, we note that
the field components of all of the spurious modes under consideration,
ie., TEi " and TMy ™, vary as cos ¢ or sin o. If we call ¢, the “old” and
@s the “rotated” angular coordinates, the transformation is simply

@ = @o + 0. (30)
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For each spurious mode this yields in terms of wave amplitudes

R., cos§ sind (| Rz
= ] (31)
R, —sinf cos 8 || Ry,

with a similar result for the /’'s. Note that (31) applies to a single spuri-
ous mode only (two polarizations); the index denoting the particular
mode has been omitted for convenience. Thus, the R’s (or [’s) in (31)
are single (complex) numbers, and not column vectors. We may write
the corresponding general rotation matrix including TE,y, and all spurious
modes in the following convenient form:

R = [M]-Rq), Lol = [M]-14]. (32a)
(110 1.8

[Ar] = | 0] | cos6-[1] !sing-[1] |. (32b)
Lfn] —sing-[1]] cos 0-11]

M= (32¢)

R and [ in (32a) are as given in (22); the [1]’s in (32b) represent the
unit matrix. We note from (32¢) that A/ is an orthogonal matrix.
Now rewriting (28) as

Rol = S]], (33)
we substitute the relations of (32a) into (33) to obtain
[M]-Rol = [So]-[M] fe]
Ro] = M| '-[So)-[M]- 1] (34)
= [M]-[So]-[M]-Ta).
Thercfore,
Re) = [Se]- L], (35a)
[So] = [M]-[So]- [M]. (35b)
Substituting [Se] from (28) and [M] from (32b), we have
[Se] =

Jsin g€
____________ ————— (36)

sin’g-[D] + cos®-[1)
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as the scattering matrix for a tilt in lossless metallic guide, having an
orientation of 8 radians with respect to the axes defining the polariza-
tion of the spurious modes. €] remains as defined in (24), with com-
ponents given to first order by (18), and the restrictions of (25) to (27)
still apply.

The above transformation may readily be seen to yield the correct
results in a few simple cases:

1. 8§ = 7. [8.] is readily seen to be identical to the matrix [S'] de-
seribed in connection with (11).

2. 0 = /2. Here we see that R.),_, = Buli_yey Bulisy = —Raly_sn,
and similarly for the I’s, as is obvious from geometric considerations.

The coupling coefficients between TEy and the 2- and y-polarizations
of the jt" spurious mode are from (36), (24) and (18)

S50 = jCup "+ (a cos 8), (37a)
Sojy = _]'C'f(_,')+‘(a 8in 6) (37}])

These general results simplify so that they may be simply expressed in
terms of fixed x, y, z coordinates in the following special case:

1. The angular deviation of the guide axis from the z-axis is small.

2. The unit vector perpendicular to the guide axis and lying in the
plane defined by the guide axis and the ¢ = 0 line is almost parallel to
the a-axis. These conditions insure that the ¢ = 0 line drawn on the
guide will remain almost parallel to the x-z plane. Subject to these
conditions, we have approximately

acos & a,, (38a)
asin f X ay, (38b)

where @, and «, are the angles made by the projections of the guide
axes, adjacent to the tilt, in the z-z and y-z planes respectively.
These results are readily verified for the case shown in I'ig. 3. They are
derived in Appendix B. Substitution of (38) into (37) [and thence into
the matrix of (36)] will greatly simplify certain later calculations.

2.1.3 Scattering Matriz for an Offset and a Diameter Change

The seattering matrix for an offset may be found by similar methods
as used in Section 2.1.2 above for a tilt. Consider the offset of Fig. 4(a),
with seattering matrix S; as above we assume the offset is small, so that
backward modes may be neglected and only the propagating first-order
forward spurious modes (i.e., TE;,, )" need be considered. In Fig.
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v
(a)
D d-——- >

(b)
Fig. 4 — Waveguide with offset.

4(h), this offret is cascaded with an identical offset, which may be
derived from the original offset in two ways:

1. Reverse input and output terminals.

2. Rotate the first offset 180°.
I'rom 1, the matrix for the second offset is S, the transpose of S. From
2, the matrix for the second offset is §’, as defined in (11) above, by an
argument similar to that used for the tilt. I'rom these facts, as the dis-
tance d separating the offsets approaches zero,

SS = 88 = [1], (39a)

NS = 88 =11 (39b)
Assuming lossless metallic guide, from (6)

Ss* = 88 = [1]. (40)

I'rom (39) and (40) we have for an offset in lossless metallic guide:

88 = [1]. (41)
_S____i=0, J#=0
'11:1-?50’ j=0

s;j = pure real = (42)
L 1=0, J=0
+s;i i 0, =0
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For a single spurious mode the matrix S for an offset becomes

S = [:\/1 —c ’ ] (43)
B —c V1-=2¢ ’ '

corresponding to (17) for a tilt. For small offsets in lossless metallic
guide, Morgan'>'® has given the coupling coefficients so; [or ¢ of (43)]
in terms of the offset b of Fig. 4(a) to first order in b, as follows:

soj = Coy b+ -+, j#0. (44)

Co(h " is a constant depending on the spurious mode; formulas and nu-
merical values for the C,*’s at a frequency of 55 kme in 2-inch diameter
guide are given in Appendix A.

Analogous results to those of (19) to (38) for tilts are readily found for
offsets, but will not be discussed in detail here. In particular, the scatter-
ing matrix for an offset with an arbitrary angular orientation is found in
the same way as given in (21) to (37), making use of the rotation operator
of (32). The geometry for offsets of arbitrary orientation is much simpler
than for tilts. As before, imagine that lines ¢ = constant are drawn on
the surface of the initially perfect guide, parallel to the guide axis. Then
the offset of Iig. 5 is constructed at a specified point on the guide axis
by translating the guide a distance b in the ¢ = # plane without rotating
the guide, so that corresponding e-lines on the two sides of the offset
are separated by a distance b. For a guide with many offsets of arbitrary
orientation we take b > 0 with 6 unrestricted, while for a guide with
offsets confined to a single plane we set 8 = 0 and allow b to be unre-
stricted, as in the case of tilts. Then using the notation of Section 2.1.2,
the scattering matrix Sy for an offset of orientation @ is given as follows:

cos - C' i sin B-IQ
(4

I. —cos8-C]1 cos’ §-[D] + sin® 6-[1] | sin 8 cos 0([D] — [1])
————————— e J
r

where

C] = c |, C; = Soj . (46)
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bp=bcose
bgzbSINB

Fig. 5 — Geometry of an offset in waveguide.

The components of C] are given to first order by (44). Equation (45)
(for offsets) has been written in such a way that the restrictions of
(41) and (42) become identical to those of (25) to (27) (for tilts).

The coupling coefficients between TEy and the x- and y-polarizations
of the j* spurious mode are from (44) to (46)

soje = Cogyy "+ (b cos 8), (47a)
So7y = Cocy " (b sin 6). (47h)

I'rom Fig. 5 it is readily seen that b, = b cos 8 and b, = b sin 0 are ex-
actly the - and y-components of the offset, in analogy to the approxi-
mate results of (38) for tilts.

A similar treatment may be applied to a discrete diameter change.
Here the spurious modes are the higher order TE,,, ;'* again for small
offsets only the forward modes need be considered. This case differs in
one fundamental respect from that of the offset. For an offset the TEy
signal mode and the TE,,, spurious modes have a different angular de-
pendence; for a diameter change the TEy signal mode and the higher
order TI, spurious modes have the same (i.e., no) angular dependence.
Thus, for a diameter change the signal and all spurious modes are coupled
to each other to first order.

First by conservation of energy (true in helix as well as copper guide,
because the TE, modes are the same in both) (6) yields

S8* = §8* = [1]. (48)
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Next, consider the cascade connection of two identical diameter changes
connected back-to-back. As in the case of an offset, this yields

88 = 88 = [1l. (49)
TFrom (48) and (49) we find that
S = S* = pure real. . (50)

However, there is no operation corresponding to the 180° rotation, used
for tilts and offsets, because the signal and spurious modes have the
same symmetry in the present case. While we have obtained no further
information from general considerations than contained in (49) and
(50), for the case of a single spurious mode the scattering matrix for a
diameter change is identical to that of (43) for an offset.

For small diameter changes, Morgan'®'® gives the coupling coefficients
s; in terms of the change in radius Ar as follows:

so; = Cagy "Ar + -+, > 0. (51)

Cacy® is given in Appendix A.

There is of course only a single polarization of each spurious mode in
this case, and consequently, there is no analysis in the present case cor-
responding to those for tilts and offsets with two polarizations.

2.1.4 Discrete Mode Converters in Helix Guide

While the above results for diameter changes apply equally well to
both helix and copper guide, those for tilts and offsets apply to only
copper guide (strictly speaking, ideal lossless metallic guide). This is so
because (6) no longer holds true in helix; energy is not conserved in
helix, and in addition the various normal modes of helix are not even
orthogonal with respect to power.” The coupling coefficients for discrete
mode converters in helix have been obtained by Unger." However, one
useful result is readily obtained from general considerations without
‘performing a detailed field analysis.

We show that at a discrete tilt or offset, the TEy transfer coefficient
so0 (the upper left-hand element in the scattering matrices for a tilt or
offset given in Sections 2.1.2 and 2.1.3 above) is identical in both copper
and helix guides, if we neglect backward modes and include all forward
modes. This fact will permit the average TEy loss in helix guide with
discrete random tilts and offsets to be readily calculated in terms of
similar results for copper guide.

The above statement is proven as follows. I'irst consider an offset
or tilt as a joint between a helix and a copper guide, with a unit TEq
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wave incident from the helix. If backward waves are neglected, the for-
ward waves in the copper guide will be identical to those in a copper-
copper joint because the incident TE, is the same in helix as it would
be in copper. Therefore, the TEy, transfer coefficient sy is the same for
this helix-copper joint as for a copper-copper joint. Now reverse input
and output terminals, so that the TEq, is incident from the copper guide,
and TEq and spurious modes travel away from the joint in helix. The
spurious modes are now quite different than before, since they must be
normal modes of helix guide; however, by reciprocity s, must remain
the same. I"inally, we may replace the copper guide containing the inci-
dent TI with helix without further altering the fields in any way.
Thus if backward modes are neglected, sy is identical in helix and copper
guides with identiecal tilts or offsets.

This conclusion has been verified experimentally by the authors in
2-inch diameter helix guide at a frequency of 55 kme. It has also been
verified by a field analysis by H. G. Unger.”

2.2 The Diserete Case — Single Spurious Mode

We next apply the results of Section 2.1 to the study of long guides
with many discrete mode converters separated by guide sections that
are ideal; i.e., geometrically perfect right-circular eylinders. We restrict
our attention to the case of a single spurious mode, in addition to the
TEy signal mode. (If the spurious mode is polarized, such as TE,,,",
we consider only one of its linear polarizations.)

The over-all transmission matrix for such a guide with N discrete
mode converters consists of a product of 2N matrices, one matrix for
cach mode converter (as given in the preceding section) and one diagonal
matrix for each section of ideal guide. These matrix results are then used
to derive a perturbation theory, valid when the mode converters are
sufficiently small, that greatly simplifies further ealeulations.:

2.21 Matriz Analysis

Consider the guide illustrated schematically in Fig. 6. This guide con-
sists of NV diserete mode converters separated by N sections of ideal
copper guide, of length [, . Since we consider only a single spurious mode,
if the discrete mode converters are tilts or offsets they must lie in a single
plane (taken to be the ¢ = 0 plane in the notation of Section 2.1). We
seek the response of such a guide to a unit input TE,; wave.

The scattering matrix S, for the k" mode converter is given in Section
2.1 for the case of a single spurious mode, i.e., (17) and (18) for tilts,
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A —— Ly —————————— ==
D : T

T | l

[ L L 1 I

UL <l <]
To@— o o M - =9 . 0 —= I o(N)
I4(0)—so— Sy L 1Se |1 Ss 1Skl Ske| __{ SN —0 —1, (N)
My Mz Mk Mn
k
Lk = Z1m
m=1
Sk = SCATTERING MATRIX FOR k™M MODE CONVERTER
Mk = SCATTERING MATRIX FOR kTH MODE CONVERTER

PLUS FOLLOWING SECTION OF GUIDE

Io = SIGNAL MODE (TEg) NORMALIZED AMPLITUDE

11 = SPURIOUS MODE NORMALIZED AMPLITUDE

Fig. 6 — Waveguide line with discrete mode converters separated by ideal
guide sections.

(43) and (44) for offsets, (43) and (51) for diameter changes. In the
ideal guide sections connecting the discrete mode converters, the signal
and spurious modes propagate independently with their respective
propagation constants; the seattering matrix W) corresponding to the
k section of ideal guide, of length I, as shown in Fig. 6, is given by

—Tolk
W = [e . 6_91,,,], (52)

where T is the propagation constant for the TEqy signal mode, T'y the
propagation constant for the spurious mode. Thus, the scattering matrix
M, for the k* mode converter plus the (following) k* section of guide,
as shown in Fig. 6, is

ﬂ[k = IV};'S",;. (53)

For tilts M, is given as

M [y T—a2 ot (54)
I, = )
i je—rllk_ck e"rllk.,\/l — Ck2
with ¢ given by (18). For offsets and diameter changes
M, — [T = T (55
e = =Ty —T 1k — |’ (55)
| —e < e .-\/1 — e
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with ¢, given by (44) and (51) respectively.
The over-all transmission matrix 7' for the entire guide, N sections
long, will be

1
T — [TUD f‘ﬂ] =11 Mo = My-Myy - Ma-M,,  (56)
Tln 111 k=N

and the output mode amplitudes will be given in terms of the input mode

amplitudes by
I«(N) 1,(0)
=T . (57)
Ii(N) 1,(0)

We assume the guide is excited by a pure TEy wave of unit amplitude
and zero phase; the initial conditions on (57) become

Li(0) =1, I,(0) = 0. (58)
Then,
[o(N) = Twly(0) = Ty, Ty gain. (59)
I(N) = Twl(0) = Ty, TEgy-spurious mode transfer

coefficient. (60)
It will subsequently be convenient to normalize these quantities as
follows:

~I'yLy "l . .
’ruu =g "N ‘(J‘u ) (!r(] = T]'Jm normalized galin. (6[)

T =¢""".q, G = T'Ep-spurious mode normalized transfer
. (62)
coefficient.
In each case, the propagation factor of the corresponding mode has been
removed; as shown in Fig. 6, Ly is the total length of the N sections of
guide being considered. Since TEy, has a lower heat loss (i.e., ag = Re I'y)
than any other mode, in a physical guide Gy < 1.

The exact solution above is of limited value both because of its com-
plexity and also because, as discussed in Section 2.1, the available ex-
pressions for the coupling coefficients of discrete mode converters are
valid only to first order. Consequently, we seek approximate expressions
for T'w and T, or equivalently (f, and (;, valid when the coupling
coefficients are sufficiently small that the guide departs only slightly
from ideal. Under these conditions, it will be shown that G, is of first
order and (7; departs from unity only to second order.
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It is convenient to write
Gp=1—p, (63)

where p, the (complex) departure of Gy from unity, will be of second
order. We further define the TEgy normalized magnitude g, complex
loss A, loss (in nepers) A, and phase © as follows:

Gy = ge’® = et =et® =1—p;
(64)

A=A —j6.

Then if the coupling coefficients are sufficiently small so that [ p| < 1,
we have to second order:

g~1— Rep. (65a)
AR p. (65h)
A =~ Re p. (G5e)
®~ — Im p. (65d)

2,22 Perturbation Theory

Consider the transmission matrix 7 of (56), with the M, given by
(54) or (55). Let us expand the square root in the diagonal elements of
(h4) or (55) in a power series as follows;

VI—et=1—1¢' —te' + - (66)

It is apparent from the rules of matrix multiplication that the com-
ponents of 7 may be expressed as power series in the ¢;’s. Since cach ¢
may be expressed as a power series in the appropriate geometric parame-
ter, with the first term given by (18), (44) or (51), we can thus obtain
expressions for ¢, and (fy as power series in the geometric parameters.
The first-order results of (18), (44) and (51) are sufficient to give
to first order, (o to second order; if the mode converters are sufficiently
small we may hope that these results will give a valid approximation
for the TEy gain and the TEy-spurious mode transfer coefficient.

We first determine the first few terms of expansions for Ty and T .
I'or convenience, we write for M, in (56)

A e
ﬂ.[k = ’ {(")7)
8. B

where A4, , &, 8 and B, are determined by comparison with (54) or
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(55). For small coupling, A4, and B, will have magnitudes a little less
than 1, while ¢ and & will have magnitudes much smaller than 1. In
writing out Ty and Ty, we group terms according to the number of
“small” quantities (i.e., ¢'s and §’s) they contain. Thus, we have:

N
Tw = Z Ay - A;48,Biyy -+ By
=1
N

N2 N-1
+ > Z E Ay AigdiBigy - - (68)

i=1 j=i+1 k=j+1

“BieA o ApadiBry o By + -

'Tnu = .41 et AN+ Z 2 i'il e .‘1,‘_15,'B1'_H e Bj_IEJ“iJ‘_H te A.;;

| N
+ : L ) Z: .‘11 e ‘4 ,‘_15,'3.‘4_1 e Bj_lfj.4j+1 et (69)
R | k~#15kBi'+l T BIQIEEA 41 " 44}\’ + s

Consider first (68) for Ty . Referring to (67), (66), (54) and (55),
the successive terms of (68) (of which we have written down the first
two) contain components of the following orders in the ¢ :

term order of components
35
1 c,e,c, e
9 35 7
2 c,ec,e,

Iiquation (18), (44) or (51) gives the ¢, to first order in terms of the
tilts a; , offsets by , or diameter changes Ar. . Therefore, we may obtain
T\, to first order in the geometric parameters by retaining only the com-
ponents of order ¢, which oceur in only the first term of (68) (the single
summation), and using Morgan’s first-order coupling coefficients. In-
deed, since we do not have the coupling coefficients to more than first
order, it would be totally unjustified to retain any additional components
in (68), and in particular, to seek an exact result for the matrix multipli-
ation of (56) via numerical techniques or otherwise, without first ob-
taining the coupling coefficients ¢, to higher order.

Similarly, the successive terms of (69) for T contain components of
the following orders in the ¢ :

term order of components
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We obtain Ty to second order in the geometric parameters by retaining
only the components of order ¢’ and ¢ in the first term and the com-
ponents of order ¢’ in the second term, and using Morgan’s first-order
coupling coefficients. As above, any additional terms would be unjusti-
fied. We note that there are no first-order terms present in T .

We thus obtain the following approximate results for G, and G, , the
normalized transmission parameters defined in (61) to (64), from (66)
to (69), (54), (55) and (18), (44) and (51). In these results we use the
differential propagation constant AT, defined as

AT = Aa + jAB =T, — T. (70a)
ACE=O!U_'O.'1, A,8=,60—61 (TOb)

The real and imaginary parts of AT, Aa and AB respectively, are called
the differential attenuation constant and the differential phase constant
respectively. Since the TE, signal mode has lower heat loss than any
other mode, Aa < 0 throughout the present paper. The geometry of the
guide is shown in Fig. 6; L, is the length of guide up to the k*" mode
converter, [; the distance between the k* and the (& + 1)* mode con-
verters. x; denotes Morgan’s first-order approximation for the coupling
coefficient of the 7*" mode converter.

FFor tilts and offsets the diameter of the different guide sections is of
course identical, so that AT is strietly constant. This is not true for di-
ameter changes, so that strictly speaking we should include in the analy-
sis the fact that AT changes from section to section. However, we assume
that the total range of the guide diameter is very small, centered about
its nominal value, and neglect the small changes in AT in all following
analysis, both for the discrete case and for the continuous case. This ap-
proximation is not necessary; it would be possible to include the varia-
tion of AT in the present analysis without great difficulty. However, we
choose to ignore this effect without careful study in the interests of
simplicity.

i. Gy — Tilts, Offsets and Diameter Changes
Gy=1—p (71a)

—1

N
UFS SE SRS M DS
i=1 i=1 j=i+1 (7]'))

N . |

Al|L; _\—L;
> xae Mi—=bial,
=1

[
M =

Il
—

1
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Special case — equally spaced mode converters
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Special case — equally spaced mode converters
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(71e)

(71d)

(71le)

(72a)

(72b)
(72¢)

(72d)

(73a)

(73b)

(73c)

(73d)
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2.2.3 Discussion

The above results for tilts and offsets apply strictly to only lossless
metallic guide, for which Ae = 0. However, we expect on intuitive
grounds that they provide a satisfactory approximation for real copper
guide. The results for diameter changes apply equally well to both cop-
per and helix; for tilts and offsets in helix we must use the helix guide
coupling coefficients, but otherwise the analysis is the same.

The results of (71) to (73) yield the TEy signal mode to second order
(there are no first-order terms), the spurious mode to first order, in the
appropriate geometric parameters. In each case we have determined the
first correction term to the solution for a geometrically perfect guide
with all ¢z = 0, 1.e., Go(z) = 1, G1(z) = 0 where z is distance measured
along the guide axis.

A rough physical interpretation may be given for the approximate
results of (71) to (73). The spurious mode at any point in the guide is
regarded as a sum of waves arising at each mode converter. Each of
these waves is computed by assuming an incident TEy wave at each
mode converter identical to the TEy wave that would be present in a
perfect guide, with all ¢, = 0, and further assuming that the converted
spurious mode wave is unaffected by subsequent mode converters, i.e.,
propagates as it would in perfect guide. The T, signal mode is re-
garded as the sum of three components:

1. The TEy wave that would be present in a perfect guide.

2. The signal lost from TEy, at each mode converter, assuming an in-
cident TEy wave identical to that in perfect guide and no incident
spurious mode wave.

3. A sum of waves reconverted to TEy from the spurious mode at
each mode converter. Each of these waves is computed by taking the
approximate spurious mode as computed above, and assuming that the
reconverted TEy, wave is unaffected by subsequent mode converters.
It is easy to see that this component may be expressed as a sum over
all pairs of mode converters.

The approximate solutions of (71) to (73) may be regarded as the initial
terms of power series expansions in the x/’s (or equivalently the a.'s,
b’s, or Ar/s). It is reasonable to assume that if the x/’s are sufficiently
small these power series will converge sufficiently rapidly so that their
first terms will provide valid approximations; under these conditions we
would expect that | p | < 1,| ¢ | < 1. However, to use these results with
confidence we must have bounds on the errors introduced by these ap-
proximations that will give quantitative information on the way in
which the solutions of (71) to (73) approximate the true solution. We
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postpone consideration of these questions to Section 2.3 below, where
we study the continuous case, since we will show there that the diserete
and continuous cases are closely related to each other. It turns out that
although we can give bounds on the higher terms of the series expansions
that are in a sense the best possible, we still lack sufficiently precise in-
formation to make any useful statement on the way in which the pertur-
bation solutions approximate the true solutions. Consequently, confi-
dence in the accuracy of practical calculations using the results of (71) to
(73) can at present be justified only on intuitive grounds.

In the region where we hope the perturbation solution is wvalid,
| p| < 1. Under these conditions, the TEy normalized magnitude g,
loss A, and phase © are given approximately by (65), where p is given
by (71). If | p | is not much smaller than 1, it would seem that the ap-
proximation of (65) must be invalid. However, it will be shown in Sec-
tion 2.3 on the continuous case that (65b), (65¢), and (65d) together
with (71) remain plausible for a wide class of interesting cases where
the magnitude of the right-hand side of (71b) or (71d) becomes much
greater than 1 and (65a) fails, although here again the justification is
no more rigorous than that for (71)to (73) when |p| < 1, |G| < 1.
This extension is important, for otherwise we should be limited to con-
sidering only cases where the total loss | A |, and hence, A and | ®
are small,

]

2.3 The Continuous C'ase — Single Spurious Mode

In this seetion, we study mode conversion caused by distributed geo-
metric imperfections, such as continuous curvature of the guide axis or
continuous variation of the guide diameter. We discuss briefly the gen-
eral telegraphist’s equations or coupled line equations for the general
case, but again restrict the detailed treatment to the case of a single
spurious mode. (If the spurious mode is not TEy,, , we consider only one
of its linear polarizations.)

It is obvious that a close relationship must exist between corresponding
diserete and continuous cases. A guide with an arbitrary curved axis
may be regarded as the limit of a guide with many small discrete tilts;
similarly, a guide with a continuous diameter variation may be regarded
as the limit of a guide with many small discrete diameter changes. We
will show how the matrix equations for the discrete case and the differ-
ential equations (coupled line equations) for the continuous case may
be obtained from each other by suitable limiting processes.

We next discuss the perturbation theory for the coupled line equations,
and show its relationship to the diserete perturbation theory of Section
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2.2. An improved perturbation theory for the TEx complex loss
A = A — jO [see (64)] is given that permits the treatment of many
cases of practical interest.

For moderate lengths of copper guide the differential loss is small com-
pared to 1, | Aa | L < 1, where L is the guide length. We obtain an ap-
proximate treatment for this case by setting Aa = 0, as in lossless me-
tallic guide. The TEy, loss A for this case may be expressed in terms of
the Fourier coefficients of the coupling coefficient ¢(z); this treatment
makes evident the relationship between the power spectrum of the
coupling coefficient and the corresponding transmission statistics of the
TE(]]_ loss.

Finally, we diseuss Morgan’s coupling coefficients for general continu-
ous cross-sectional deformations of copper guide, and the relationship
between the various copper guide coupling coefficients.

2.3.1 Generalized Telegraphist's Equations

By means of the generalized telegraphist’s equations,' Maxwell’s
equations for the fields in a deformed guide may be expressed in terms
of the normal modes of the undeformed guide;

= 2 Kunlu. (74)

I,. represents the normalized complex amplitude of the m* mode and
the summation is extended over all modes. K, represents the propaga-
tion constant of the m* mode; K., , with m 7 n, represents the coupling
coefficient between the ntt and m™ modes. The k., are functions of the
geometry of the guide imperfection. Of course, (74) is in rather general
symbolic form; in particular problems a more specific notation is often
used to denote the various modes. For example, each subseript in (74)
often becomes a double subseript, to conform to the usual ways of in-
dexing waveguide modes. Square brackets enclosing a subseript pair
are often used to indicate a TE mode, round brackets a TM mode; some
sort of notation, such as & superscripts or different symbols is used to
differentiate between forward and backward modes.”

The k.., have been evaluated for a variety of different types of imper-
fections in a variety of guides, as discussed in the introduction to Sec-
tion II. Morgan has given the Ko for curved metallic waveguide filled
with an inhomogeneous dielectric.” For a homogeneous lossless dielectric,
the propagation constants Km, are simply equal to the corresponding
propagation constants in undeformed metallic guide;

Kmm = :l:]JBm . (75)
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Morgan finds that curvature couples the TEy" to only TMy" and
TE,,*. (This should not be taken to mean that no other spurious modes
will be exeited in a curved guide with a homogeneous dielectric; such
other modes will indeed arise, e.g., because of the coupling between TE,,,
and TE,, . However, in good guides these other modes will normally be
negligible compared to the first-order spurious modes.) Using his results
the k’s of (74) involving the TEy, " mode may be expressed in terms of
the C'/s of (18) and Appendix A as follows, for a curved circular guide
with a homogenecous dielectrie:

7C ™
Kpog +ml = = Kpm) o+ = ° R(:) y (763)
. +
,]Ct(ll)
Kien+an+ = Kap+pn+ = . (76b)
R(2)

R{z) in (76a) and (76b) is the radius of eurvature of the axis of the
curved guide, with z measured along the curved axis; the ecurvature of
the axis is confined to a single plane. Similarly, Unger" has evaluated
the k., for a tapered metallic waveguide as follows:t

]\'l}w""!l)u . Bl}n + |60m d‘]"(z)
ko — ko’ A/BomBon A7’ (77)

m #= n for the upper signs.

1
K[nm]"'[u»]'-'-' = ;_

In (77), r(2) is the radius of the guide, the k’s are the Bessel roots of
the modes in question (see Appendix A). When the incident mode is the
TEy , (77) becomes

dr
Ko+ oml = = Clpmy™ );z?), m#= 1, (78)

in terms of Cy of (51) and Appendix A. Finally, we note from (77) that
if both modes are forward modes,

Kiom1*(on)+ = —Kpon]*+[om)+ , (79)

which, as we shall subsequently see, must be true by (43).

Various geometric imperfections in helix guide have been similarly
treated by Unger.?:19.:20.21

The generalized telegraphist’s equations of (74) contain an infinite
number of modes. To simplify the problem, we wish to approximate
the true situation with a finite number of modes; indeed, in much of the
present, study we include only two modes, the TEy signal mode and the

t The sign of the second term inside the summation in (40) of Reference 10
appears to be in error.
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most important spurious mode. It is obvious that this approximation
must distort the results in some respects; however, we hope that if the
significant, spurious modes are included, any errors will be small. Thus,
in (74) we will set all I’s equal to zero except those corresponding to the
TEq" signal mode and one or a few of the forward spurious modes.
Other ways of approximating the true situation with a finite number of
modes might of course be possible, but we choose this one as the simplest.

In (76) and (78) above we observe that the coupling coefficients for
continuous bends and diameter changes may be expressed in terms of
the coupling coefficients for discrete tilts and diameter changes. This,
plus the obvious fact that a continuous deformation may be regarded
as the limit of many small, closely spaced discrete imperfections, sug-
gests a closer study of the relation between the discrete and continuous
cases. In Sections 2.3.2 and 2.3.3 below we study the correspondence be-
tween the coupled line equations for the continuous case and the matrix
equations of Section 2.2.1 above for the discrete case.

2 Transformation from the Discrete to the Continuous Case

Consider a lossless metallic guide containing many small discrete mode
converters spaced an equal distance Az apart. Fig. 7 illustrates three
cases of interest — tilts, offsets, and diameter changes — with of course
a greatly exaggerated vertical scale. ¢ is in each case the conversion
coefficient in the corresponding matrix, (17) or (43) for tilts or offsets
and diameter changes respectively; ¢, is given by (18), (44), and (51)
for tilts, offsets, and diameter changes respectively. Then it is clear that
by the proper limiting process, in which Az — 0 and the discontinuities
become smaller and more closely spaced, we may approach the continu-
ous deformations illustrated in Fig. 7 by the dotted lines.

The limiting continuous deformation of Fig. 7(a) corresponds to a
guide with a continuously varying curvature of its axis. The continuous
deformation of Fig. 7(b) corresponds to a waveguide made of very thin
circular punchings which may slide with respect to each other like a
stack of cards. Finally, the continuous deformation of Fig. 7(c) corre-
sponds to a continuous taper. The case of Fig. 7(a) will be important in
determining the effect of random straightness deviation on the TEy
transmission. For the continuous bend and offset of Figs. 7(a) and 7(b)
the guide axis must lie in a single plane if the analysis is to be restricted
to a single polarization of the most important spurious mode (TEp™Y).

For purposes of illustration we consider the transition to the continu-
ous bend, illustrated in Fig. 7(a). A larger-scale drawing for this case
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c“.‘ck Ck+| ................... CONVERSION
COEFFICIENTS

Z MEASURED
ALONG AXIS OF

R
__:.—-s: / — \“-:.-:_.h_____ GUIDE

(a) TLTS

I-t—é Z
A ey

e e A

A
() DIAMETER CHANGES

SECTION A—A CIRCULAR IN ALL CASES
———— INDICATES LIMITING CONTINUOUS
DEFORMATION

Fig. 7 — Waveguides with tilts, offsets, and diameter changes.

is shown in ig. 8; only the center line of the continuously bent guide
and of the tilt approximation to it are shown, for the two adjacent sec-
tions lying on either side of the kth tilt.

Referring to Fig. 6, we set the distance between discrete tilts [ equal
to Az. Let Iy(z) and [,(z) denote the TINy and spurious mode complex
amplitudes just to the left of the k™ tilt; then [4(z + Az) and [,(z + Az)
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Fig. 8 — Fig. 7(a) in larger scale.

denote the corresponding complex mode amplitudes just to the left of
the (k + 1)* tilt. Then taking (17) for the scattering matrix of the tilt,
and setting I, = Az in (52), (53),and (54), we have

[[0(2 + Az)]
Iz 4+ Az)

e T — 2 g e Io(2) (80)
where ¢, is the conversion coefficient for the & tilt. From (18)
o = Crap + -, (81)

where (', is Morgan’s coupling coefficient for tilts for the spurious mode
in question, given in Appendix A. From TFig. 8

A
M=i+~n (82)

Thus,

o= Stag g (83)

ke
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where the dots in (82) and (83) represent terms of higher than first order
in Az.

Expanding the exponentials and the square roots in the matrix of (80)
in power series [see (66)], making use of (83), and writing the right-
hand sides of the resulting equations as power series in Az, we have

Iz 4+ Az) = Iy(z) + l:—Fu[u(z) +J%[1(5):| Az 4 - -
k&
. (84)
Iz + Az) = Li(z) + [_Fl[l(z) +J ﬁ: Iu(z):l Az 4 .-

We transfer the terms 7,(z) and 7,(z) to the left-hand sides of these
equations and divide by Az. Then as Az — 0, By — R(z), where R(z)
is the radius of curvature of the guide axis, and (84) becomes

1/ (2) = —=Toly(z) + je(z)(2),

Iy , (85)
1/'(z) = je(z)lu(z) — Ihh(z2),

e(z) = C. coupling coefficient (86)

- R(z}v p g : 'y

where the primes denote differentiation with respect to 2z, and R(z) is
the radius of curvature of the guide axis.

We now compare (85) and (86) with (74) to (76); in the case of lossless
metallic guide, where Ty = jBy, T1 = jBi, the two sets of equations are
identical if we retain only two modes in the results of (74) to (76). Thus
by taking the proper limiting form of Morgan's results for discrete tilts
we arrive at Morgan’s results for continuous bends obtained via the
generalized telegraphist’s equations, in the two-mode case. It is easy
to see that this method extends readily to additional first-order spurious
modes. It should in principle be possible to include as many modes as
desired in this type of discussion, but such ealculations have not been
actually carried out. We will be content in the present paper to take
the two-mode model as suggestive of these more general results.

As in the diserete case, we assume the guide is excited by a pure TEy,
wave of unit amplitude. Thus, the initial conditions on the differential
equations (85) become

Io(0) =1,  L(0) =0, (87)

corresponding to (58) for the discrete case. Then fy(z) will be the TEy
gain, 7,(z) the TEy-spurious mode transfer coefficient, corresponding to
(59) and (60).



1066 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

It proves convenient to follow the normalization used in the discrete
case [see (61) and (62)], removing the propagation factor of each mode
in ideal guide;

I(z) = ¢ " Go(2) (88)

I(2) = ¢ " Gi(z). (89)

Go(2) and Gi(2) are again the TEy normalized gain and the TEg-
spurious mode normalized transfer coefficient. Substituting the trans-
formation of (88) and (89) into (85), we have:

Gy (2) = je(2)e Gy (2)
G (2) = je(z)e 2 Gy(2) (90)

Al' = Ty — Iy, differential propagation constant.

A

clz) = IT;)' coupling coefficient . (91)
The initial conditions of (87) become
(h(0) =1, G(0) = 0. (92)

A similar treatment may be given for the limiting case of many dis-
crete offsets or diameter changes, illustrated in Figs. 7(b) and 7(c¢) re-
spectively. I"or continuous offsets we find:

Iy(z) = —Tuly(z) + c(2)11(2),
I'(z) = —C(Z)L](Z) — I'Jy(2).
e(z) = C,-2'(2), coupling coefficient. (94)

(93)

(', is Morgan’s offset coupling coefficient for the spurious mode in ques-
tion, given in Appendix A. x(z) is the transverse displacement of the
guide axis, as illustrated in IMig. 7(b); primes of course denote differen-
tiation with respect to z. Equations {93) and (94) must agree with the
generalized telegraphist’s equations for a guide with a continuous offset,
when restricted to two modes. Using the transformation of (88) and
(89), (93) and (94) become:

Go'(2) = e(2)e* G (2),
Gl (2) = —e(2)e*G(2),

Il

(95)

AT = T, — Ty ; differential propagation constant. )
(96

e(z) = C,-2'(2), coupling coefficient.
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The continuous diameter change may be similarly treated by replacing
2'(z) by r'(2), Co by Cq in (93) to (96), where r(z) is the guide radius.

2.3.3 Transformation from the Continuous to the Discrete Case

We next determine the scattering matrix for a diserete mode converter
by considering the limiting form of the generalized telegraphist’s equa-
tions ag the continuous coupling coefficient approaches a §-function. For
purposes of illustration we consider the case of a discrete tilt, regarded
as the limiting form of a continuous bend. We again restrict our treat-
ment to only two modes, the TE, signal mode and a single spurious
mode, for simplicity.

Fig. 9 shows a tilt of angle « obtained as the limit of a continuous bend.
From (86) or (91) the continuous coupling coefficient is given by

0, z <0;
C;a
e(z) = A 0<z<A; (97a)
0, A<z,
lime(z) = C,a-8(z). (97h)

A—=0

Thus the coupling coefficient is zero for z < 0 and z > A, constant in the
region 0 < z < A, z being measured along the guide axis as usual. Now
exact solutions for (85) or (90) are known for only a few special e(z);
indeed this is why we are forced to use approximate solutions of various
types in the present paper. One important case in which exact solutions
are available is the present case e(z) = constant;'" this is obvious from
the fact that the equations (85) then hecome simply two simultaneous
differential equations with constant coefficients, whose solutions are well
known.
The solution for (85) with e(z) = ¢¢ is given as follows:

LJ(Z) 10(0)
= T(z) _ (98a)
!1(2) 11(0)
_ ( Iy 4+ I )
exp{ — —5—2
e =—% -k
K c(.\l‘l‘2]z\/ +K, c(—_\m]:\f PATIzy (AT D)2y
[ (AT/Dzy :|

(—AT/2)zy - (AT/2): - (—AT/2):
—e v Kie vV K_é v

(98b)
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AXIS OF
R GUIDE

CONTINUOUS BEND
= —— LIMITING DISCRETE TILT

Fig. 9 — Tilt of angle « as limit of continuous bend.

1+
Ko=mi—5—  Bk=—d (98¢)
“ AT
1 co/ AT
KK~ J v/ (98d)

\ = 1/1ﬂ 2£° . (98¢e)

These results are applied to the situation of Fig. 9 and (97) by setting

z— A,
("ta (99)
Cog — ——
A
Thus
Io(A 1,(0
[ ( )]= T(A)|: ( )]. (100)
I,(a) 1,(0)

Now in (97) and Fig. 9 let us keep « fixed and let A — 0, R — 0; then
the curved guide of Fig. 9 will approach a diserete tilt of angle «, and
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the matrix T should approach the seattering matrix of this discrete tilt.
From (98) and (99) we have:

. AT/ 20, a\° .
lim = —(22) A =50
a2 1/1 (AI‘-A) e

lim Ky = =1

A0

. R 1 (101)
A0 K+ - K_ B 2

lim exp (— To "’)F_E A) =1

A0

F4

Then from (98) to (101) we have

cos Cba jsin Cia
lim T(A) = T(0) = (102a)

A0 jsin Cha cos Cra
for

1_|\m'J e(z) = Cia-8(z) (102b)
as the scattering matrix of a discrete tilt of angle a. This is the result
given in (20) as the “exact” two-mode scattering matrix for a finite tilt.

We have thus found the scattering matrix for a two-mode, finite tilt
starting from the scattering matrix for an infinitesimal tilt by first pass-
ing to the limit of continuous mode conversion and then transforming
back to the discrete case by allowing the continuous coupling coefficient
to approach a é-function. Alternately, we have found the scattering
matrix that satisfies the following requirements (for a single forward
spurious mode ) :

1. Conservation of energy and symmetry.

2. Agrees with Morgan’s small tilt theory [see (17) and (18)].

3. Satisfies an additional requirement for finite tilts, so that the
matrix for the sum of two tilts equals the product of the matrices of the
individual tilts [see (19)]. In practice the above matrix for a finite tilt
will of course not provide an exact description for large tilts because
of the presence of additional spurious modes.

An offset and a diameter change may be similarly treated. For a finite
offset of magnitude b we have corresponding to (102) as the “exact”
two-mode seattering matrix
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_ cos Cob sin Cob
lim T(A) = T(0) = [ :] (103)

A=0 —sin C,b  cos Cub

Diameter changes may be similarly treated if they are small enough so
that the variation of AT may be neglected.

The present analysis readily extends to include additional first-order
spurious modes. It should in prineiple be possible to generalize it further
to include as many modes as desired, but such caleulations have not ac-
tually been carried out.

The astute reader may have noted a potential difficulty with the
analysis above. This potential paradox may be stated as follows, The
above discussion shows that the continuous bend and the discrete tilt
of Fig. 9 are approximately equivalent to each other so long as the fol-
lowing conditions are satisfied:

ZC_I,CY

2y 104z
[aT {-A» (104a)
|A_2F|-A &1, (104b)

But if (104a) is not satished it 1s no longer obvious that the discrete
tilt and continuous bend remain approximately equivalent. Stated phys-
ically, consider a short continuous bend, with length A fixed and small

| A)I |-A << 1. Then we should expect on physical grounds

enough so that

that this continuous bend is approximately equivalent to its correspond-
ing discrete tilt for all angles «. However the above analysis seems to
guarantee this equivalence only for large @, and not in an obvious way
for small a,

While it is not obvious, it is true that this equivalence remains valid
for small @, or more precisely when (104a) is violated but (104b) re-
mains true. To study this matter let us consider the case of a guide with
zero differential attenuation constant, Ae = 0, so that

AT = jAB. (105)

For brevity we restrict our attention to the TEy-spurious mode con-
version coefficient, which for convenience we call Ty (e.g., see the label-
ing of matrix components in (56)). For the diserete tilt

.. T
T16 diserete = J 8in O a - exp (— ¢ :)F I A). (106)
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For the continuous bend the results of (98) may be written [using (105)]
as follows:

. 20 :
s l:f (EE‘—QA) o a:l Iy + Iy -
Y‘[O continuous — J’ 2()!& * exp (— Y A); (10{)
(53

ﬂ)_V“+1

Now when « > 1, f(x) & 1; thus when > 1 [see (104a)]

2Cia
| A8 |- A
thE‘ll from ( IOG ) fl]l[] ( 107) we hﬂ\’e 7'10 discrete ~ T 10 continuous as Stﬂ.ted
above.

20
Next consider the case where ﬁ is not large compared to 1.
I'rom (106) and (107) we see that Ty diserete = T'10 continuous if
. 2(-’;&
——])-C 1- 108
J (A,B-A) Cra K ( )
Iy ting that f(x) = for x < 1, (108) |
he ANg H X)X - , - 8
|AE \-A , then noting At J{a ;1! or . ) become
A, (109)
. . . " . 20105 .
which is simply the condition of (104b). If a8 -A = 1, noting that
f(1) = /2, (108) becomes
20 e L 1, (110)

e., the conversion coefficient must be moderately small. However a
more detailed caleulation for this case shows that

0-95’]‘1“ discrete é 711“’ continuous é 711[] discrete (1113)

for
("ra £ 0.55 radian, sin ('pa £ 0.523. (111b)

The condition of (111b) is far less restrictive than that of (110); (111)
20 a . . .
states that for - ‘ Aﬁ A= b the continuous bend and its corresponding

diserete tilt will ll.l\(‘ conversion coeflicients that differ by less than 5
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per cent provided that the coupling coefficient to the spurious mode is
less than 0.523, which is quite large.

These considerations render it plausible that the corresponding dis-
crete and continuous cases approximate each other well if (104b) is
satisfied, for both large and small tilts.

2.3.4 Perturbation Theory for the Coupled Line Equations

Exact solutions to the coupled line equations, (85) and (86) or (90)
and (91) [or (93) and (94), (95) and (96)], are known in only a very
few special cases, i.e., for a few special ¢(z). In subsequent work we will
require a solution for an arbitrary ¢(z) so that we may eventually treat
the case of random ¢(z) . Therefore it is necessary to consider approximate
solutions to the coupled line equations, as we have done in the discrete
case.

These or similar equations arise in the design of a variety of devices
in which the coupling between two modes is of interest, such as direc-
tional couplers, tapers or impedance transformers, and bends. In domi-
nant mode transmission systems the signal mode is the forward TEM
wave, the spurious mode the reflected TEM wave.******" Directional
couplers in a variety of waveguide systems have been similarly stud-
ied.'”* Tapers and bends in a variety of waveguides have been studied;
several recent papers deal with this type of problem when the principal
wave is the TEy mode in cireular guide™*' as noted earlier. In much
of this work an approximate solution is used which is similar or identical
to the one employed here. This approximate solution has also been used
to study randomly distributed nonuniformities in ordinary (dominant
mode) transmission lines.**

The approximate solution that we use is most readily found via Pi-
card’s method of successive approximations.”* This is discussed in de-
tail ina companion paper,”® where it isshown that the solution to (90) and
(91) may be written as follows:

Go(2) = 22 gow(2), (112a)
Gi(2) = Z::u G (2). © o (112b)
g (2) = J'_/; e(s) € *gii_n(s) ds, n = 1. (113a)

G (2) = j fn e(s) e goun(s) ds, n = 1. (113b)
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oo(2) =1,  qolz) =0 (113¢)

It is readily seen that
go(2) = 0, nodd (114a)
Qi (2) = 0, neven. (114b)

Bounds on the terms of the series solution of (112) are given as follows:"

|: f | e(s) ds]
=t =2 neven
n!
| geen(2) | (115a)
=0 , nodd.
=0 , Tmeven,
| g1 (2) | (115b)
|:f {c(s)|tls:|
<t = ¢ nodd
n.
These bounds are in a sense the best possible, since cases are known

where the equalities in (115a) and (115b) are satisfied."

Now suppose that the series solutions for Gy(z) and Gy(z) given in
(112) and (113) converge so rapidly that only the first nonzero terms
that depend on the coupling coefficient ¢(z) need be retained. From (114)
we see that the n = 1 term of (112a) for (4(z) is identically zero; there-
fore we retain in this equation only the n = 2 term in addition to the
n = 0 term, which is simply 1. The first nonzero term in (112b) for
Gh(z) is the n = 1 term. We again use the notation of (63) and (64):

fh=1—p= gc’e =t = 4
(116)
A =4 —j6e.
Then we have:
plz) ~ f c(s) e ds [ e(f) e 2 dL. (117)
0 0

Gi(z2) =~ j _/; c(s) e ™ ds. (118)
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Since we have assumed that ¢{z) is sufficiently small so that | p | < 1,
we have to second order from (65) and (117):

g~1— Re [ (119a)
A —InGy = [[ (119b)
A~ —In|G| = Re[[ (119¢)
O~ 2£ZG, = —Im [[ (119d)
where [[ is shorthand for
N _ : ._\I‘s d! ‘ ] !7_\['.! d 2 s
I j; c(s) e ';j; e(l) e ! (120a)
= f e rlu.f- e(s)e(s + u) ds (120h)
0 0

= %f f e(s)e(t) eV ds dt. (120¢)

< Y0 L]

These results for the continuous bend are analogous to those of (63) to
(65) and (71) and (72) for the case of diserete tilts. The continuous off-
set and diameter change are of course readily handled in the same way,
and the above relations hold with only minor modifications. In particu-
lar, for the corresponding solutions to (95) and (96) for the continuous
offset and diameter change the jin (113a) is dropped, the jin (113b) re-
placed by —1, and the 7 in (118) replaced by —1 (compare (73) for the
discrete case) ; the remainder of the equations in the present section are
unaltered. (For the continuous diameter change we have neglected the
variation of AT.)

These perturbation results for the continuous case may be regarded,
as in the discrete case, as the first terms of power series expansions in the
geometric parameter characterizing the deformed guide. Again, it is
reasonable to assume that if the deformation is sufficiently small, these
power series will converge so rapidly that their first terms will provide
valid approximations. Equation (115) gives bounds on the magnitudes

of the higher terms; for guides short enough so thatf |e(s) | ds < 1,
0

these bounds converge rapidly. But the fact that the bounds converge
rapidly does not guarantee that the terms themselves converge rapidly.
For example, it might be possible for the second term of (112a) to be
much smaller than its bound, while at the same time the fourth term
was close to its bound, so that the fourth term would be comparable to
the second term, even though the bound on the fourth term was much
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smaller than the bound on the second term. (On the other hand this
might not be possible; we just do not know.) Consequently we have no
precise information on the way in which these perturbation solutions
approximate the true solutions; the aceuracy of these approximate solu-
tions, which are used throughout the following statistical analysis of
random guides, must be accepted largely on faith at present.

In Section 2.3.5 we show how the discrete and continuous perturbation
theories may be obtained as limiting cases of each other. Section 2.3.6
discusses a modified perturbation theory, which makes it appear plausible
that the results of (119b), (119¢), and (119d) for the TEq complex loss
A, loss A, and phase O hold true in a wide range of important cases where
| [ | > 1, so that the other approximations of (117), (118), and (119a)
fail. This extension is important in permitting the analysis of long guides.

2.3.5 Transformation between Discrete and Continuous Perturbation
Theory

In this section we consider the relationship between the diserete and
continuous perturbation theories; we select the case of discrete tilts
and continuous bends for purposes of illustration.

Let us first consider the transformation from the discrete to the con-
tinuous case, as illustrated in Iig. 7(a); but instead of considering a
single differential section of line with a single discrete mode converter,
as in Section 2.3.2, we consider the entire line. Let the tilts be equally
spaced, with spacing Az, and further let the position of the & tilt be
2z 5 thus

2z = kAz. (121)

Let the angle of the k™ tilt be @ . From Fig. 8 we have, as in (82),

Az
- & + -
where the dots indicate terms of higher order in Az. Ry is defined in Fig.
8; in the limit as Az — 0, R, approaches the radius of curvature of the
guide axis at z; .

Consider first the spurious mode normalized transfer coefficient, G, .
From (72) we have, setting [, = Az and neglecting terms of higher order
than Az, and substituting (122) for a;,

(122)

(478

N 1
(’,l ~ J Z & Az'e*ll(l*l)_\z. (123)

Setting
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2; = 1Az = Si, Az = AS, R; = R(S;), (124)

(123) becomes
G~ ZR( 5 e 20 g2 A, (125)

We now let As — 0 and N — o« in such a way that N As remains con-
stant,

NAs = L, (126)
where I is the length of line under consideration. Then R(s;) — R(s),
the radius of curvature of the guide axis, ¢*" ** — 1, and the summation
of (125) becomes the following integral.

L
. Ct —Al's
G ~ ; ——e ds. 127
B A T s (127)

Finally, noting (86) or (91), (127) becomes

L
G~ j fu e(s) e 2™ ds, (128)

which is identical to the Picard approximate solution for the coupled
ine equations for the continuous case, given in (118).

Similarly the approximate solution for p given in (71) for the diserete
case can be shown to approach the Picard approximation for the con-
tinuous ease, given in (117). Setting [y, = Az in (71) and substituting
(122), we have on neglecting higher-order terms in Az

Ct plme Y 01 AZ AZJ A]"(_,_.\Az
~ L A ’ 2
Setting
zi = 1Az = §;, Az = As, Ri = R(s:),

zj=jAz=1t;, Az;=A, R;=R()),

(]29) becomes
PR~ Z ( C: AS) —AI‘a, i Cl A”"At (131)
R*(sq) R( ) S R(1y)

We now let As — 0 and A{ — 0 in such a way that NAs and N At remain
constant,

(130)

NAs = L, NAt = L, (132)

where L is again the total length of line. Then R(s;) — R(s), R(t;) —
R(t), where R(s) and R({) are the radius of curvature of the guide axis.
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The first term of (131) (the single summation) approaches zero; the
second, however, approu(-hes a double integral to yield

L
l —AF! Ct ATt
—_ dt. :
R(s) ds ’ R(t)e (133)
Using (86) or (91), and further interchanging the order of integration
and the integration variables,

L 8
pzf e(s) e““dsf e(t) e 2™ dt, (134)
V] 0

which is identical to the Picard approximation for the solution to the
coupled line equations, given in (117). From (120) we see that the two
other forms of (71d) also have their equivalents in the continuous case.

Next let us reverse the above process, and go from the continuous
approximate solutions back to the discrete ones. Consider a line of
length Nl, with N equally spaced tilts a distance [, apart. The k* tilt
is located at z. , where

and has an angle a; . (The form of (135) was chosen to be consistent
with the notation of Iig. 6 and Section 2.2.) From (97b) or (102b) we
may write the continuous coupling coefficient for this case as

c(z) = C,Z_j ap-8lz — (k — 1)) (136)

We now substitute (136) into the approximate solution for the con-
tinuous case, and derive the approximate solution for the discrete case.
Substituting (136) into (118), we find

N
GUNL) ~j2 Coae 200 (137)
i=1

in agreement with (72¢) and (72d). Substituting (136) into (117), we
have
N

Nl
p(Nlu)Nf Co Y wiedls — (1 — 1)) e*™ ds

i=1
'f Cg Za;-&[t - (_] —_ ].)l(]] G_Am dt
0 i=1
Ny N (138)
= f C‘; Za,»-ﬁ[s — ('I - 1)[0] 8.’11"3 ds
0

i=1
N
.Z C'tﬂj'“[s — (.] _ l)ll)] c—ﬁ[(;—l)fu,

=1
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where u(x) is the unit step function,
1, x>0

u(x) = (139)
0, a<NO0.

Continuing,
N

P(N[l) ~ E (r © r.\I‘lr I)JUZ (, —A[(} Dy + %Z (C-ta"_)z_ (140)
1=1

The second term of (140) (the single summation) was obtained via the
relation

f flo)u(e)d(x) de = £f(0), a <0 <b. - (141)

Alternately, the result of (140) may be obtained by regarding the
s-functions as the limit of some continuous functions [e.g., (97a)],
taking the limit after the integrations have been performed. Finally,
interchanging the order of summation and the summation indices, (140)
becomes

N

p(NI) = 3 3 (Coa)’ + 30 3 (Cran (Coape™ 9, (142)
i=1 i=1 j=i+1

which agrees with (71d) for the discrete case. We see that the single
summation, which “disappeared” in going from the discrete to the
continuous case, has satisfactorily “reappeared.”” The alternate forms
for p given in (120) may similarly be transformed to their discrete
equivalents in (71d) via the substitution of (136) and appropriate
manipulation of é-functions.

The corresponding analysis for offsets and diameter changes is readily
performed.

One consequence of the results of the present section is that bounds
derived for the approximate solution in the continuous case may be
directly applied to the approximate solutions given in Seection II for
the discrete case.

2.3.6 Logarithmic Form of the Coupled Line Kquations, and I'mproved
Approvimate Solution

The perturbation results of Section 2.3.4, given in (116) to (120), were
expected on intuitive grounds to be valid for short lines, whose additional
loss due to mode conversion is small. In particular, the results of (117)
and (119) depend on having | p | < 1, | [f | < 1. These relations may
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again be regarded as the first terms in power series expansions for the
various quantities.

As the length of guide increases we expect the mode eonversion loss
to increase; for example in Sections 11T and TV below it is shown that
for all random guides that we deal with, < Re [[ > is proportional to the
total length of the guide, It is clear that as the length of guide increases,
eventually | [/ ] 3> 1. Under these conditions we no longer obtain a
valid approximation from the first two terms of (112a); many terms
become significant, and (117) and (118) are no longer valid. Tt would
seem that the results of (119) are also invalid for long guides. However
while (119a) is certainly invalid, we will see that it is plausible that
(119b), (119¢), and (119d) will remain good approximations for long
guides with large mode conversion loss if the differential attenuation
constant is large enough in a certain sense compared to the coupling
coefficient. The detailed mathematical analysis for this problem is given
in a companion paper;” however, it is not difficult to see on physical
grounds that something of this sort is to be expected.

Consider a long guide of length L with a large enough differential
loss so that the total differential loss | Aa | z in a short section of length
z is large;

|Aa |z 1, z << L. (143)

Now let this guide be divided up into 3 equal sections of length z by
ideal mode filters, so that

Mz = L. (144)

An ideal mode filter by definition transmits T1 without loss or phase
shift, and suppresses all other modes completely. (Practical mode filters
may congist of a section of helix guide that has low loss to TEy , high
loss to all other spurious modes other than the higher order T1%., O In
addition to the requirement of (143), further assume that each section
2 is short enough so that the perturbation results of (116) to (120) do
apply to the individual sections; for example, we might require from
(115) that

kz

[ s as <. (145)
(k—1)z

It is more or less obvious on physical grounds that under these condi-

tions the insertion of ideal mode filters will not alter the over-all TEy

loss significantly, because the spurious mode level is not likely to build

up to a significant magnitude.
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Denote quantities applying to the k't section by the symbol & in the
following equation; quantities applying to the over-all guide will be
written without subseripts. Then the over-all TEy, transmission param-
eters for the guide with ideal mode filters are given in terms of the T'Ey
parameters for individual sections as follows:

M

Gu = Han,
k=1
M

g = I,
k=1
M

A = LZ;;A, (146)
k=1
M

A = Z-’CA:
k=1
M

@ = ZL@)
k=1

Then, for example, A may be written from (119), (120) and (146)
as follows:

M kz 8

AR Y, f a’sf di-e(s)e(t) ™Y, (147)
k=1 Y e—1)z (k—1)z

In (147) the double integral has been taken from (1204); the other two

versions of this integral could of course be used equally well. Now it is

more or less obvious by inspection of the integrand and the limits and

from physical considerations that (147) is approximately equivalent to

L=M:z 8
A %f dsf di-e(s)e(t) e*e", (148)
0 (1]

In other words, the results of (119b), (119¢), and (119d) should remain
valid for the whole line, as stated above. Since the requirement in the
above crude argument is that the mode conversion loss must be small in
a section for which the total differential loss is high, we would intuitively
expect that for (119b), (119¢), and (119d) to hold for a long line, the
ratio of the coupling coefficient | ¢(z) | to the differential attenuation
constant | Ae | must be small in some sense which we have not yet
attempted to define.

While the above argument may be physically appealing, it is ob-
viously desirable to put these statements on firmer ground; this is done
elsewhere in this issue.”” We summarize here briefly some of the results
of this investigation.
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Under certain conditions we may write A(z) as a series expansion;
Alz) = f c(s) ™ ds] c(t) e dt + 20 M(z).  (149)
0 0 n=2

In (149) we have written out only the first term explicitly; we see that
this is identical to the previous approximation of (119b) and (120a).
Bounds on the higher terms are given in detail in Ref. 18; we give here
some slightly poorer but simpler bounds.

[Mz) | = | j c(s) ™ dsf e(t) e 2T dt| < Kf | e(s) | ds;
0 0 0
[An(2) ] = K*(2.225K°)"* f [e(s) | ds; n = 2, (150)
0
0=K =03
where K is defined by
f |e(s) | e* ™ ds < K forevery z= 0. (151)
1]

Finally, convergence is guaranteed only for K < 0.455; a case is known
where the series of (149) diverges for K > 0.5. Equation (151) requires
that | ¢(z) | be uniformly small in a certain sense, with respect to | A« |.

Onee again we take as an approximate solution the first term of (149).
The bounds in Ref. 18 are again almost the best possible in the same
sense as in the ease of Section 2.3.4; i.e., cases are known where the
higher-order terms are almost as large as their bounds. In cases of inter-
est K < 1, and the bounds converge rapidly. However, as in the case
of Section 2.3.4, this is not sufficient to guarantee that the terms them-
selves converge rapidly; and here again we lack precise information on
the way in which the first term (perturbation solution) approximates
the true solution.

Because of the relationship between discrete and continuous eases,
similar statements can be made regarding the results of (65) and (71)
for the discrete case.

2.3.7 TEy Loss in Terms of Fourier Coefficients of ¢(z) when Aa = 0
If the differential attenuation constant is equal to zero,
Aa = 0, (152)

the above perturbation results for the loss A4 [see (119¢) and (120)]
may be further simplified. This case is of interest as an approximation
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to the situation present in real copper guides. In practical copper guides
mode filters, consisting of a length of helix guide, must be inserted at
regular intervals, perhaps a few hundred feet apart, for reasons that
will be further discussed in Sections III and IV below. If the mode
filters may be assumed ideal, we consider each section separately and
simply add their individual TEy loss and phase, i.e., A, A, and 0, as in
(146). If for each copper guide section of length L the total differential
loss | Ae | L is small,

[Aa | L K1, (153)

on intuitive grounds we approximate the true solution by setting Aa = 0
in the various approximate solutions of (116) to (120).
Thus, let us set Aa = 0in (119¢) and (120c¢) to obtain

L L
A~ éRef f e(s)e(t) ™ ds dt (154)
2 o Yo

for a guide of length L. Recalling that ¢(s) and ¢(t) are real in ideal
metallic guide, (154) yields

1 L L X
A ~ =Re e(s)e(t) P ds di
2 0 [\]

1 L L .
= 5[ f e(s)e(t) ™ ds dt
0 0

. . (155)
- 1 c(s) e 2% (lsf e(t) e 88 gy
2 J 0
L 2
_1 f c(s) e ™" ds
21
Summarizing,
L 2
A 7:5% f e(s) e ™™ ds| , Aa = 0. (156)
& 0
We note further from (119a) and (116) that
1 L ] 2
|G| =g=1—3 f c(s) e ds (157)
Z 0
From (157) we have to second order
L 2
|G~ 1 — f c(s) e ™% ds (158)
1]
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But from (118), for Aa = 0

L 2
|Gy [P~ t f e(s) e s (159)
0
Therefore from (158) and (159) we have to second order
|G+ |G [F~1, Aa=0. (160)

In Appendix C it is shown that (160) must hold exactly for Aa = 0
[see (C-13)]. This is something like conservation of energy; in fact if
ag = ag = 0, (C-13) is precisely conservation of energy.

We note in passing that a similar result to that of (156) is readily
found for the discrete case of Section II. Proceeding in an analogous
way from (63c¢) and the second form of (71d), we find for the discrete
case

N

_iABlei
Z Xie ! Bloi

1=

9

, Aa = 0. (161)

1
“1 Ni

Similarly the result of (160) is readily seen to hold true to second order,
and by Appendix C must also be true exactly.

Equation (156) states that the loss in nepers A is one half the square
of the magnitude of the Fourier transform of the coupling coefficient,
with transform variable Ag, the differential propagation constant. Since
we deal with the case Aa = 0, the logarithmie perturbation theory of
Section 2.3.6 does not indicate that (156) is valid for long lines; conse-
quently, this approximate result will remain valid only for short line

L
seetions, perhaps subject to a condition such as f |e(s) | ds < 1.
0
It will prove convenient to rewrite (156) in a slightly modified form.
Define
I= c”("\ﬂL'ﬁ'ﬂf e(s) e7/*% ds, (162)
0
We have

L
| 1] = U els) e P ds ). (163)
[1]

[ is closely related to the approximate expression for the spurious mode
transfer coefficient, given in (118). From (162) and (163), (156) may
be written as

o

I~ (164)

A=

13l
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It turns out to be useful to expand the coupling coefficient ¢(2) in a
Fourier series as follows:t

w0
e(z) = 2 e €6, = et (165)
n=—o0

Substituting (165) into (162), we have after some algebraic simplifica-
tion:

. (AﬁL )
0 Sin T 2 — n
I=L Y c(—=1)" il

n—mw ABL
i (_2? B n)

Now, (166) has a rather striking form. Assume for a moment that
the only variation of I (and hence A) with the frequency f of the radia-
tion in the guide occurs through AB. If we take the independent variable
in (166) to be proportional to AB, then (166) is simply the sampling
theorem representation of a complex band-limited funection B e,

a complex function whose real and imaginary parts are each band-

(166)

limited. Taking the dimensionless quantity ASL as the independent

27
INIAN . . . .
> will contain no frequencies | » | greater than 3.} By

4T

variable, T (

(164) the loss A is proportional to the square of the magnitude of /7,
or alternately to the sum of the squares of the magnitudes of the real
and imaginary parts of T; therefore the TEy, loss 4, regarded as a func-

tion of the normalized independent variable L\:)iL, will contain no fre-
m

quencies greater than 1. If for the time being we neglect any variation

of the e,’s with AZ in (166), then I (AOLL) is determined by its values
&

at the sample points. At the nth sample point

t Here ¢, is the ntt complex Fourier coefficient of the continuous coupling
coefficient ¢(z). In contrast, in Section 2.2 above we have used ¢ to represent the
coupling coefficient of the k'® discrete mode converter. In the following work the
meaning will always be clear from the context.

i Here, and often in the sequel, we use the word frequency to denote the inde-
pendent variable v of the Fourier transform of some quantity of interest. In the

. . L .
present case we consider the Fourier transform of I (é,f—) with respect to the
m
ABL ABL

independent variable 5 since 5= s dimensionless, the corresponding Fourier
T us

transform variable » is also dimensionless. Thus, if §(») is the Fourier transform

of I (%), Jg{w) = f I(g) e~i2mvidE.
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AﬁL __21r_L -
o =n, B:E'é*a. (161’)

The n'™ sample point oceurs at the free-space wavelength or frequency
(of the radiation in the guide) where the beat wavelength B is equal to

. L . . . .
the mechanical wavelength b associated with the »*" Fourier coefficient

of the coupling coefficient. The value of I at the nt* sample point is
I(n) = Le,(—1)" (168)

By (162) and (118) the spurious mode transfer coefficient at the ntt
sample point for the continuous bend becomes

Gy(n) =~ jLe, , (169)

with an analogous result for the continuous offset and diameter change.
f(n) and (/i(n) are determined only by the ath Fourier coefficient. At

ABL 7 (ABL

intermediate values of ——, —-—
27 27

sin x . . -
functions, as shown in (166).
@

) is determined by interpolating

between the sample values with

Now the object of the present ealeulations is to determine the loss A
as a function of the frequency f, and later to determine the statistics of
the loss-frequency curves for guides with random imperfections. How-
ever, A is approximately proportional to the free-space wavelength A
of the radiation in the guide, and thus #nversely proportional to the
frequency f, if the two modes involved (the TEqy signal mode and the
spurious mode) are both far from cutoff. Therefore for analytical pur-
poses it is more convenient to choose an independent variable propor-
tional to the free-space wavelength X rather than to the frequency f,
and this is what is done in the present paper. If a single spurious mode
is under consideration, it is most convenient to choose the dimensionless

ABIL A . . .
parameter —_?1, which is approximately proportional to A, as the inde-
T

pendent variable. If more than one spurious mode is being considered,
we see in Scetion 2.4 below that the loss 4 is given by a sum of terms
of the form given in (156), with of course different ¢’s and Ag’s for each
spurious mode. While the different Ag’s are all approximately propor-
tional to A, they have different constants of proportionality, and hence
it is perhaps most convenient to take X itself as the independent variable.

In practice we will consider only fairly narrow percentage bandwidths
(although the absolute bandwidths will be enormous compared with
conventional communication channels) at any one time. Therefore the
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fact that we take A as the independent variable instead of f should
cause no serious inconvenience.

The sampling theorem interpretation of (166) requires that the ¢, ,
defined by (165), be independent of A (or frequency) and hence Ag;
this may or may not be true. Since ¢(z) is given by the product of one of
Morgan’s coupling coefficients and a geometric parameter [see (86) or
(94)], the A-dependence of the ¢,’s is identical to the A-dependence of
(., C,,or Cy. From the equations for these three coefficients given in
Appendix A we see that far from cutoff, C, and C; are approximately
independent of \, as desired, but that ', varies approximately inversely
with A. In Section 2.3.8 below we shall introduce additional coupling
coefficients of Morgan, ZEp,.;, which permit a similar treatment for
general continuous cross-sectional deformations of copper guide; the
Eiwmy vary approximately directly with A. The geometric parameters
associated with €, and C, are the derivatives with respect to distance z
of offset x and radius a respectively; hence these geometric parameters
are dimensionless. The geometric parameter associated with €', is eurva-
ture, which has the dimension of length™. The geometric parameters
associated with the Ep..j all have the dimensions of length. As a con-
venient device for recalling these facts, the exponent of A in stating the
A-dependence of the coupling coefficient is the same as the exponent of
length in stating the dimensions of its associated geometric parameter.

We wish to retain the sampling theorem interpretation of (166) even
in those cases where the ¢,’s are not independent of X and hence of Ag.
Now in those cases where the coupling coefficients are not approximately
constant (i.e., Oy, Ej.m) the variation with X is quite slow. Since as
mentioned above we need consider only narrow percentage bandwidths,
the principal variation with A in (166) oceurs through AS, and not
through the coupling coefficient. Consequently, over the moderate band-
widths of interest we may evaluate Morgan’s coefficients at the middle
of the narrow band under consideration.

There are several more elegant methods for deriving this approxima-
tion that state in effect that ¢, is to be evaluated at the wavelength A,
(or frequency) corresponding to the n' sample point, given in (167),
rather than at the operating wavelength, as implied in (166). This is
certainly true at the sample points, by (168), and appears plausible in
general. In Section 2.3.9 below we show, for example, that under certain
reasonable conditions a guide with a given straightness deviation may
be described equally well as either a continuous bend, for which the ¢,’s
vary approximately inversely with A, or as a continuous offset, for which
the ¢,’s are approximately independent of X. By a suitable transforma-
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tion it is always possible to change the geometric parameter to dimen-
sionless form (in general, to the derivative with respect to z of a param-
eter with the dimensions of length, such as radius, offset, ellipticity, etc.)
so that the corresponding coupling coefficient is approximately inde-
pendent of A (and hence Ag) far from cutoff.

Alternately, this result may be derived by fairly simple manipulation
of the sampling theorem.

The final result, however, is that over the fairly narrow percentage
bands of interest we are justified in neglecting the A-(or frequency)
variation of the coupling coeflicient (i.e., C'; or Eqm).

The TEy, loss A in terms of the Fourier coefficients ¢, is, from (164)
and (166),

A ~ !‘;—- Z E clllcﬂ*( _1)0"7")

sin (A)'BE — ) sin T (L%L — n)
: T T . (170)

T (—AEé — -m) T (ABL - n)
2 2T

At the sample points of 7, given in (167), the TEy, loss becomes simply

Y

Aln) ~ Lj | e |® (171)

As mentioned earlier the bandwidth of /1 is twice the bandwidth of /;
thus the I'ourier transform of A1 with respect to the independent variable
ABL . . .
# will contain no frequencies greater than 1.
T
Therefore while A is also a band-limited function, it has twice as
many sample points as /. Consequently A is not completely determined
by its values given in (171) at the sample points of I. Simple examples
are readily found of two different guides in which the TE,, loss is the
same at the sample points of [, given in (167), but differs greatly be-
tween these sample points. Thus consider the following two ecases, in
which all but two adjacent Iourier components of the coupling coeffi-
cient are identically zero:
z

+ 2cos2x(k + 1) =,

. ) = 2 cos 2xk
{(a) clz) = 2 cos 2nl I

t-“ ™

(b) e(z) = 2cos Qw!.‘% — 2cos 27k + 1) ZE
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24 z z
c(z)=2coszmk{ + 2cosar(k+1)
- z_ z
I i c(z)=z2cosemk{ —2cosam(k+1) ¢
16 A
2
2. / \
1.2 - < -
i\ A
/ \{ \’ \
I n\ \
0.8 it —t
,' \ HAWR!
AR
[ \ I 1
0.4 I \ ] \
. f ] \
/ \ \
/ \ \\ -
o] = "’-\\_ ‘V‘ N —"’ SNl ———
k-4 k-3 k-2 k-1 k K+1 k+2 Kk+3 K+4 k+5
‘ ABL
217

Fig. 10 — Ty loss for coupling coefficient with two sinusoidal components.

The TEy loss A is shown for these two cases in Fig. 10. While the losses
are the same at the sample points of [, they differ markedly in between.
While 4 is not completely determined by its values at the sample
points of I, it is clear from (170) that the principal contribution to A in
the region near the k' sample point arises from values of m and n close
to k. This relation between the T1S loss and the coupling coefficient, is
of great importance, as it means that the additional TEy loss due to
some particular spurious mode in a given frequency range is caused
primarily by the components of the coupling coefficient which lie in a
corresponding (mechanical) spectral region. Thus, for example, loss due
to TEy — TEw coupling in 2-inch guide between 50 and 60 kme is
caused primarily by straightness deviations with periods between 2 and
2.4 feet, the range of beat wavelength B corresponding to this frequency
band.
Equation (170) is also useful in considering situations where only
isolated Tourier coefficients of the coupling coefficient are nonzero; the
TEy loss A then becomes a series of isolated narrow peaks of shape

(SH; 'F) . There are at least two such ecases of practical interest:
i. A periodically supported copper guide that deforms elastically under
its own weight (the “serpentine bend”),” with support period short com-
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pared to the total lenglh of guide between mode filters. The Fourier com-
ponents occur only at the fundamental and harmonics of the support
period; the amplitude of the Fourier coefficients decreases rapidly as
the order of the harmonic increases. Thus the TEqy loss vs wavelength
curve will have a series of equally spaced narrow loss peaks of rapidly
decreasing magnitude.

it. Shuttle pulse measurements in a copper waveguide without mode
filters. Here, because of the absence of mode filters, the pulse traverses
an iterated strueture. Since the Fourier series expansion of the coupling
cocfficient for any number of round trips must be identical to the ex-
pansion for a single round trip, for N round trips only every Nt Fourier
coefficient will be nonzero. Again the TEy transmission will consist of
equally spaced narrow loss peaks separated by wide pass bands of low
loss.®

These two cases will not be discussed further in the present paper.

The spacing between sample points of 7 is an important parameter in
the analysis and in the interpretation of experimental transmission data.
Since AB is proportional to the free-space wavelength A,

A8 = DA, (173)

where the constant D depends on the spurious mode. From (167) the
wavelength corresponding to the nth sample point, X, , is given by
D\ L 2mn

= n, An = D—L . (1[4)

2
Therefore the sample point spacing in wavelength is

27

Ahn = )\Jr+l - An = m-

(1753)

~

Thus from (173) and (175), noting the definition of beat wavelength B
in (167),

= = (176)
where we have dropped the subseript n since the result of (175) is in-

dependent of n. Since

AN __Af
NS (177)

we have finally
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Af BN _ B (178)

b A L
for the sample point spacing, in either frequency or wavelength. We see
from (175) that the sample points are equally spaced in wavelength, and
consequently unequally spaced in frequency. However over a sufficiently
narrow band the variation in sample point spacing in frequency will be
small. The beat wavelength B between TEy and all other TE modes is
tabulated in Appendix D for the frequencies 50, 55, and 60 kme in
2-inch diameter guide.

2.3.8 Morgan’s Coupling Coeflicients for Small Cross-Sectional Deforma-
tions tn Lossless Metallic Guide
Morgan has determined to first order the spurious modes excited by an
incident TE,; wave at a small arbitrary deformation of the cross section
of a eylindrical metallic guide.’ This analysis must include the continu-
ous offset and diameter change studied above when those deformations
are small; it includes in addition higher-order deformations of the cross
section, such as ellipticity, tri-foil, ete.
Let the surface of the slightly deformed guide be given in eylindrical
co-ordinates by

r=a+ plez), (179)
plez) = 2 [a.(2) cos ng + b,(z) sin nel, bo(z) = 0, (180)
n=0

z
(181)

IV lIA

ple,z) = 0, a,(z) =0, b.(z) = 05

z
where a is the radius of the perfect guide. p(g,z) must be suitably small
(we have omitted Morgan’s small dimensionless parameter ¢). Then
the n = 0 term corresponds to a continuous diameter variation, the
n = 1 term to a continuous offset, the n = 2 term to ellipticity, the
n = 3 term to what has been called tri-foil, ete. By (181) it is assumed
that the guide is distorted only in the interval 0 < z < L.

Morgan has shown that to first order a TEy wave incident on the
deformation of (179) to (181) excites the forward and backward TE,,,
modes. We denote the various modes as follows:

Tiom ™ — forward TEy,,
Tiomg~ — backward TEy,,
(182)
Tiww"t, T ™" — two polarizations of forward TE,,,

Ttum"™, Trama™ — two polarizations of backward TE,. .
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We denote the two orthogonal polarizations of each mode (except the
TEom) by the symbols || and 1, rather than the subseripts = and 3 used
in Section 2.1 above. The geometric imperfections of Section 2.1 — offsets
and tilts — could naturally be resolved into components along the -
and y-axes; with the more general deformations of (179) to (181) thisis of
course not possible, and the || and L notation appears more natural.
In the special case n = 1, using the geometry of Fig. 5, we may if we
wish identify a,(z) with x(z), bi(z) with y(z), and the || and L polari-
zations of the resulting TE,,, spurious modes with the subseripts x and
y respectively of Section 2.1.

We normalize the complex mode amplitudes in the usual way [see
(88) and (89)]:

+ r Y
I!Um] (5, - e:F tom® G[Dm]i(z)
+ Flinm)= [ES .
I[nm]]I (z) = ¢ trml (;'[nm]“ (2) (183)
+ Tiomiz gv FES
][nm]J- (Z) = E:F foan] ('[nru] (3)

In lossless metallic guide the propagation constants ', are of course
pure imaginary,

1"[nm] = jﬁ[nm] . (184}
Assuming a unit incident Ty, wave,
Gy T(0) = 1, (185)

the €/, become the normalized spurious mode complex transfer co-
efficients. They are found to first order from Morgan’s analysis, and
given in a slightly modified notation as follows:

[ES
Giam'™ (L) ~ — i f" . (2) IBF 1 (186)
GInmILi(L) I 0 b"(Z)

where the coupling coefficient =, is given by

1 ]I'l'llf"n ru2 1

B = ——= (187)
l : €, (!:] \/ku:112 - '1'2 VBUIBIHH
I, n=20 ,
€, = H Ju (I"nm) = 0- (188)
2 n=1

bt }

[t is worth noting that the angular index n of the spurious mode is
identical to the subseript of the pertinent component of mechanical de-
formation, a, or b, ; therefore, to first order the modes excited by TE,,
at a given deformation have the same angular symmetry as the defor-
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mation. =, is the same for forward and backward modes, and for
both polarizations; in contrast C, , C' , and Cy of Appendix A are different
for forward and backward modes. This contrast in behavior will be dis-
cussed in Section 2.3.9. The Z(,., are given in Appendix D for the fre-
quencies 50, 55, and 60 kme, in 2-inch diameter guide. We note again
that these results hold true only when there is no distortion of the guide
at the ends, z = 0 and z = L, by (181).

Special comment is necessa,ry for the Gm terms in (186), and in
particular for the Gy, term. The n = 0 terms correspond to the TEy,.
modes, which have only a single polarization. Since by(z) = 0 in (181),
the || terms of (186) are the significant ones; and since we have onlv one
polarization, the symbol || may be conveniently dropped. The G " term,
corresponding to the forward TEq, , requires special interpretation. It is
to be considered a first-order correction to be added to the unperturbed
solution, i.e., Gy ™ = 1. Tt is readily seen that Gy " in (186) represents
a phase shift of the unperturbed TEy wave, caused by a change in the
average diameter of the guide.

By analogy with the previous analysis, we may use the results of
(186) to (188) in any of the results of Section 2.3 above for the con-
tinuous case—e.g., (116) to (120)—by substituting —ZEpma.(z) or
— Elumba(z) for the continuous coupling coefficient ¢(z). While these
coupling coefficients were derived by Morgan for lossless metallic guide,
we expect as before that these results provide a satisfactory approxima-
tion for real copper guide by modifying the various propagation constants
to take account of the small losses present in copper guide. The relation-
ship of these results to previous ones for the continuous case is discussed
in Section 2.3.9.

2.3.9 Relationships between Various Metallic Guide Coupling Coefficients

A sufficiently small straightness deviation of the guide axis may ob-
viously be described equally well as a continuous bend, a continuous
offset, or simply as a continuous displacement. For these three cases we
Cipmy s Copm
and Eq. — that yield, among other things, the first-order spurious
mode transfer coefficient of a deformed guide. While the results of Sec-
tion 2.3.4 — in particular (118) for continuous bends and its analog for
continuous offsets and diameter changes — were derived for only a
single forward spurious mode, the result for the first-order spurious
mode transfer coefficient holds true in general, with of course the proper
coupling coefficient, for each of the spurious modes, as discussed in Sec-
tion 2.4 below. Since a given deformation that is suitably small may be
described in these three different ways, and since we must get the same
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answer for the spurious mode output in each ealeulation, the three cou-
pling coefficients must be related to each other. Similar statements ob-
viously apply to the two coupling coefficients Cyp,) and Ejg,, for diameter
variations.

T'or a guide with a continuous bend, confined to the x-z plane, the
TE.,." transfer coefficient is, from (118) and (91), to first order

" Cum”™ - itBerThrm
Gun™ X J | e T gy 189

[1m] I B ) (189)
where R,(z) is the radius of curvature of the guide axis, and the super-
seript @ indicates that the a-polarization is under consideration. If the
slope of the guide axis is small compared to unity, the distance along
the perturbed guide axis is approximately equal to the distance along
the unperturbed guide axis, so that we may regard z in (189) as meas-
ured along a fixed rectangular co-ordinate axis. ['urther we may approxi-
mate the curvature as

1
—~a"(2). (190)
-4
Then (189) may be written
L
™ %.}‘ﬁgmltf 2 (z)e T PorFhmz gy (191)
0

Similarly for a guide with a continuous offset in the x-z plane the spuri-
ous mode output is, from (96) and (118) with the 7 replaced by —1,

L

T : ’ —J m) ¢
G[lm] * =~ —(/'a[m]:h f €r (3)6 #BorFhrm)e dz- (192)
0

It the ends of the guide are parallel; so that
2(0) =2'(L) =0, (193)
and if the perturbation is small, the spurious mode output must be

identical in the two cases and the right-hand sides of (191) and (192)
must be equal. Integrating (191) by parts, we find subject to (193)

L
G“m[:i ~ —(Bn F Bun )(-'l[m]i./; .lf’(Z)eijwm:Fﬂl”')z dz. (194)

For (192) and (194) to be identical, we must have
Cotmi”
(-"f[m]ft
Using (A-1) and (A-2) of Appendix A, (195) is easily shown to be an
identity.

= ."301 q:ﬁ!m- (195)
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Similarly a line with a continuous offset, but with no net offset be-
tween its two ends, is described in terms of displacement of the guide
axis by the results of (186). Thus setting

a(z) = a(z2), (196)

we have for the spurious mode output
L
G[lm]fi ~ -'jE[lm] f :L_(z)e—J(ﬂlH:ﬂslm)z dz, (197)
0

where we have replaced the superseript || in (186) by x. This result is
valid only when the distortion vanishes at the ends of the guide; in this
case this means that there must be no offset between the two ends of the
guide,

z(0) = x(L) = 0. (198)
Subject to (198), (197) must agree with the previous two results. Inte-
grating (192) by parts, and using the condition of (198),

L
(;flm]:HT =~ —J(ﬁﬂl + ﬁlm)CﬂIm]i f -ll(z)eﬁmﬂm:':ldlm}: d'z- (199}
]
For (197) and (199) to be identical, we must have

E[lm] _ ¢
C‘U[m]i - |601 -+ B]m - (200)
By (A-1) of Appendix A and (187), (200) is easily scen to be an iden-
tity.

An analogous study can be made for a continuous diameter change.
Trom Sections 2.3.2 and 2.3.4

Grom™ = —Capa™ ‘/;L v (z)e MPnFhm) g (201)
From (186) we have
G[nm]:k = — JE(0m .’;L a‘"(z)e‘jm"'w"'")z dz, (202)
valid when
ay(0) = ap(L) = 0. (203)

Subject to (203), (201) and (202) must be identical. From (179) we
have r'(z) = a,/'(z); substituting this into (201), integrating by parts,
and using (203),
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L
Glllml:*- = _j(ﬁﬂl + ﬁ"m)("u‘.[m]if aﬂ(z)e—ﬂﬁ“l:‘:ﬁ“m]: ”"z- (204)
0
IPor (202) and (204) to be identical, we must have
Ziom) = Bn F Bom. (205)
C'Lf[m]i

Equation (A-4) of Appendix A and (187) show that (205) is an identity.

It is interesting that coupling coefficients found in such diverse ways
are so simply related, and pleasing that these different calculations are
all consistent with each other.

A simple physical interpretation may be given for the fact that the
mode conversion caused by a given type of deformation of the guide
may be described by different coupling coefficients (with of course
corresponding different geometric parameters). These different descrip-
tions correspond to using different sets of normal modes to describe the
fields within the deformed guide.

For purposes of illustration we take the case of deviation from straight-
ness of the guide axis. The coupling coefficient =y, and (197) corre-
spond to the normal modes of the original undeformed guide. The cou-
pling cocfficient ("5, and (192) correspond to the normal modes of the
deformed guide with eross section perpendicular to the axis of the un-
deformed guide. Finally, the coupling coeflicient €'y, and (191) corre-
spond to the normal modes of the deformed guide with cross section
perpendicular to the axis of the deformed guide. This process may be
carried one step further, using the normal modes of a curved cireular
guide.”

A similar discussion ean of course be given for the two representations
of mode conversion caused by changes in diameter [y, in (201) and
Eom in (202)].

2.4 Kurtenston to Many Spurious Modes and Two Polarizations

Most of the above results are readily extended to include additional
spurious modes, coupled to the TE, signal mode to first order, and two
polarizations of all such spurious modes (except TE, ). First, we may
proceed via the scattering matrices for discrete mode converters includ-
ing many spurious modes, and thenece to the continuous case via limit-
ing processes, as above. Alternately, we may take the generalized teleg-
raphist’s equations, including all modes, and find perturbation solutions
as above, and thence treat the diserete case by limiting processes. The
conelusions of such a study may be summarized as follows:
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1. The first-order spurious mode transfer coefficients for each of the
spurious modes are given as above [e.g., (72), (73), (118) or (186)],
with of course the appropriate coupling coefficient and differential propa-
gation constant for each of the modes.

2. Tor the second-order TEy, transmission parameters (Go, g, A, 4,
®) we must replace each term involving the coupling coefficient by a
summation of similar terms, each corresponding to a particular spurious
mode, with of course the appropriate coupling coefficient and differential
propagation constant for each mode. For this purpose we regard the
two orthogonal polarizations of a spurious mode as two distinet (but
degenerate) spurious modes. Thus for example we write

A S A, Ax>A,, ©O©x20,. (206)

The quantities for the m*™ mode are given for example by (65) and (71)
or (161) for the discrete case, and (116) and (117), (119) and (120), or
(156), (170) for the continuous case, with in each of these equations
the subseript m attached to the coupling coefficients and differential
propagation constants.

Much of this analysis is a straightforward extension of the two-mode
analysis above, and will not be discussed here. The study of convergence
of the approximate solutions, analogous to that discussed in Sections
923.4 and 2.3.6 and treated in Ref. 18, appears more difficult in the
general multimode case, and little work has been done. Of course even
in the simpler two-mode ease we lack precise information on the validity
of the approximate solutions, as discussed above; the same is certainly
true here.

I'rom the results of Section 2.3.7 and (206), the contribution to the
TE,y loss A4 of each of the spurious modes arises from a different portion
of the (mechanical) spectrum of the geometric imperfection. For ex-
ample, consider a guide whose only imperfection is straightness devia-
tion; the most important spurious modes are the forward TE;,, . Con-
sider the frequeney band from 50-60 kme in 2-inch I.D. waveguide. The
beat wavelength range, which is equal to the range of mechanical wave-
lengths of straightness deviation that contribute significantly to the
TEq loss component, is shown in Table T for each of these modes (see
Appendix D).

The coupling coefficients for each polarization of each spurious mode
for discrete tilts and offsets are obtained from (37), (38) and (47)
respectively; for discrete diameter changes the coupling coefficients are
obtained from (51). Thus in (71e) each of the (s should have a sub-
seript denoting the spurious mode, and «; and b, should have subscripts
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TasLe I

8

Mechanical Wavelength Range for 50-60 kme Band in Feet

2.45264-2. 94898
1.99720-2.40812
0.46380-0.56232
0.21503-0.26289
0.12293-0.15228
0.07762-0.09815
0.05134-0.06723
0.03377-0.04763

00 ~1C0 Ut d= SO0 =

denoting the @ or ¥ components of tilt or offset, depending on the polari-
zation of the spurious mode.

For the eross-sectional deformations of Seetion 2.3.8, the continuous
coupling coefficients for the two polarizations of the TE,, mode are

c[urrt]"i—(z) = _E[ﬁl’ﬂ]aﬂ(z), (207&)
Ctam “(2) = —Efumba(z), (207b)

in terms of the geometric parameters of (180). The corresponding differ-
ential propagation constants are for both cases

Ar[nm]rh = l‘[Ill] :F F[nmi . (208)

For the coefficients (', for continuous offsets, we find from (47), by
taking the limiting form of the diserete case, that the coupling coefficients
for the two polarizations of the TI,,, mode are

c[lm]r*(z} = Ca[m]i'-v’(z), (2093)
C[lﬂt]yt(z) = (-’o[m]i'y’(z), (209]))

where as usual 2(2) and y(2) denote the two rectangular components of
the displacement of the guide axis from the z-axis (Fig. 7b) and the
prime denotes differentiation with respect to z. The differential propaga-
tion constants are again given by (208).

Similarly for a continuous diameter variation

c[,,,,i]*(z_l = (.'d[m}:h'f"(z), (210)

where »'(z) is the derivative of the guide radius, and we have again
(208) for the differential propagation constants.

The geometry for general continuous bends (not confined to a single
plane) is considerably more complex, as might be anticipated from the
latter part of Section 2.1.2, and requires special discussion. In general
the guide axis may be a quite arbitrary 3-dimensional space curve; e.g.,
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it may be pretzel-shaped. In such extreme cases we require the notation
of differential geometry to deseribe the guide axis. We will not attempt
to discuss the subject of differential geometry itself,*® but merely use
some of its simpler results.

Let us treat the general continuous case as the limiting form of the
discrete case, as in Section 2.3.2 where the curved axis of the guide was
confined to a single plane. In the present more general case we use the
bent cylindrical co-ordinates p,p,s described in conjunction with (29).
Note that distance along the (bent) guide axis will be called s in the
present section (it has previously been called z), so that z can refer to
distance along a fixed rectangular co-ordinate axis. The other co-ordi-
nates p and ¢ are as defined in Section 2.1.2. We particularly require
the definition of the ¢ co-ordinate. Briefly, lines ¢ = constant are drawn
on the surface of the guide before it is bent, parallel to the (straight)
axis of the guide. After bending (perhaps into a pretzel shape) these
now deformed ¢-lines furnish the g-co-ordinates.

Now consider briefly the differential geometry of twisted space
curves.”® Let r be the vector from a fixed origin to the curve. Three unit
vectors characterize the geometric properties of a general space curve:

t — tangent vector.
p — prineipal normal vector.
b — binormal vector.

Then the following relations hold true:

dr
— 2
s t. (211a)
? -1, (211b)
s P
b=tXp (211¢)
%b =1, (211d)
S T
dp _ 1y 1y (211e)
ds T p

. . . | . .
In (211) p is the radius of curvature, - the curvature; similarly = is
p

. . 1 . . .
called the radius of torsion, - the torsion. The principal normal p lies
T



KNOWN IMPERFECTIONS 1099

in the plane of the circle that best approximates the twisted eurve in
the neighborhood of a given point; the radius of this eircle is of course
the radius of curvature p.

Now let us consider the limiting process in which a guide with a con-
tinuous three-dimensional bend is considered as the limit of a guide with
closely spaced discrete tilts. In the following let 6(s) represent the orien-
tation of the elementary discrete tilt located at distance s along the
(bent) guide axis, measured in the bent cylindrical co-ordinate system
described above in the present section and in Section 2.1.2. Then in the
limit as the discrete tilts become a continuous three-dimensional space
curve, 6(s) is given by

ds T

I'rom (37) the continuous coupling coefficients to the two polarizations
of the TE,,,” spurious mode are:

dé(s) _ 1 (212)

cos 6(s)

m o (8) = Cym™ ——— 213
Cam (8) ) (213a)
sin 0(s)
m (s) = C mi'c“n . 213b
Cam (8) Y ( )
Similarly for the TM;, " spurious mode:
can’(s) = (rmu‘i-'(ME (214a)
p(s)
can”t(s) = ('t{11)+'sl“ bs) . (214b)
p(s)

p(s) is the radius of curvature, determined from (211b). 6(s) is found
from (212) as the negative of the integral of the torsion ! , determined
T

from (211d).

The results of (213) and (214) are sufficiently general to include such
things as pretzel-shaped waveguides and other unusual deformations.
However since we seldom expect such things in practice, we seek to
simplify these results. We are guided by the simplification in the diserete
case that is discussed following (37). We assume that the angular devia-
tion of the guide axis from the z-axis of an z, y, z rectangular co-ordinate
system remains small;

| 2'(2) | « 1,
Li'(z) | K 1.

(215)
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Further we assume that the ¢ = 0 co-ordinate on the surface of the
guide initially lies in the -z plane, and that it remains close to this
plane. Then from (38), by the usual transformation from the discrete to
the continuous case, we have

s Rz, (216a)

cosf(s) ~a"(2), (216b)
p(s)

sin 0(s) ~ 4" (2), (216¢)
p(s)

to be substituted into (213) and (214). The superscripts @ and y of
(213) and (214) in this special case correspond to linear polarizations
defined with respect to the z and y axes of the fixed rectangular co-
ordinate system; in general the superscripts of (213) and (214) corre-
spond to the ¢ = 0 and ¢ = 7/2 planes in the bent eylindrical co-ordi-
nate system. The approximations of (216) are found directly for the
continuous case in Appendix E.

III. THEORY OF GUIDES WITH RANDOM DISCRETE IMPERFECTIONS

We now apply the results of Section IT to the study of guides with
random discrete mode converters. The following cases of practical
interest will be discussed:

1. Guides made of individual pipes that are perfect right cireular cylinders
of identical diameter and length I, but that have randomly imperfect joints,
with either tilts or offsels. The first-order spurious modes in this case will
be the TE,, family, with the most significant being the forward TEn
and TE,. , and for tilts the forward TM,, . Both polarizations of each
spurious mode must of course be considered.

ii. Guides made of individual pipes that are perfect right circular cylin-
ders of identical length ly with perfect joints (no tilts or offsets) but of
slightly different random diameters. The spurious modes will be the TEq,,
family, with forward TEy. the most important. Tach mode now has
only a single polarization.

The statistics of the TEy loss will be determined in terms of the statis-
tics of the guide imperfections. Only the case of individual pipes of
identical length will be considered.

The necessary results from Section IT are summarized below in Sec-
tion 3.1. Section 3.2 states the statistical models adopted for guides
with random tilts, offsets, and diameter changes. In Section 3.3 the ex-
pected value of the average TEy, loss, and the power spectrum and total
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power (expected value of the mean square value) of the Ty loss varia-
tion about its average value, are determined in terms of the statistics of
the random offsets, tilts, or diameter variations of the guide. In Section
3.4 these results are extended to cover long guides with mode filters.
Representative numerical examples are given in Seetion 3.5 for a 20-
mile total guide length. Section 3.6 considers the application of certain
of these results for tilts and offsets to helix guide.

Most of the work of Section 111 will be confined to copper guide. As
before, we assume that the coupling coeflicients for ideal metallic guide
provide a good approximation to those for copper guide, but modify
the (pure imaginary) propagation constants for ideal metallic guide
to account for the loss present in copper guide. Of course the analysis
for diameter changes applies equally well to copper or helix guide.

3.1 TEy Loss — Summary of Previous Results

We give below the T, normalized loss (in nepers) A, written in a
form suitable for the purposes of the present section. These relations are
readily obtained from the results of Section II, and in particular from
Section 2.4 and (37), (38), (47), (51), (61) to (65), (71d), (7le),
(161), and (206). I'irst, from (206) the total TEy loss A is given as
the sum of terms due to the individual first-order spurious modes;

x> A,. (217)

The term A,, due to the wm'" spurious mode is given below in (218) and
(219). In these and similar relations involving only a single spurious
mode we omit the subseripts denoting the spurious mode on the coupling
coeflicients and differential propagation constants, in order to avoid
unnecessarily cluttering up the equation. Therefore for each spurious
mode

N—1

A= 4., + Z: Ay cos kAgly (218a)
where
N—k
Ap = 03 (elend + eiteit), 0=k =N —1. (218b)
i=1
Tilts:

(" a;jcos 0, ~ (') o
) N (218¢)
(_ff a; S 0 ~ r; oy .
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Offsets:
= Cobi COS 61’ = Crabf'“
. ) (218d)
= C,b; sin 8; = C,b.*".
Diameter change:
= ('dAl'g
. (218e)
T, = 0

The distinetion between A, of (218a) and (218b), the A*" Fourier co-
efficient of the TEy loss due to a single spurious mode, and 4, of (217),
denoting the TEy loss due to the m spurious mode, will always be
clear from the context. In particular cases the subseripts indicating the
spurious mode will always be enclosed in [ Jor () to denote TE or
TM spurious modes respectively.

I'or the case of zero differential attenuation constant, an alternate
form is sometimes useful. From (161) for each spurious mode we have
(with mode subscripts again omit.ted)

E 1,.“ —mﬂiu‘

i=1

9

L —jApl )
I

i=1

i Aa = 0. (219)

1
~3
The s are again given by (218¢) to (218e)..

In the above results we have chosen to group the two polarizations of
each spurious mode (T, and TM,;, ) for tilts and offsets in each term
of (217). We use the symbols || and L to distinguish the two polariza-
tions, rather than x and y as in Section IT. The length of the individual
pipes is [y, the total length of guide is Ly = Nly.

In these results the significant frequency dependence, at least over
moderate bandwidths, occurs through the Ag, the differential phase con-
stants between TEq and the spurious modes. Far from cutoff (the case
of greatest practical interest) the A are approximately proportional to
the free-space wavelength A. A great simplification in the subsequent
analysis is obtained by neglecting the frequency dependence of Aa and
the x.’s, setting these quantities equal to their values at the middle of
the band of interest. Then A, , the contribution to the TEy, loss of con-
version to the m spurious mode, becomes a Fourier series, periodic in
A, with random coefficients A, , as given in (218). A, the total TIy loss
due to mode conversion, is given by a sum of periodic components of
incommensurable periods, according to (217).

Over moderate bandwidths, the effect of the frequency dependence of
Aa is small far from cutoff. For offsets and diameter changes, the fre-
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quency dependence of the coupling coefficients and hence the a; is also
small far from cutoff; however, for tilts the x; vary approximately in-
versely with A. Thus, the above approximation may appear questionable
for tilts, but is used even here because of the resulting simplification in
the analysis. [Compare the discussion in Section 2.3.7 following (169).]

We thus regard the loss A as a function of the frec-space wavelength
A, and write

A=A4A+3s4 (220)

where A is the average value over free-space wavelength A of the loss
over some suitable band, and 64 is the deviation of the loss from its
average value. The expected value of the average loss <A, and the
power spectrum of §4 and its total power or the expected value of its
average mean square value <(54)?>, are easily found in terms of the
statistics of the random Fourier coeflicients A, ; the bar again indicates
an average over the free-space wavelength .

A more exact treatment of the loss statisties, one that avoids the
above approximations and includes the frequency dependence of all
quantities, is straightforward but lengthy. A brief discussion, given in
Appendix IY, of the statistics of each of the two terms of (218a) as
functions of A, verifies the approximate analysis.

3.2 Statistical Model of Guide

3.2 Tilts and Offsets

We assume that the parallel and perpendicular components of tilt or
offset (a', a* or b', b*) are independent Gaussian random variables
with zero mean and equal variance; tilts or offsets at different joints are
assumed to be independent, and to have the same distribution. Then the
magnitude of tilt or offset (a« or b) will have a Rayleigh distribution and
the orientation (8) will be uniformly distributed between 0 and 2=, and
these two quantities will also be independent.

I'rom (37), (38), (47), and (218¢) and (218d) we have

v ] ' L v
.H:(,a 1‘*=(ral ‘U:(ga
’ : ) . .
b bt b

Thus identical statements to those above may be made about z', 2*, »
and 6.

['or convenience we state the following results in terms of 's; any of
these equations obviously holds true if @ is replaced by « or b throughout.
The rms value of @ is denoted by #; thus
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. Clad
;== Crats’ (222)

where the symbols < > denote the expected value of a random variable.
Then the various probability distributions at any joint may be written
as follows:

S —(L_“)z p(z*) = 1 ex —(L—J-)2
Var P T\&) 0 PTG (e
pal,a®) = p(:v“)p(m*)

p(a")

2\’ 1
pla) = E‘XD —(—f) , >0 p(8) = 5
0<o< (224)
plap) = pla)p(6).
We have:
@ =ah =0 <« =0
a2 a4 (225)
2y ety T 4y 3
(.L>—(.L>—2, &' @t = I
@ = l/)_; g @b =4 b =28 (226)

Subscripts indicating the joint or mode converter have been omitted in
the above relations. Since different joints are independent, for two differ-
ent joints 7 and j we have

¢ty = e = @l =0, 1#] (227)

Subscripts denoting the spurious mode have been omitted in the above
equations.

3.2.2 Diameter Changes
The radius of the 7" pipe r, is given by
r., = 4a + €; (228)

where a is the average radius and ¢; a small random variation about the
average. The ¢ are assumed to be independent Gaussian random vari-
ables with zero mean and variance €.

1 €
ple) = Vot exp ~ 5 (229)
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e = 0; &> =&; Leep =0, 1] (230)

Then Ar;, the change in radius at the 7t joint, is given by
Ar, = € — €1, (231)

9

and has a Gaussian distribution with zero mean and variance (Ar)

1 (Ar;)®
(Ar;) = ———=exp — —==;  Ar = /2 (232)
P V 2mAr : 2(ar)” \&

However adjacent joints are no longer independent; from (231) Ar; and
Ar;are independent only if | j — 2| > 1. Therefore:

<Ar;> = 0.
<(Ar) = (Ar)! = 28
o2 y (233)
<.‘l?',"’..\?';i1) = —(A‘;) = —¢.

Aridry =0, |j—1| > 1L

Equations (232) and (233) apply also to the corresponding x;, given
by (218e) for a diameter change, for any spurious mode, by making the
substitution Ar; — 2, and Ar — &, where & is given by

&= CyAr. (234)

Subseripts denoting the spurious mode have again been omitted in the
above equations.

3.3 Statistics of the Ty Loss for a Single Section of Waveguide belween
Made Filters

3.3.1 Offsels

IFor a copper waveguide section whose only defects are independent
random offsets at the joints between pipes, the most important spurious
modes will be the forward TE;. and TI,, , with the other forward TE;,.
modes contributing only a small amount to the total TE, loss. Neglect-
ing the frequency dependence of all quantities except the Ag, we have
from (218a) and (220) for each spurious mode:

A =44 a4,

A4 =34, (235)

N1
84 = D Ay cos kABL ,
=T
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where the random Fourier coefficients 4, are given in (218b), together
with (218d). The subscript indicating the spurious mode has again been

omitted.
The following moments of Ay are easily determined from the results of

Section 3.2.1:
<Ay = &N,

(236a)
Ay = #'N(N + 1).

(N — k)= 1<k =N — 1. (236b)

o &
lvl -

<A =0, <A =

KA Ap =0, Lk #L. (236¢)

From (235) and (236a) the expected value of the average TEn nor-
malized loss due to each spurious mode is

>
(5]

<A> = = N. (237)

W=

From (236b) the (discrete) power spectrum of 84 is
‘.4 3 /!
P = A = i (N — k)™ | k<N —1 (238)

From (236¢) the different Fourier components of 84 are uncorrelated.
The total power, or the expected value of the mean square value, of 64
is found by summing over the discrete power spectrum P . I'rom (238):

N-1 Pl .
A = 3 Pe== 3 (N — k)
k=1 4 =

# el |:N 1 — e,vm.xro:l (239)

pE e Rl
Strictly speaking, the average over free-space wavelength A indicated by
the bar in (237) and (239) must be taken either over a single funda-
mental period of 84 (such that ABl, changes by 2m) or over a band large
compared to a single period. Let A\ and Af be the interval in wavelength

and frequeney, respectively, corresponding toa fundamental period. I'rom
(167) and (173) we find

=]

Af 0 _ B
N b
where B is the beat wavelength, tabulated in Appendix D, and [ is the
distanee between joints in the guide. (This result is similar to that of

(240)
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(178) for the sample point spacing; in (178), however, the length L is
the total length of guide.)

Equation (239) simplifies in two special cases of interest:

1. Small differential loss over total length Ly = Nl .

A4
GA® = “SLN(N —1); —N2Aal, < 1. (241)

2. Large differential loss over total length Ly , small differential loss
over pipe length [, .

:f:‘ N '—]VQAC!I(] > 1 (‘)49)
(8A) = ; o
( 8 —Aali’  —2Aal, < 1.

We recall again that Aa is negative throughout the present treatment,
in which the TEy signal mode has lower heat loss than any of the
spurious modes.

Referring to Section 3.2.1, <4> and vV <(84)% are both proportional
to the square of the rms offset at the joints between pipes. <A> is pro-
portional to Ly, the length of the waveguide section. \/(W) is
initially proportional to Ly , when Ly is small enough so that the differ-
ential loss may be neglected; for large Ly it becomes proportional to
Ly .

The power spectrum P, of (238) has its maximum value for k = 1,
and decreases monotonically as & increases to N — 1. For small differ-
ential loss P is triangular; for large differential loss it is exponential.
The “3-db bandwidth” of the power spectrum P, the value of k for
which P; is equal to half its maximum value, is related to the rate of
variation of the TEy loss component due to a particular spurious mode.
We have:

N

]x‘;;ln, = F; —N?Aaln «1 (243{1.)
09
Fsan = 0.692 i —N2Aal, > 1. (243b)
—2Aaly
Making use of (167) and (173), we find
Afsan _ ANsas B )
~ = 244
PN T Taals (244)

for the interval in free-space wavelength or frequency (of the radiation
in the guide) corresponding to the 3-db bandwidth of the TEy loss
variation.
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The statistics of the total TEy loss due to mode conversion are given
simply by summing over the contributions of the individual spurious
modes. From (217) we have

CA> = Y <A, (245)
[m]

BAY = 2 <(3Awm)®, T (246)
[m]

where [m] indexes the TE,,, " spurious modes. The individual terms in
(245) and (246) for each spurious mode are given by (237) and (239)
(or (241) and (242) in special cases), in which the subseript [m] has
been omitted for convenience. The power spectra of the 64, are given
by (238). From (222) and (237),

2
> =N 5 0 (247)
2

A practical waveguide system will contain mode filters for the TE;,,
modes at a close enough spacing so that the differential losses for the
important spurious modes are small in each section. For this special
case we have from (241)

2.2
AV = @f\l(év—” 3 Co's —N2Bapls < 1. (248)
In (247) and (248) <b®> is the mean square magnitude of offset,
is Morgan’s coupling coefficient between TEy and TE,, for offsets,
given in Appendix A, and Aagn = @@y — @, the difference in at-
tenuation constants of the TE) and TE..T modes.

Formulas and numerical values for the various coupling coefficients
and beat wavelengths are given in Appendix A and D. For a frequency
of 55 kme and a 1-inch guide radius, (247) and (248) become, summing
over the nine propagating TE;,," modes:

2
A> = d)—;\f (1.107 + 4.581 4+ 0.641 + 0271 4 ---)

= <™ N(3.519); <b* in inch®. (249)
2.2
A = W_—l) (1.226 + 20.984

+ 0411 4+ 0074 + ---)

t No cross terms appear in the summation of (246) because, subject to the
approximations of the present section that neglect the frequency variation of the
coupling coefficients (C; , C,, , and Cy) and the Aa’s, the Fourier components of the
different 8A[. have incommensurable periods, and hence their total powers or
mean square values may be simply added. The cross terms are treated exactly in’
Appendix F.
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= B'N(N — 1)(2.842)
V(6A)D = > V/N(N — 1)(1.686) ; <b™ in inch’,
—N2Aapmly < 1.

(250)
The most important terms are those due to TE;" and TE,,".

3.3.2 Thlts

We next consider a copper guide whose only defects are random tilts
at the joints between pipes. The spurious modes are the forward TE;,
with TE;," and TE;, " the most important, as in the offset case above,
and in addition the forward TMy,. The effects of the TE,, " modes on
the TEq, transmission are given by the results of Section 3.3.1 above
[see (235) to (246)], using of course the appropriate coupling coefficients
for tilts [see (218¢)]. However, TMy " requires special consideration.

Bquations (235) and (236) apply to TMyu" as well as to the TE,,.
modes. For TM,;,", AB = Aa in copper guide. Thus the beat wavelength
for TMy, " is very long—3195 feet in 2-inch I.D. pipe at 55 kme—com-
pared to the beat wavelengths of the TE,, modes, and long even com-
pared to the length of guide sections between mode filters in a practical
waveguide system.f Thus, the bandwidths we will consider (e.g., 50-60
kme) are only a small portion of the fundamental period of Aap ', the
TMu" component of the TEy, loss, as given in (240), and so the sum-
mation of powers of Fourier components given in (239) is no longer
valid in determining the mean square loss variation. In fact Aay " will
be almost independent of frequency (except for the slow variation of
coupling coefficient, which is inversely proportional to free-space wave-
length A, neglected over moderate bandwidths in the present analysis).

Thus, consider a section of copper guide short compared with the
TMy " beat wavelength (3195 feet). Then both Aa and AS may be set
equal to zero. I'rom (219) the T, component of the TEq loss is

1*—]ﬁ‘,.i|"' 1[5 T 25
Adan _E[{_1.!i] +2[§1¢] . ...-‘)])
This is simply equal to the T, loss due to TMy  at a single tilt equal
to the net tilt between the input and output ends of the guide. This
result is obvious from the fact that we have neglected both attenuation
and phase shift in the relatively short sections of guide under considera-
tion. The loss is therefore independent of the lengths of guide between

t This is true only for unmodified copper guide. A thin dielectric coating will
reduce the TEq-TM;* beat wavelength to much smaller values;*'3-1% the present
treatment of TMp* will obviously not apply in such a case.
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discrete mode converters, and these lengths may thus be set equal to
zero, yielding only a single tilt whose magnitude and orientation are
equal to the net tilt between the ends of the guide. This result holds
true for TM;, ™ for any arbitrary continuous bend of the guide axis,
which may be considered as the limit of a series of discrete tilts (Section
2.3).

To this approximation Aay™ is thus independent of frequency (ex-
cept for the slow variation of coupling coefficient with X). TM,, " thus
contributes to the average loss A but not to (§4 )2 Thus (245) contains
an extra term, while (246) remains unaltered.

<A> = (Adpg + <A™ (252)

Adpe = D <A (253)
[m]

(8A)> = [Z:<(5A[,,,1) > (254)

The index [m] again indexes the TE,;, " modes. <A,> and <(84 ) )»
are again given by (237) and (239) (or (241) and (242) in special
cases) and <Ay "> is also given by (237), with the appropriate coupling
coefficients for tilts. Equations (238), (243), and (244) remain true
for the TE;.." components of the TEy loss. The results analogous to
(247) to (250) for tilts are summarized below.

- >N o
Adp = Z Cotm)’ (255)

..; [m]

(Ci >N 2

+
Auy > = . Cian

(TI\‘[([UVII) (256)
For small differential loss (because of mode filters),

>N -1
By — “_‘Si‘.r_) Z] Cum'; —N28aply K 1. (257)
[m
<a®> is the mean square magnitude of tilt. Substituting numerical values
for the C',"’s from Appendix A, for a frequency of 55 kme and a 1-inch
guide radius, (255)—(257) become, summing over the nine propagating
TE;,," modes:

Ad>pg = @>N (29.465 + 81.085 + 0.616 + 0.057 4 ---)

¢.a

(84

= >N (55.619); <> in radian®. (258)
Aay™ = «@>N(14.598); <™ in radian’. (259)
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<7“'>'NQN =1 (868,18 + 657474 + 038 + -+

(84D
= @>'N(N — 1)(93041)

V(sA)n = <@> VNN — 1) (30.503); <@ in radian’,
(260)
— N2Aap,)ly K 1.

Again the most important terms are those due to TE,; " and TE,,", and
for the average loss, to TMy, " in addition.

For a given (copper) guide Aqy, ™, the TMy " contribution to the
(average) TIy loss is determined simply by the net tilt between the
input and output of the guide, as discussed above. The present model,
which assumes that the only imperfections are tilts at the joints between
perfect pipes, seems grossly unrealistic as far as the effects of T M, " are
concerned for any practical guide, for at least two reasons. First, practical
pipes will have long bows or gradual curvature of the guide axis; this
factor will probably be much more important in determining the net
tilt between the guide input and output than tilts of the very small
angles of interest here. Second, practical guides may be subject to
mechanieal constraints of various types which will also introduce slow
variations in curvature of the guide axis.

In contrast, gradual curvature of the guide axis will have little effect
on the TE,,, components of the TEy, loss for reasons indicated in Section
2.3.7 and to be discussed in detail in Section IV; this is so because only
straightness deviations whose wavelengths are approximately equal to
the beat wavelengths of the important spurious modes contribute to
the T1, loss in copper guide.

Consequently the effect of TM,," on the average loss has been stated
separately for the particular model discussed here; it is given in (256)
and (259) for whatever tutorial value it may have. As stated above,
TMyu™ will have no significant effect on the variation of TEy, loss about
its average value for the relatively short mode filter spacings which
must be used in a practical waveguide system.

3.3.3 Diameter Changes

Finally, consider a copper or helix guide whose only defects are
random diameters of the individual pipes, which are perfect right circular
eylinders and have no tilts or offsets at their joints. Again from (218a)
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and (220) for each spurious (TEp,) mode we have, as in (235) for
offsets or tilts:

A=A+ 684
A =14, (261)

N1
64 = Z Arecos kABL .
=1

The random Fourier coefficients are again given by (218b), together
with (218e).

N—Fk

Ay = N Y g (

i=1

o

62)

The subscript indicating the spurious mode is again omitted.

The moments of the A, must be slightly modified from those given
in (236) for independent offsets and tilts, because of the correlation
between adjacent diameter changes imposed by the present mathemati-
cal model and because each spurious mode now has only one polarization
rather than two. From (228) to (234):

<Ay = &N, <A = (N + 3N — 1). (263a)

CAp = —; (N — 1)¢*
) y (263h)
A = fl—' (N? + 5N — 8)¢*4el

<A

Il

at )
0, <A =73 BN = k) — 1],
2 (263¢)

2

lIA

’u'—éN—l.

[ —(N=-D[t—-k=1
<,-1¢<.Al,>=.f:’c“‘“”"""] +UN =Dyl —k=2[0<k<1,(263d)
L 0 l—k=z=3

—N-1N+4)| [1=1

CApdp = :r-‘e“‘“"l-][ + (N —2) 1 =21 (263¢)
( 0 123
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From (236a) and (261) the expected value of the average loss due
to each spurious mode is again

s

A> =2 N, (264)

£
2
as in (237) for offsets or tilts. However, the statistics of the A,’s, as
given in (263), differ from those of (236) for tilts and offsets. Because
<Ay is no longer equal to zero, the expected value of the TEy loss will
have a fundamental periodic component, in addition to a de component.
Consequently it is convenient to rewrite the first relation of (261) as
follows:

A = A + <Ap cos ABl, + 84, (265)
Thus,

N—1
§A" = (Ay — <Ap) cos ABly + 2, Agcos kABly . (266)
k=2

<Ap> is given in (263b). A is the average loss as before, <A;> cos ABl
is a slowly varying sinusoidal component of loss whose period equals
the fundamental period of the TEy loss (see (240)), and 64’ includes
the remaining random loss variations. The (discrete) power spectrum
Py’ of 84" is given by

» 1A — <dph); k= 1.

P = (267)
1eAS i 2=k =N-—-1.

From (263d) the different Fourier components of 64’ are now uncorre-
lated only if their indices differ by three or more. This does not affect
the ealeulation of the total power of 64’, which remains simply the
sum of ',

4

p I gthale | — (Naalo
((54)>—EP»L=“:11 _oAHJDI:\_l_GEAaIu]

e

(268)
2Aaly
€ (¥—1)2Aal (N — 1) ssa
—l_gﬁ.ﬂcﬂu[l—e °:|+-i2 e,
Again for small or large differential loss, (268) simplifies:
1. Small differential loss over total length Ly = N, .
At
<(s4")" = ‘é; (3N —1)(N = 1);  —N2dal, < 1. (269)
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2. Large differential loss over total length Ly, small differential
loss over pipe length [, .
aN —N2Adaly > 1
—Aaly’  —92pal, < 1

ad
A = ”8; (270)
<A> and <(8A")*> have the same general functional form as for tilts
and offsets. The “3-db bandwidth” of P’ is approximately the same
as given in (243)—(244) for tilts and offsets.
The statisties of the total TEy loss due to mode conversion are now
given by summing over the TEy. " spurious modes.

<Ay = D <Anp (271)
{m]

BAHYD = 2 <(8A )P (272)
[m]

The individual terms in (271) and (272) are given by (264) and (268)
(or (269) and (270) in special cases). In addition, each spurious mode
will contribute a single sinusoidal component to the TEy, loss, of magni-
tude given by the middle term of (265). From Section 3.2.2 and (264),

<A> = <N Y Cupt” (273)
f

where <€ is the mean square variation of pipe radius.

In discussing the effects of the TE,;,," modes in the first two parts of
this section, it was assumed that the line contained ideal mode filters
at a close enough spacing so that the differential loss in each section
could be neglected. However, a practical mode filter in 2-inch guide
presently consists of a section of helix guide, which has a low loss for
the TE,, spurious modes (although it effectively suppresses all other
spurious modes). In the present case it is therefore assumed that there
will be no mode filters in the entire length of line between repeaters.
Thus, the total differential loss will be large, and the approximate result
of (270) yields

3 ¢eD'N Camy" . —N28aml > 1, (274)

(8AD = ]
(84° 2l w1 —Adm —2Aaly K 1.

Substituting numerical values for the coupling coefficients and the
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Aa’s, for a frequency of 55 kme and a 1-inch guide radius, (273) and
(274) become:

(A> = ¢ N (2424 + 0771 + 0304 + 0244 + ---)
= <> N(4414); < ininch’. (275)
A =2 “”’_\1 X 10%(7.197 + 0.274 + 0.037 + 0.008 + -+ -)
2ly
<'N

(11.28 % 10Y)

0
—_— o N <fe) in i“('h2
V@A = @ ,‘/;lr (335.9) ;
0

Iy In feet.
—N2Aapqle > 1, —2Aapmly L 1. (276)

In these results the summation has been extended over all of the propa-
gating Ty, " spurious modes, TEq*-TEw . The most important modes
are the first few T, *; for <(647)2> only TEgp " and TEy* are significant.

Finally, the sinusoidal component of the TEy, loss contributed by the
T, " spurious mode is, from (265) and (263b),

<,’l”m]>(.'-().‘5‘ Aﬁ[,,,|lu = —(Ez>(N - I)Cd[m]zCOS Aﬁ[,,,]ln H

(277)
- Aa[,,.]!u << 1.

3.4 TIEy Loss Statistics of @ Long Guide with Ideal Mode Filters

Consider a long guide made up of M sections of imperfect guide of
equal length and the same statistical parameters, separated by ideal
mode filters. We must evaluate the over-all transmission statistics of
the guide in terms of the transmission statistics of each section, given
in Section 3.3. The transmission parameters of such a guide with ideal
mode filters are given in (146). Since for the present we are concerned
with only the over-all TEy loss A, we have

M
A = D> A (278)
=1
+A is the total TEgy loss, due to all spurious modes, of the &t section of
guide. I'rom (220) we write
pd = d + 8,4, (279)

IFurther, for the loss of the entire guide (with mode filters)
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A =44 84 (280)

where
_ M _ M
A=24, 84 =2 8A. (281)
k=1 k=1

We assume that each section of guide between mode filters is statisti-
cally independent of all other sections. Then from (281)

M

CA> = D0 GA> = M A, (282)
k=1
M

BAYD = D <(8,4) = M<(5,A4)®, (283)
k=1

where M is the number of sections of guide separated by ideal mode
filters.

Finally, from (278) and the central limit theorem,” if M is large the
over-all loss A, regarded as a function of free-space wavelength A, will
be a Gaussian random process; this random process in general will not
be stationary, although over the relatively narrow bands of interest it
may often be assumed stationary.

3.5 Numerical Examples

In the present section several numerical examples are presented to
provide concrete illustrations of the above results. A 20-mile total guide
length, made of 2-inch I.D. pipes 10 feet long, with equally spaced ideal
mode filters, is considered in all cases; the operating frequency is taken
to be 55 kme. It is assumed that the mode filters have infinite loss for
the TE;, " and TMyu™ spurious modes, zero loss for the TEy signal
mode and the TE,," spurious modes. The results for tilts and offsets
apply to copper guide; the results for diameter variations apply equally
well to either copper or helix.

3.5.1 Offsets

Assume an rms offset such that the additional average loss due to
mode conversion to the forward TE,;,, modes is 1 db/mile (compared
to the theoretical TEy heat loss at 55 kme of 1.54 db/mile). Two cases
are considered (see Table II): (1) mode filter spacing such that the
rms loss variation for the 20-mile line is 1 db, and (2) a 200-foot mode
filter spacing. The formulas for zero differential loss are used for sim-
plicity, since the differential loss for TE:»", the most important spurious
mode, will remain small.
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TasLe 11
Case 1 Case 2
Average loss 1 db/mile 1 db/mile
RMS total loss fluetuation for 20-mile line 1db 0.407 db
RMS offset 7.87 mils 7.87 mils
Mode filter spacing 1160 feet 200 feet
Afyan for TE ;2" 209 me 1211 me

3.5.2 Tilts

Assume an rms tilt such that the additional average loss due to mode
conversion to the forward T, modes is again 1 db/mile. The addi-
tional average loss due to conversion to TMy" is stated separately
because the present model is unrealistic as far as TMy " is concerned,
for reasons stated in Section 3.3.2. Two cases are again considered (see
Table II1): (1) mode filter spacing such that the rms loss variation for
the 20-mile line is 1 db, and (2) a 200-foot mode filter spacing. The
formulas for zero differential loss are again used for simplicity.

TasLe III

Case 1 Case 2
Average loss TE,," modes 1 db/mile 1 db/mile
Average loss TM,,* 0.262 db/mile 0.262 db/mile
RMS total loss fluectuation for 20-mile line | 1 db 0.465 db
RMS tilt 0.114° 0.114°
Equivalent erack on one side of joint 3.96 mils 3.96 mils
Mode filter spacing 890 feet 200 feet
Afyap for TEp* 272 me 1211 me

The TEy average loss due to TMy; ™ conversion will depend only on
the net angle between the input and output of a waveguide section
between mode filters for a mode filter spacing short compared to 3195
feet, the TM,," beat wavelength in copper guide. As discussed in Sec-
tion 3.3.2, this angle (Table I'V) will depend principally on long bows
in the pipes and on the way in which the guide is laid.

Tapre IV

Mode filter spacing........... e 200 feet 1000 feet

Ldb/ | 0ldb/ | 1db/ | 01db/
Average loss, TM " ... . ... ... ... mile mile mile mile

RMS net angle between input and out-
put of waveguide sections. . ... ...

1.00° ‘ 0.316° 2.23° ‘L 0.706"°
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3.5.3 Diameter Changes

For diameter variations there are no mode filters for the spurious
TEs, " modes. Therefore, the mechanical tolerance required to yield an
rms loss fluctuation <(847)2> of 1 db for the 20-mile line is determined
(see Table V); the additional average loss will now be very small.

TasLe V
Average loss 0.214 db/mile
< (8A")?>: RMS total loss fluctuation for 20-mile line 1db
RMS diameter variation 6.50 mils
Afaap for TEp™ 11.3 me

Sinusoidal Components of TE,, Loss for 20-Mile Line

Mode Peak-to-Peak Amplitude Period
TE " 4.690 db 4791 me
TE* 1.492 db 1832 me
Tyt 0.762 db 974 mc
TEys* 0.472 db 600 me

3.6 Helix Guide

While the above results for diameter changes apply to both copper
and helix guide, the results for tilts and offsets apply only to copper
guide. Equivalent results for helix would require the coupling coeffi-
cients for the normal modes of the helix at tilts and offsets. However, a
very simple argument shows that A, the average loss, will be identical
in a helix and a copper guide which have identical tilts or offsets; Ay ,
the TM,,* component of the TEy loss, must now be included in the
copper pipe average loss in the case of tilts, as shown below. In addition,
the spurious modes have such a high loss in helix that the TEy loss
fluctuations will be very small.

From (235), (218) and Section 2.2 we see that 4 is simply the sum
of the TE, signal losses at each individual discrete mode converter
(tilt or offset), where by signal loss we mean —In sy , where s is the
TEq transfer coefficient of the diserete tilt or offset. From Section 2.1.4
oo 18 identical in copper and helix guide with equal tilts or offsets.

Therefore the above results for the expected value of the average
TE,y loss for tilts and offsets hold equally well for helix waveguide. The
TEgy loss fluctuations in helix will be very small for these cases.
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3.7 Conclustons

Experimental copper waveguides have been built whose tolerances
are far better than those of the numerical examples in Section 3.5.
Since the average loss and the rms loss variation are proportional to the
square of the rms tolerance, it is clear that tilts and offsets at joints
and uniform diameter variations of the individual pipes will not con-
tribute significantly to the observed Ty loss in these waveguides.
Consequently the additional TEu loss observed in present experimental
waveguides must be due principally to continuous mode conversion,
and in particular to continuous random deviations from straightness
of the individual copper pipes themselves.® The continuous case will be
treated in Section IV.

The added TRy, average loss due to TMy;+ conversion in copper wave-
guide (unmodified by a dielectric lining or anything else) is a function
only of the net angle between the input and output of each waveguide
section between mode filters, for a reasonable mode filter spacing. The
tolerance on this angle must be held to a few tenths of a degree to keep
this loss component down to 0.1 db/mile.

The present analysis has been restricted to equally spaced mode
converters, i.e., individual pipes of the same length. If the pipe lengths
are allowed to become random, instead of starting from (71d) we must
start with (71a) and (71h). The TEy, loss due to a single spurious mode
will still have a discrete power spectrum, but the discrete components
will no longer be equally spaced, and consequently the TEy loss will
no longer he periodie, The frequencies as well as the amplitudes of the
discrete components must now be treated as random variables. Aside
from these minor differences, the analysis should be similar and lead
to similar results.

We refer again to the treatment of Appendix I, where more exact
expressions for the TEy loss statistics in the discrete case are derived
without neglecting the frequency (or A) dependence of the coupling
coefficients and the differential attenuation constants, as in the above
treatment. It is found that these approximations are valid for our
present purposes.

Tinally we note that by means of the Kronecker product, it is possible
to compute certain of the TE, transmission statistics exactly—i.e.
without using perturbation theory—for the case of statistically inde-
pendent discrete mode converters.”™ This treatment requires that the
individual conversion coefficients be known exactly; unfortunately only
in the idealized two-mode case is the exact form of the coupling coeffi-
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cients known. Such calculations may be used to check certain of the
above approximate results in the two-mode case,

IV. THEORY OF GUIDES WITH RANDOM CONTINUOUS IMPERFECTIONS

This section applies the results of Section IT to the study of multimode
waveguides with random continuous mode conversion. Continuous
mode conversion arises from gradual continuous changes in the geometric
properties of the guide, such as curvature of the guide axis, variation
of the guide diameter, or changes in the cross section of the guide such
as ellipticity, ete., as opposed to the discrete case, studied in Section IIT.
The statistics of the Ty loss-frequency curve are determined in terms
of the statistics of the different guide imperfections. In particular, the
average TEy loss and the rms value and the power spectrum of the
TEy loss variations are calculated.

The most important practical application of these results to date has
been to study the effects of random straightness deviations of the guide
axis. Here we consider only small unintentional straightness deviations,
either arising in the manufacturing process of the individual pipes
themselves or resulting from the way in which the guide is laid. We
exclude from consideration the case of large intentional bends (to go
around corners), which couple TEy to the degenerate forward TMy
mode. The spurious modes of interest here are thus the TL,, family,
with the forward TI;; and TE, the most important. The present analysis
indicates that very small random straightness deviations in a certain
spectral region (i.e., having mechanical wavelengths lying in a certain
range ), having an rms value of a fraction of a mil, are primarily responsi-
ble for the observed departure of the TEy, transmission from its theoreti-
cal value in present copper guide,™ causing an increased average loss
and random fluctuations about this average. In addition, the analysis
indicates that random straightness deviations will be equally important
in helix or dielectric coated waveguide in increasing the average TEy
logs; however, the high spurious mode loss in helix will effectively re-
move the TEy, loss fluctuations.*™

While random straightness deviations are the most important manu-
facturing tolerance at present, the same methods are easily applied to
study the effects of other tolerances of the guide. The present section
will also consider random diameter changes, which produce the TE,,
modes, random ellipticity, which gives rise to the TEy, modes, and
higher-order deformations of the cross section, which produce TE,
modes of higher angular index.

In order to specify the statistics of the guide, we assume that each



RANDOM CONTINUOUS IMPERFECTIONS 1121

type of imperfection (e.g., deviation of the guide axis from straightness,
diameter variation, ellipticity, ete.), regarded as a function of distance
z along the guide axis, is a stationary Gaussian random process of known
spectrum. The various continuous coupling coefficients are of course
proportional to the geometric imperfections, and thus are also Gaussian
random processes.

The analysis of the continuous case is greatly simplified if the differ-
ential loss between the TEy, signal mode and the various spurious modes
may be neglected over the lengths of interest. This approximation will
be made throughout the present section. As discussed above, a practical
system using copper guide will contain regularly spaced mode filters
that have a high loss for all spurious modes except the TEy, family.
The mode filter spacing will be sufficiently small so that the differential
losses may be neglected for all important spurious modes except the
TEy. family.

For the TEy,, spurious modes the effective line length will be the total
distance between repeaters; obviously the total differential loss is no
longer negligible. However, the results for zero differential loss will be
stated for this case to get at least a rough upper bound on the importance
of diameter variations, for both copper and helix guide.

4.1 TEy Loss—Summary of Previous Results

We give in the present section the normalized THEo loss (in nepers)
A, for the case in which the total differential loss (for each section of
guide between mode filters) may be neglected, so that we may set Aa = 0.
From (206) the total normalized TEq loss A is given by a sum of terms
due to the individual first-order spurious modes;

A~ A, (284)
The A, are given by (285) to (288) below. These results are obtained

from Section 2.3.7. We again omit subseripts denoting the spurious
mode where no confusion will arise.

A~y IR (285a)

w sin « ()— - n-)
I=1L2Y ec(=1)" =T . (285b)

n=—=x ABL )
™ (ﬁ - n)

The ¢, are the Fourier coefficients of the continuous coupling coefficient
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e(z), defined by
<0
j2 L v
C(Z) = E Ca €’ A y Con = c*. (28())
n=—%

At the n** sample point, defined by

ABL ) _2r _ L o
5y = M or B = A (287)
we have
I(n) = Le,(—1)", (288a)
2
An) m% lea . (288b)

The coupling coefficient ¢(z) is given in terms of the various geometric
parameters in Section 2.3,

As in the discrete case (Section 3.1), the principal frequency de-
pendence in these results occurs through the Ag’s, which far from cutoff
are approximately proportional to the free-space wavelength A. Over
the moderate fractional bandwidths of interest, any frequency depend-
ence of the coupling coefficients will be slow and may be neglected.
I'rom the discussion of Section 2.3.7, any frequency dependence of the
coupling coefficient may be taken into account in (285) by calculating
¢, at the frequency corresponding to the nth sample point, rather than
at the operating frequency.

We regard the loss A4 as a function of the free-space wavelength A,
and write A as follows;

A4 = <4> 4 84, (289)

We determine the expected value of the loss <A>, and the power spec-
trum of 54 and its total power or mean square value <(84)%, in terms
of the power spectrum of the random coupling coefficient ¢(z) (and
consequently of the random geometric imperfection of the guide).

4.2 Statisties of Fourier Coefficients of ¢(z)™"

We assume that the geometric imperfection of the guide (e.g., devia-
tion of the guide axis from straightness) is a stationary Gaussian random
process with a known power spectrum. The continuous coupling coeffi-
cient ¢(z) to the particular polarization of one of the spurious modes
will be a similar random process, since the coupling coefficients are
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simply proportional to the corresponding geometric imperfection. There-
fore ¢(z) is a stationary Gaussian random process with a power spectrum
S(¢). Thus, if R(7) is the covariance of ¢(z),

R(r) = <c(2)e(z + 7)>, (290)
then

S(¢) = f: R(r) e ™" dr. (201)

Consider the Fourier series expansion of e(z) over the interval
0 < z < L, given in (165) and (286).

ag
e(z) = 2 e, ¢ 0= %
n=— _ (292)
Ch = Qy + jbﬂ = icn } ewu

The ¢,’s will be complex Gaussian random variables; i.e., a, and b, , the
real and imaginary parts of ¢, , will be Gaussian random variables with
zero mean. If I is sufficiently long, the a,’s and b,’s become almost in-
dependent, and hence the ¢,’s become almost independent complex
Gaussian random variables. Thus, the magnitude and phase of each ¢,
are independent and have a Rayleigh and a uniform distribution re-
spectively. The mean square value of the n'™ Fourier coefficient <| ¢, [*>
is then simply related to the power spectrum S(¢) of ¢(z). We have
approximately for large L:

9 2 1 n
=t =1 o8(h). 20
e, | & I S(L) (293)
Cnln®> =0, n = m, (294)

The quantity é, defined in (293) is the rms magnitude of the n®* Fourier
coefficient. The various probability distributions for the real and imagi-
nary parts or for the magnitude and phase of the Fourier coefficients may
be written approximately as follows:

1 a, 2.
pla,) = T exp —(c_,,) :

‘l 2
o0 = e ew =)
planh,) = pla,)p(h,). (295h)
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2| e, 1\
p(lesl) = 2l oxp — (L)',
Cﬂ cn

1 (296a)
p(‘Pn) =50 0 < ¢ < 27
T
p(l e | on) = p([ e Jplen). (296b)
Since the different I'ourier coefficients are approximately independent,
p(cn » Cm) = p(cn)p(cfﬂ)) i n i ;é I m J (297)

Finally, the first few moments of the | ¢, | are of interest.

dea | = -ééu; de|> = &5 <en|> = 28" (298)
The results of this section provide a good approximation for the prac-
tical cases of interest in whieh L, the line length, is of the order of a few
hundred feet and the power spectrum S({) varies slowly in the range of
interest, which includes mechanical wavelengths from a few feet to a
tew inches, depending on the spurious mode. These results become exact
if the coupling coefficient ¢(z) has a white power spectrum (S(¢) =
constant, or equivalently R(7) « &(r), the unit impulse).

43 TEy Loss Statistics for a Single Section of Waveguide between Mode
Filters

4.3.1 Single Spurious Mode, Single Polarization

From the relations of Section 4.2, I (Q;TL) , given in (285b), willbe a
complex band-limited Gaussian random process; the real and imaginary
parts of I are independent Gaussian random processes with flat power
spectra over the range | » | < 5.1** Since by (285a) A is proportional
to the square of the magnitude of I and is thus proportional to the sum
of the squares of the real and imaginary parts of I, the power spectrum
of A may be determined from the well-known analysis for the response
of a square law device to Gaussian noise.” " The square of a Gaussian
random process has, in addition to a de component, a random component
whose power spectrum is twice the convolution of the input power spec-
trum with itself. Since the real and imaginary parts of I have flat
band-limited power spectra over the range | »| < 3, the random com-

+ » again indicates the independent variable of the Fourier transform of 1, or
some other quantity of interest, with respect to the normalized independent vari-

able Azﬁ[' . See the footnote on p. 1084.
m
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ABLY . .
ponent, of .«'1( B ) will therefore have a triangular power spectrum over

27

the range | v | < 1.
We first separate the TIy, loss A as before [see (289)].
A = <4> + 84, (299)

where as usual we omit subseripts denoting the spurious mode. Then
from the results of Section 4.1 and 4.2, the expected value of the Ty
loss is given by

A =2 e, > = {s(’%) (300)
where from (174)
2rn .
)\n - 5 z (-301)

is the free-space wavelength corresponding to the nt" sample point and
D is the constant relating the differential propagation constant Ag to
the free-space wavelength X [see (173)]. SBubstituting (287) and (301)
into (300), and using the result to interpolate between the sample points,

L (D )\ _L 1

relating the expected value of the TEy, loss due to a single spurious mode
(single polarization) to the power spectrum of the coupling coefficient
between T'Eq, and the spurious mode. B is the beat wavelength between
TEwn and the spurious mode.
The (continuous) power spectrum of 8.4 in the region close to X is
given by
2
Plv) = ‘3-82(2 )\) (1=
4 2

&

(303)

0

= %.sf(;) (1—1|»], |v] <

In deriving (303) we have tacitly assumed that S({), the power spec-
trum of the coupling coeflicient ¢(z), varies only slowly in the region of
interest, so that 7 and A are approximately stationary over moderate
bandwidths; however, this is not a serious restriction. Iiquation (303)
may be obtained cither from the known results on the square of a
Gaussian noise™ ** or directly from Sections 4.1 and 4.2, The total power,
or the expected value of the mean square value, of §4 may be found by
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integrating the power spectrum £ (»). From (303)

o, L' ofD )_L2_21
. 2 — L D — L 1 — Y ¥ A
N 5'3(2? )\) - Q-S(E) — s, (304b)

for a single polarization of a single spurious mode. Alternately, the re-
sults of (304) may be obtained directly (at the sample points) from
(288h), (293) and (298); it is apparent that (302) and (304) hold for
quite general power spectra S({).

The power spectrum P(») of 64 is triangular; from (303) the 3-db
bandwidth is

Vidb = 3. (305)

The interval in free-space wavelength or frequency corresponding to
the 3-db bandwidth of 84 is thus
Afsan _ ANsan 2B

S S (306)

and is thus simply twice the sample point spacing (for I), given in
(178). [Compare (306) with (244) and (243a).]

Finally, we consider the probability distribution for A, considering
for the present only a single polarization of a single spurious mode. As
discussed at the beginning of the present section, A is the sum of the
squares of two independent Gaussian random variables. Alternately, 4
may be regarded as the square of a Rayleigh-distributed random vari-
able. Consequently, for a single polarization of a single spurious mode,
A has an exponential probability density.

p(Ad) = ——exp — (307)

<A’
where the average loss <A> is given in (302). We recall that this result
(and all others of the present section) is based on the assumption of zero
differential loss, Aa = 0. Equation (307) holds equally well for the cor-
responding discrete case of Section III.

4.3.2 Single Spurious Mode, Two Polarizations

The above results are easily extended to two polarizations of the
spurious mode. We assume that the two orthogonal components of the
geometric imperfection giving rise to mode conversion are independent
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Gaussian random processes with the same statistics. For example, con-
sider random straightness deviations, which couple TEy, to the TE,,
family but principally to the forward TE;s and TE,, . The position of
the guide axis is specified by x(z) and y(z), the coordinates of the guide
axis in the transverse plane as functions of distance along the axis z.
We will assume that x(z) and y(z) are independent Gaussian random
processes with identical power spectra.

The coupling coefficients ¢p,;' (2) and ¢,;*(z) between TE,;, and the
two polarizations of the m™ spurious mode will also be independent
Gaussian random processes, since the coupling coefficients are propor-
tional to the corresponding geometric imperfections. Thus, for straight-
ness deviations we have from Section 2.4 for small deviations

e (2) = Comy=2"(2),  epm ™ (2) = Cypmy-y”(2), (308)

where the symbols || and L distinguish the two polarizations of the
spurious mode, rather than x and y as in Section I1. Since x(z) and y(2)
are independent Gaussian random processes, x”(z) and y”(z) and
consequently ¢,,' (z) and. ef,,*(z) will also be independent Gaussian
random processes.

The T1, loss A, for both polarizations of the mt spurious mode is
given by

Ay = A’ + Apa®, (309)
where A" and 4,,* are independent random processes with statisties
given by the results of Section 4.3.1. Writing

Apmy = <App> 4+ 841, (310)
we have for the expected value of the TEy, loss
Ap> = <A™ + <A™, (311)

Since 84" and 64,,", the two ac loss components, are independent,
their power spectra and total powers add. Denoting the (continuous)
power spectra of 64, , 64 ,," and 84" by Pru(v), P'(»), and
Pa*(v) respectively, we have

I)[m](V) = }J[mjrl("’) + P[,,,]*(V}, (312)
(0A ) = (84" + <(8A1m™)D. (313)

Since both polarizations are assumed to have identical statistics, we
have from Section 4.3.1:

! m \l 1
<,‘1[",](A)> — L-br[,,d(!-l))l;l- A) = L'h[ml(m)- (31:{:)
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Pim(v) = S[,,,] (D[”’] ?\) (1 —1[»])
(315)

S[m]( ) (1—1v]), |v| <1.

2
mmm%=%ﬂweﬁn) E&mgl) (316a)

2‘11' (m]

A / TNos &"ﬂ L 1 _ <A[m]>
<(6A.[m])'> \/Q S[m]( A) \/2 S[m](B[ ]) = ‘\/é -(316b)

In these and all subsequent results Sim({) is the power spectrum of
each of the orthogonal components of the coupling coefficient.

The power spectrum Pp,;(») of course remains triangular, and the
3-db bandwidth and the corresponding interval in free-space wave-
length or frequency remains as given in (305) and (306) for a single
polarization of the spurious mode. These latter quantities are the same
as those for the corresponding discrete case, given in (243a) and (244).

Finally, since A " and A, * are independent random variables with
the same probability distribution [see (307)], the probability distribu-
tion for A, is simply the convolution of (307) with itself.

A[m] X _2A[wal

5 oD~ (317)

p(A[m'l)

This result holds true for discrete tilts and offsets for zero differential
loss.
4.3.3 Many Spurious Modes

For many spurious modes, the total TEq, loss 4 is given as a sum over
loss components A, due to the different spurious modes. I'rom (284)

= § A - (318)

Writing the total TEy, loss as before,
A = <A> + 84. (319)

Then we have

¢A> = Z;, <A m?, (320a)

[m
= D 6A(m (320h)

[m]

The average TEq loss is simply the sum of the contributions of each of
the spurious modes.
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IFrom (320b) we have for the variance of the total TEy loss

(84) = ;{Z}j <BA (8 A (). (321)
The terms <(6A ;)" are given by (316a) or (304a). It would be most
convenient if the different ac components 64, were independent, so
that the cross terms <84 ,,84 > could be neglected.

For the spurious modes produced by a geometric imperfection of a
given angular symmetry (e.g., the TEy, , produced by straightness
deviations) the different 84 (., are not independent. The TE, loss com-
ponent due to the m* spurious mode at one frequency is proportional to
the TEy, loss component due to the nt" spurious mode at a widely sep-
arated frequency, as in the discrete case (Appendix I'). Thus, knowledge
of one of the 34, over a sufficiently wide frequency band is sufficient to
determine all of the others. However, at the same frequency 64 ,; and
84 (. are almost uncorrelated, so that the cross terms in (321) may be
neglected.

A () and 84, are easily seen to be almost independent in a simple
way. Consider a frequency which corresponds to a sample point of the
m™ spurious mode. Under special conditions this frequency may also
correspond to a different sample point of the n** spurious mode (in gen-
eral, this will not be so). From (288b), 4, will depend on only a single
Fourier coefficient (say the k) of the geometric imperfection. Similarly,
A,y will depend on only a single Fourier coefficient, but on a different
one (say the It) since different spurious modes have different beat
wavelengths. Since the different Fourier coefficients of the geometric
imperfection are almost independent, 84, and 84, will thus also be
almost independent at this frequency. Since in general the sample points
corresponding to different spurious modes do not precisely coincide, the
correlation coefficient between 84 (,,; and 84 (,) at a single frequency will
not be identically zero, but should be small.

The correlation coefficient between the ac components of the TEy loss
due to two different spurious modes generated by the same type of
geometric imperfection is derived in Appendix G for the special case in
which the geometric imperfection and hence the coupling coefficients
have white power spectra. Numerical results are given for the important
practical case of TE;." and TE;™ generated by random straightness
deviations, in which the second derivatives of the rectangular co-ordi-
nates of the guide axis are independent Gaussian random processes with
white spectra. The normalized correlation coefficient for reasonable guide
lengths is very small indeed.

The cross terms in (321) will consequently make only a negligible
contribution to the variance of the total TEy, loss. Therefore, <(84 )5 is
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given simply by the sum of the contributions of the individual spurious
modes;

(84)> = [Z‘i <(6A ), (322)

where the <(84.)*> are given by (316a) (or by (304a) for a spurious
mode with a single polarization, e.g., TT,.).

4.3.4 Discussion

The TEy, loss in a given frequency band, resulting from a given spur-
ious mode, depends only on the Fourier components of the corresponding
geometric imperfection for a narrow range of mechanical wavelengths.
This band of mechanical wavelengths corresponds to the range of beat
~ wavelengths between Ty and the spurious mode over the frequency
band of interest. The statistics of the Ty loss are strongly dependent
on the power spectrum of the geometric imperfection.

The present results are strictly valid only for zero differential loss,
Aa = 0, although they will remain approximately true so long as the
differential loss over the length of guide remains small, | Aa | L < 1.
However, further study shows that moderate values of differential loss
Aa will change the average TEy, loss very little, but will smooth out the
fluctuations of the TEy, loss, for the present case in which the coupling
coefficient power spectrum is essentially flat in the range of interest."

The following sections will present specific numerical examples for
the various types of geometric imperfections.

4.4 TEy Loss Statistics for Random Straighiness Deviations

4.4.1 Introduction

In the present section we apply the results of Section 4.3 to the case
of random deviations from straightness of the guide axis. In Section 4.5
other types of continuous geometric imperfections are similarly treated.
There are two reasons for treating straightness deviations separately :

1. Straightness deviations introduced by the manufacturing process
are almost entirely responsible for the additional TEy loss of present
2-inch 1.D. copper guide.

2. Experimental TE, transmission measurements have provided a
fair idea of the shape of the power spectrum of straightness deviations
for different types of guide, at least over a limited range. This power
spectrum differs in some respects from the power spectra that might be
assumed for other types of geometric imperfections, in that under certain
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conditions it contains an infinite low-frequency (i.e., long mechanical
wavelength) content; some additional discussion of this particular case
seems appropriate.

We must first specify the statistical properties of the coupling coeffi-
cient; since the coupling coefficient ¢(z) is assumed to be a stationary
Gaussian random process, its statistics are completely determined by
its power spectrum S({). The continuous case is inherently more com-
plicated to discuss than the discrete case of Section I11. For the discrete
case only the rms offset, tilt, or diameter change must be specified. In
the continuous case, however, the Tk, loss statisties are no longer de-
termined only by the mean square value of straightness deviation or
other geometric imperfection; the shape of the power spectrum of the
mechanical imperfection strongly influences the resulting TEy, loss. We
must therefore know the power spectrum of the imperfection before we
can predict the TEy, loss statistics of a guide. Conversely, knowledge of
the TTEy, loss statistics enables us to estimate the power spectrum of the
imperfections. Up to now there have been no existing mechanical meth-
ods for measuring the straightness deviation to the required accuracy so
that its covariance and power spectrum can be determined;t TEy trans-
mission measurements have provided the only means of determining
the significant Fourier components of the straightness deviation.

Present experimental measurements of the Ty loss over a band ex-
tending from 33 kme to 90 kme, made by A. P. King and G. D. Mande-
ville, indicate that for one type of 2-inch I.DD. copper guide, the radius
of curvature of the straightness deviation has an approximately flat
power spectrum over the range of interest.” Thus, if 2(z) and y(z) are
the rectangular components of straightness deviation with power spectra
X(¢) and Y (), we haved

X(5) = ¥(¢) « ;4 (323)

for mechanical wavelengths lying in the beat wavelength range for TIy,
and TE;; (the most important spurious modes), 1.4 to 4.4 feet for the
35-90 kme band.

The power speetrum of (323) for x(z) and y(z), which corresponds to
a white power spectrum for the radius of curvature of the guide axis or

t Methods of making these mechanical measurements are currently under de-
velopment by K. J. Dahms, W. G. Nutt, and R. B. Ramsey and their associates
at Bell Telephone Laboratories.

. . s . . . 1
1 ¢ is the “mechanical frequeney,” having the dimension m; the corre-

sponding mechanical wavelength is % [See for example (291).]
§
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equivalently for the second derivatives 2”(z) and y”(z), appears plaus-
ible under certain conditions, considering one way in which the guide
has been made. If we imagine a guide made by drawing a copper pipe
with more or less random hardness or wall thickness variations through
a die, it is not hard to see that the radius of curvature of the guide axis
might be a random process with a very short correlation distance, or
equivalently with a very wide power spectrum. The power spectrum for
2”(z) and y”(z) must, of course, fall off for sufficiently high mechanical
frequencies (or sufficiently short mechanical wavelengths).

The coupling coefficients and hence z”(z) and y”(z), the second de-
rivatives of the displacement of the guide axis, have been assumed to be
stationary random processes. The displacements themselves, 2(z) and
y(2), will not in general be stationary random processes, unless the power
spectrum of 2”(z) and y”(z) (and the corresponding coupling coeffi-
cients) has special properties. However, this situation seems to be in
accord with the physical facts. As a simple example we may consider a
guide made of pipes with random uniform bows, screwed together at
random; we might further assume that the first pipe of the guide starts
out with zero displacement and zero slope, (0) = y(0) = 2'(0) =
y'(0) = 0. Then it is obvious that while the second derivatives z”(z)
and ¥”(2) and hence the coupling coefficients are stationary random
processes, the displacements z(z) and y(z) are not. The variances of the
displacements, <x’(2)> and <y*(z)>, grow with distance z; the guide tends
to wander more and more from the axis as z increases, unless additional
mechanical constraints are imposed in laying the guide.

Since our knowledge of the power spectrum X (¢) is limited, any ex-
ample chosen to illustrate the order of magnitude of straightness toler-
ance that will have a significant effect on the TEy transmission must be
arbitrary to a considerable extent. For the present numerical example
we assume that X(¢) and ¥ ({) are as given by (323). For this power
spectrum the displacement of the guide axis x(z) or y(z) is not a sta-
tionary random process, and the integral of (323) or the “total power”
is infinite. However, the principal spurious modes are TEp." and TE; ™,
with beat wavelengths of about 2.2 and 2.7 feet at a frequency of 55
kme. In order to get a rough measure of the short-wavelength straight-
ness deviations that are responsible for the additional TEy, loss, we shall
quite arbitrarily calculate a “total” mean square straightness deviation
<x*(2)> + <*(2)> by including only those components having mechanical
wavelengths less than 5 feet, { > 1. While this is a rather arbitrary choice,
it makes some physical sense. The significant components for TEy," and
TE;," lie between 1.4 and 4.4 feet for a band from 35-90 kmec. The
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long-wavelength components (greater than 5 feet) do not affect the
TEy transmission in this band; in any case, these long-wavelength com-
ponents will depend strongly on the random errors made in laying the
guide, and perhaps very little on the straightness deviations introduced
by the manufacturing process. The mean square value of the components
of wavelength less than 5 feet will give us a rough idea of the order of
magnitude of the tolerance on the short-wavelength “manufacturing”
straightness deviations.

I'or the numerical example presented below we assume a 20-mile total
guide length of 2-inch I.D. copper guide with equally spaced mode filters,
spaced either 200 or 1000 feet apart. These mode filters are assumed to
have zero loss to the TEy signal mode, infinite loss to the spurious TE,,,*
modes. TM,," is neglected, since it has been adequately treated in Sec-
tion ITI. The differential loss is neglected even though it is not small in
the distance between mode filters for all spurious modes, particularly for
the 1000-foot mode filter spacing. The differential loss will not greatly
affect the average TEy loss, but will reduce the TEg loss fluctuations
below the values computed for zero differential loss. The treatment of a
long line with ideal mode filters is given in Section 3.4.

The @ and y components of the straightness deviation of the guide
axis are agsumed to have power spectra given in (323), discussed above.
The magnitude of these power spectra is chosen to yield an additional
average TEy; loss (due to all the propagating TE,,,* spurious modes) of
1 db per mile, at a frequency of 55 kme. The total rms straightness devia-
tion for components having wavelengths less than 5 feet is stated, for
reasons discussed above. In addition, the rms straightness deviation for
components having wavelengths between 2 and 3 feet, corresponding to
the TE." and TE; ™ beat wavelengths for the 50-60 kme band, is also
given. The contributions of each of the spurious modes to the average
TEq loss and to the Ty, loss fluctuations are stated separately.

1.4.2 Analysis

Let X(¢) and Y({) be the power spectra of the rectangular com-
ponents of the straightness deviation of the guide axis, x(z) and y(z).
Then

X(§) = [: lz)e(z 4+ 7)> T g
(324)

o

Y(¢) = jw (Dylz + 7)> e dr.
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We will always assume identical spectra for x(z) and y(z), i.e.,
X(5) = Y. (325)
Then the power speetra of 2”(z) and y”(z), the second derivatives of

the 2 and y components of the displacement of the guide axis, are given
by

(2x0)'X(¢) = f @ ()" (z + 7)> P dr
- (326)
(2‘”?)4}7(?) = -[ (y”(z}y”(z + T)) e—jEw;f dr.

Noting (308), the power spectra Sp.;({) of the coupling coefficients
cim(2) [see (290) and (291)] are given by

S[M]n(;) = Ct[!ﬂlz'(2“’f)4x(f
[m] (I) = C‘t[ﬂl] ()‘ﬂ'g—) Y(f‘)

for the parallel and perpendicular polarizations of the TEy, spurious
mode respectively.

I'ar from cutoff 'y, is approximately inversely proportional to the
free-space wavelength A. It is thus sometimes convenient to write Cm
as

(327)

Coim ¢
Ct[m] = ], (328)
A
where €, is now approximately independent of A.
From (314) the average TEy loss due to the TI%,, spurious mode
(with two polarizations) is

Am(N)> = J]rf@'f[ml Dlm] NG X(D[m] )\) (329)

The constant Dy, , defined in (173), is related to the beat wavelength
B by

o B[n.] C 2r
In (329), X(¢) is the power spectrum of each of the rectangular com-

ponents of straightness deviation [see (325)]; the only frequency- (or
wavelength-) dependent terms are the factors A* and the mechanical

D ; N . me
power spectrum X ( [im] )\). The rms fluctuation of the TE, loss com-

ponent due to TE,, ubout its average is given by (316b);

- <A >
V@A) = (331)
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As discussed above, for the present example we assume that over the
range of interest (mechanical wavelengths less than 5 feet) X (¢), the
power spectrum for each component of the straightness deviation, has
the shape given by (323). Therefore we take

X,
X(§) = V() = 0 332
(¢) ) 2r0)" (332)
where X, is a scaling parameter determining the magnitude of the
straightness deviation. Then the average loss of (329) becomes

LetlmngU

Apg(A)> = = = LCum’ Xo. (333)

9

The loss fluctuation of course remains as given by (331).

The total TEy average loss <A> and mean square loss fluctuations
<(84)%> are given by (320a) and (322) respectively, summing over the
contributions of all the propagating TE,,,” spurious modes. We have

<A> = LX, 2 Cuni®s (334)
[m]
<(8A)> = LXS DD Cu (335)
[m]

Substituting numerical values from Appendix A and summing over the
9 propagating TI,,, " modes, for a frequency of 55 kme and a I-inch
guide radius (334) and (335) become

<A> = 111.24 LX, (336)
<(8A4)* = 3721.64 L'X,". (337)

IFrom (333) and (334) the average TEy loss <4> is inversely propor-
tional to A°, or directly proportional to f* This is approximately in agree-
ment with the experimental results of A. P. King and G. D. Mandeville
for one type of copper guide® and provides the reason for the particular
choice of power spectrum for the straightness deviation that has been
made here.

Finally, the rms straightness deviation in a given range is obtained by
integrating the straightness deviation power spectrum over the appropri-
ate range. I'or the x-component alone, we have for the mean square
straightness deviation for mechanical frequencies lying between {, and

. . 1. . 1 1
&, or equivalently mechanieal \va\'olongthsS; lying between — and 3
@ b

R —{a Ty
'y = [ + f ]X(g) dt, (338)

= c
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where we recall that the straightness deviation power spectrum X ({) has
been defined for both positive and negative mechanical frequencies.
Substituting the particular power spectrum given in (332),
2 2X, ( 1 1)
Q> = - = ). (339

5Cn b8 5 :
From (325) and the fact that x and y are independent, we have for the
total mean square straightness deviation in this range

@’ 4+ <t = 1{;:4 (%3 - ;]3) (340)

4.4.3 Numerical Example

We assume an added average TEy loss in 2-inch I.D. guide due to
mode conversion of 1 db per mile at 55 kme. I'rom Section 3.4 and (336),
we determine X .

1

. 7 1
124 % 86850 5 5280 — 1900 X 107 ft7.  (341)

Xu:

We will specify the rms straightness deviation (including both the x and
y components of the displacement of the guide axis) for components
having wavelengths less than five feet, as discussed above. From (340),

Vit + <> = 1.737 mils; %_ < 5 feet. (342)

For purposes of illustration we shall emphasize the 50-60 kmc band.
In this band the beat wavelength range for TEp' and TE, ", the most
important spurious modes, is 2-3 feet. Since these components of
straightness deviation are the principal contributors to the THoy loss in
the 50-60 kme band, it is of interest to give the rms straightness devia-
tion lying in the 2-3 foot region. Again from (340),

Vit 4+ P = 0677 mils; 2 feet < % < 3feet. (343)

Table VI presents the transmission behavior of a 20-mile, 2-inch I.D.
guide for two mode filter spacings, 200 feet and about 1000 feet, calcu-
lated from the present results and those of Section 3.4. In addition to the
total average loss and rms loss fluctuation, the contributions of the
individual spurious modes are given. The average loss is of course the
same for both eases; the rms total loss fluctuation is reduced for the
shorter mode filter spacing,.
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TasLe VI — TIE; Loss STATISTICS FOR STRAIGHTNESS
Duviation witd A FraT CURVATURE POWER SPECTRUM

Liots1 = 20 miles, total guide length.
8.6859 SL)—NL]) = 1 db/mile, additional average loss at 55 kme.

total

55 kme, midband frequency.

a = 1 inch, guide radius.
L = 200 feet, mode filter spacing.
Case M = 528, number of mode filters.
1 8.6859v/ <(64 rora)> = 0]..4773 db, rms total loss fluctuation for 20-mile
ine.
L = 996.23 feet, mode filter spacing.
Case M = 106, number of mode filters.
2 8.68504/< (51 c01a1)®> = 1.0652 db, rms total loss fluctuation for 20-mile
line.
Case 1 Case 2
RMS Afadp; 3-db Afadn: 3-db
. Beat Wave- | g =00 ol Added RMS Total |Bandwidth of| RMS Total |Bandwidth of
Spurious | length Range i)eviflion in | Average Loss Fluctua- Power Loss Fluctu- Power
Mode |for 50-60 Kmc Beat‘ Wave- Lossg tion for 20 | Spectrum of | ation for 20 | Spectrum of
Band length Range Mile Line | Loss Fluctu- | Mile Line | Loss Fluctu-
. ation ation
feet mils 1?1?1’; db mc db me
T, T |2.453-2.949| 0.513 0.2649| 0.1630 1486 0.3638 208
Tt [1.997-2.408]  0.381 0.7200{ 0.4486 1212 1.0012 243
T+ 0.464-0.562] 0.043 0.0055| 0.0034 282 0.0076 57
TE ¢ |0.215-0.263| 0.014 0.0005 0.0003 131 0.0007 26
TE st |0.123-0.152] 0.006 0.0001] 0.0001 76 0.0001 15

4.4.4 Discussion

The above results show that for the assumed mechanical power spec-
trum, the principal contributors to both the additional average loss and
to the loss fluctuations arise from the TE;," and the TE;™ spurious
modes, as has been observed experimentally. As discussed above, the
average loss measured over a very wide frequency band by A. P. King
and G. D. Mandeville® provides the primary experimental data on the
power spectrum of the straightness deviations.

IFor some guides both the experimental transmission data and con-
sideration of the manufacturing process indicate that the power spectrum
of the second derivative of the straightness deviation should be more or
less flat up to some high mechanieal frequency (short wavelength). As
discussed above, this leads to a power spectrum for the straightness
deviation itself with infinite power, so that the displacement of the guide
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axis from a perfect straight line will not be a stationary random process
However, in practice additional forces are imposed in laying the guide,
so that the straightness deviation must become stationary. In order for
this to be so, the power spectrum for z”(z) and y”(z) and for the cor-
responding coupling coefficients must now fall to zero as { approaches 0,
at least as fast as {". However, it seems reasonable to assume that the
modification in the coupling coefficient power spectrum will take place
only for very small values of { (long wavelengths). In the important
spectral region corresponding to the TEy" and TE;:™ beat wavelengths,

fori—l_ less than a few feet, the power spectrum should be modified very

little; therefore, very little change will take place in the TEq transmis-
sion statisties.

Since only components of the straightness deviation having wave-
lengths between about 1.4 and 4.4 feet will significantly affect the TEy
loss (in a band from about 35-90 kme), it is clear that random straight-
ness deviations arising in the laying of the guide, or manufacturing im-
perfections such as long bows, will have very little effect on the Ty
transmission, because such straightness deviations will have their prin-
cipal components at much longer wavelengths (e.g., perhaps greater
than ten feet). One model that is readily analyzed is the “random bow
line,” made of pipes of identical length with uniform bows, screwed to-
gether at random. The x and y components of the coupling coefficient
are simply random square waves, whose power spectrum is well known.
The allowable tolerance is several orders of magnitude more lenient than
the tolerance on short wavelength straightness deviations.

Finally, it is possible that quite different types of power spectra than
those discussed here could arise for different manufacturing processes.
For example, a process that resulted in a periodic straightness deviation
in the beat wavelength range would result in a rather broadly peaked
band-pass power spectrum for the coupling coefficient. Such things are
of course to be avoided. In practice, different manufacturing processes
have produced quite different straightness deviation power spectra.

4.5 TEy Loss Statistics for Random Diameter Variations, Ellipticity, and
Higher-Order Deformations

4.5.1 Introduction

In the present section we apply the results of Section 4.3 to random
diameter variations, ellipticity, and higher-order deformations of the
cross-section of the guide, using Morgan’s coupling coefficients Ei,n; .
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Random straightness deviations may of course also be treated in this
way, but are omitted since they have been discussed in Section 4.4.

We take the same model for the guide as in Section 4.4, i.e., a 20-mile
total guide length of 2-inch I.D. copper with equally spaced mode filters,
spaced either 200 feet or about 1000 feet apart. The mode filters are as-
sumed to have zero loss for the TEy, signal mode, zero loss for the TEq,
spurious modes, and infinite loss for all other TE,,, spurious modes.
The differential loss is assumed small in the distance between mode filters
for all spurious modes; in addition, for the TI, spurious modes the
present analysis forces us to assume that the differential loss is negligible
for the total guide length, 20 miles in the present example.

The present analysis should provide a reasonable approximation for
ellipticity and for higher-order deformations. The differential loss in these
cases will not affect significantly the average TE,, loss, but will reduce
the Ty, loss fluctuations somewhat below the values computed for zero
differential loss in those cases where the differential loss is not completely
negligible in the distance between mode filters.

However, for diameter variations the TE,, differential loss is certainly
not negligible in 20 miles, as required by the analysis. While this ap-
proximation will not lead to an appreciable error for the average TEy
loss, it will certainly lead to serious error for the mean square TEy, loss
fluctuation, which is the really significant quantity, and for Afsa,. The
actual Ty loss fluctuations will be much smaller than those computed
here.

The power spectrum for straightness deviations is known, at least ap-
proximately, over a moderately wide range from TE, transmission
measurements, as discussed in Section 4.4. A very elementary considera-
tion of the manufacturing process suggests the same shape for this
power spectrum as is actually observed in certain cases. Unfortunately,
for other types of deformation neither of these approaches has suggested
the proper form for the power spectrum. Spurious modes, other than
TE. T and TE“+, have not been observed at high enough levels to permit
an estimate of the power spectrum of the corresponding mechanical im-
perfection to be made. As yet, no simple picture of the manufacturing
processes has yielded a guess as to the shape of the power spectra. About
all that ean be said is that the power spectra must eventually fall off
in some manner for high enough mechanical frequencies ¢ (short enough
mechanical wavelengths), since the mean square values of the various
cross-sectional tolerances are certainly bounded.

Since the power spectra of the various deformations are not known,
the numerical examples presented below are less specific than the example
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for straightness deviation in Section 4.4. For example, ellipticity gener-
ates the TEs, " spurious modes. For each of these spurious modes the
rms ellipticity in the mechanical wavelength range corresponding to the
beat wavelength for the 50-60 kme band is chosen to yield an additional
average TEq loss of 1 db per mile, assuming a flat power speetrum in
this range. The same is done for trifoil and higher-order deformations.
Diameter variations are treated separately, partly because these re-
sults cannot be taken too seriously, as discussed above, and partly be-
cause the equations are somewhat different for this case. Iere for each
of the spurious TEy,. " modes we choose the rms diameter variation in
the mechanical wavelength range corresponding to the beat wavelength
for the 50-60 kme band to yield a 1-db rms loss fluctuation for the THg
loss component due to the spurious mode, for the entire 20-mile line.

4.5.2 Random Diameter Variations

From (179) to (181) the radius of the guide is given by

r=a+ alz). (344)
Trom (207) the coupling coefficient is given by
Clom (2) = —Epmao(z). (345)

Let Ko(¢) be the power spectrum of ag(z), i.e.,

Ko(s) = f a2)a(z + 7)> ¢ dr. (346)
Then the power spectrum Sp,;(¢) of the coupling coefficient crom (2) is
S[ﬂm](?) = E[!'.]'111]2'1(0(()' (347)

Remembering that the spurious mode now has only a single polariza-
tion, we have from (302) and (304b)

———— L Diow
Apm> = \/<(5A[0m])2> = 3 E[umlz'Kn(ZJo—] ?\) » (348)
T
where the constant Do, is related to the beat wavelength B by
Diom 1 Bu — Bum
= = ) 349
27 A B[om] 27 ( )

The coupling coefficient Z is approximately proportional to the free-
space wavelength \.
Finally, the mean square radius variation in the range of mechanical

frequencies {, to { (or the range of mechanical wavelengths %_ fromg_—l
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1 ) .
to — ] is given by
)

@i(z) = [f: + f:] Ko(t) dg, (350)

again integrating over positive and negative frequencies. Assuming that
the power spectrum is flat over the range of integration,
Ky(§) =Ko, &< |8 <, (351)

(350) becomes

<a’(2)> = 2K+ (6 — Ca). (352)

These formulas are used to caleulate the results in Table VII.
The present analysis could alternately have been carried out in terms
of the coupling coefficients Capm , as discussed in Seetion 2.3.9.

TasrLe VII — Rapivs Vartation Yiewping 1 ps RMS TEy, Loss

I'Lucrtuarion anNp 1 pB Averace TEj Loss ror THE Loss CoMm-

PONENT Apm; DUE T0o Each oF THE TEg," Srurious Mobpms, AT
55 kMme

Liotat = 20 miles, total guide length.
8.6850/< (8410, 1) = 1 db, rms loss fluctuation for each component, for 20-mile
line.
8.6859<A (g, 1> = 1 db, additional average loss for each component, for
20-mile line.
J = 55 kme, midband frequency.
a = 1 inch, guide radius. )
Differential loss assumed small over total guide length of 20 miles.

R Beat Wavelength ([RMS Radius Varia-| - | g . Afsdb: 3-db Bandwidth of
g e LM ara-| g Spectral Density of

|u]1‘|j-élr::us Ra[n{;:;cftgn;(ll‘—h() uurlle :E;Piltﬁtm\l\g.;u Rﬂﬁfl;‘{,“ﬂ:;‘tf o PDwer}?]?li(ig;Jg:]:f Loss

fect mils mil_s'-'/foot-l mc

TEe™ | 0.7886-0.9532 0.087 1.7291 X 1072 0.907
TEet | 0.3003-0.3654 0.097 0.7942 X 1072 0.347
TEot | 0.1588-0.1953 0.102 0.4397 X 1072 0.185
THEqs" 0. 0964-0,1206 0.105 0.2671 X 102 0.113
TEqe* 0.0627-0.0805 0.109 0.1691 X 10— 0.075
TEw* 0.0418-0.0563 0.115 0.1064 X 102 0.051
TEe* | 0.0259-0.0402 0.129 0.0609 X 102 0.035

4.5.3 Random n-foils

We now consider random cross-sectional deformations of higher order.
Tor an “n-foil” the radius of the guide is given by (179) to (181) as

r=a -+ a,(z) cos ne + b,(z) sin ne. (353)



1142 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

The n = 0 case corresponds to diameter variations, studied in Section
4.5.2. The n = 1 case corresponds to straightness deviations, studied in
Section 4.4; the quantities a:(z) and bi(z) are equal to x(z) and y(z),
the rectangular components of straightness deviation. The n = 2 case
corresponds to ellipticity, the n = 3 case has been designated as “‘tri-
foil,”” ete. All formulas in the present section hold only for n = 1; the
n = 0 case has been treated in the preceding section.

The magnitude of the n-foil distortion at a given position z along the
axis is specified by the maximum departure from a perfect guide, r = a.
From (353) we have for an n-foil

|7 — @|mx = Va.(z) + b.(2). (354)

For diameter variations this definition yields the change in guide radius;
for straightness deviations it yields the total displacement (in the x-y
plane) of the guide axis. For ellipticity and higher-order deformations,
(354) yields the maximum deviation from a perfect circle r = a. Note
that for n = 2 this is only one-quarter as large as a commonly accepted
definition of ellipticity, the maximum diameter minus the minimum
diameter.

The coupling coefficients for the two polarizations of each of the
spurious modes are given from (207) by

C[nmJ“(z) = —E[nm]an(z}l (3‘55)
— Etwmba(2). (356)

Let K,(t) be the power spectrum of each of the two components a,(z)
and b,(2). i.e.,

. [ au@an(z+m)> | e o
K.(¢) = [m[@n(z)bﬂ(z{—fr))] e dr. (857)

Then Spum (), the power spectrum of each of the two components of
the coupling coefficient, is given by

S[um](g-) = E[ri‘ﬂl]2-1{?l(§.)- (358)
Using the results of (314) and (316b) for two polarizations, we have

CApm> = ‘\/2((5/1[,,m]) > =L S[,,”;](D;um A), (359)

C[nm] J-(z)

where

D[ﬂm] _ 1 L Bﬂl - rGum .
2 A= Brum - 2 ’ (360)
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The coupling coefficients Zp,,; are approximately proportional to the
free-space wavelength A.

Finally, the mean square n-foil magnitude (defined as the maximum
departure from perfect circularity at a given cross section) in the range

of mechanical frequencies {, to { (01‘ the range of mechanical wave-

lengths ! from L to L) is given from (354) by
.{‘ rﬂ i‘b

r = alm> = <@’(2)> + B, (2)>

L t (361)
—{ fa

Assuming that the power spectrum is flat in the range of integration,
K.(¢) = K,

1= almad> = 4K, (& — fa)- (362)

These formulas are used to calculate the results in Tables VIII through
XII for values of n ranging from 2 to 6. The case of straightness devia-
tions, n = 1, is omitted; the same results as those of Section 4.4 would
of course be obtained.

4.5.4 Discussion

Neither TEy transmission measurements nor mechanical measure-
ments have thus far yielded information on the shape of the power
speetra for diameter variations, ellipticity, and higher-order cross-sec-
tional deformations. This is true principally because these effects are
very small in present guides. We are thus unable to predict what the
relative contributions of the various spurious modes to the average
TEy loss and to the T1%, loss fluctuation might be.

In the numerical examples presented in this section, the spectral
density of the geometric imperfection has been chosen in such a way
that for each type of imperfection the contributions of each of the spuri-
ous modes are equal. Plots of the logarithm of the spectral density K,
vs the logarithm of the mechanical frequency ¢ show that in each case

K,.(¢) falls off approximately as ;: Thus, if the spectral density of the

imperfeetion is flat, the higher modes will become progressively more
important as the sccond mode index inereases. This is quite different
from the observed behavior for straightness deviations, discussed in
Section 4.4, where only TEp ™ and TE,, ™ have an appreciable effect on
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TasLe VIII (n = 2) — Eruiprrorry  YIELDING 1 DB/MILE ADDI-
TIONAL AVERAGE TEy Loss For THE Loss CoMPONENT A (2, DU
70 Eaca or tHE TE,,™ Spurtous MobDES, AT 55 KMC

Liotar = 20 miles, total guide length.

8.6859M = 1 db/mile, additional average loss for each
total component.
f = 55 kme, midband frequeney.
a = 1 inch, guide radius.
L = 200 feet, mode filter spacing.
Case M = 528, number of mode filters.
1 |8.68594/<(54 (2m1corar)®> = 0.6155 db, rms total loss fluctuation for each

component, for 20-mile line.

L
Case M

2 8. 6859‘\/< (BA [2m Ttota1) >

096.23 feet, mode filter spacing.

106, number of mode filters.

1.3736 db, rms total loss fluctuation for each
component, for 20-mile line.

[

Case 1 Case 2
.| Beat Wavelength | RMS Ellipticity K
Spurious | "o for 50-60 | in Beat Wave- | [opectral A : 3-db Band- .
Mode %?Eﬁ-, ]g;rmd lrtlang?;h Range Eﬁi‘;‘tgltﬂ; S%‘ij‘}r};;ftﬁug,ggs Aoj;a %’%\\?éfl%;?eﬂcrégfx;dé?
P Fluctuation Loss Fluctuation
feet mils mils?/foot! mc mc
TE.* | 5.1623-6.2110 0.3737 1.0676 3128 628
TE..+ | 0,9006-1.0880 0.5142 0.3457 547 110
TE.t | 0,3154-0.3836 0.5992 0.1592 192 39
TE4* | 0,1631-0.2005 0.6349 0.0882 100 20
TE.:* | 0.0982-0.1226 0.6603 0.0536 61 12
TEsst | 0.0636-0.0815 0.6861 0.0340 40 8
TEs | 0.0423-0.0569 0.7216 0.0214 27 5.5
Tlas* | 0.0263-0 .0405’ 0.8103 0.0123 19 3.8

the TEy, loss; there, however, the straightness deviation power spectrum
falls off very rapidly, as ;74 |

In any practical case the power spectrum K,({) of the geometric
deformation must eventually fall off as ¢ increases (for n £ 1). If the
derivative of the imperfection exists (which seems a reasonable require-

ment), K,({) must eventually fall off faster than 3172 as { becomes large;

of course the real question is how large ¢ must be for this behavior to
dominate. The higher spurious modes have very short beat wavelengths
— in the range of an inch or less; if the power spectrum K, ({) has begun
to fall off appreciably at such wavelengths, the contribution of the higher-
order spurious modes will be small.
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TaBLe IX (n = 3) — Tri-Foi YI1ELpING 1 DB/MILE ADDITIONAL
AveErace TEy Loss ror THE Loss CompoNENT A, DUE TO
EacH or THE TE;,T Spurious MoDES, AT 55 KMc

Litotar = 20 miles, total guide length.

8.6859<‘-1[3'"$ul> = 1 db/mile, additional average loss for each
kotal component.

f = 55 kme, midband frequency.
a = 1 inch, guide radius.
L = 200 feet, mode filter spacing.
Case M = 528, number of mode filters.
1

8. 6859\/< (8"1 [3m] toh|l)!>

(0.6155 db, rms total loss fluctuation for each
component, for 20-mile line.

L
Case M

2 | 8.6859V/<(6A (o rotnt) 2>

996.23 feet, mode filter spacing.

106, number of mode filters.

1.3736 db, rms total loss fluctuation for each
component, for 20-mile line.

Case 1 Case 2
T Ka
oo | Beat Wavelength | RMS Tri-Foil o
Spurious Range for 50-60 |in Beat Wave- Spectral Afsdan: 3-db Band- Afsdn: 3-db Band-
Mode Kmc Band length Range Dr[ivl:_f_lﬁ')ﬁ[ Jy;?iddlth of Pmsul:‘r Jv;ainl:llzh of Po;élr
Spectrum of Loss Spectrum of Loss
[ Fluctuation Fluctuation
feet mils ;glsﬂ/foot'l mc mc
TE " | 9.2836-11.1800 0.1876 0.4817 5628 1130
Tt | 0.5464-0.6617 0.5364 | 0.2257 332 67
TE:&:¢+ 0.2315-0.2827 0.6045 0.1168 141 28
TEu*T | 0.1285-0.1500 0.6389 00.0684 79 16
TEy:* | 0.0801-0.1011 | 0.6661 0.0428 50 10
TEze" | 0.0526-0.0687 | 0.6964 0.0272 34 6.7
Tgt | 0.0346-0.0485 | 0.7449 0.0167 23 4.6

I'or ellipticity and higher-order deformations, the additional average
loss in db per mile and the total loss fluctuation for a 20-mile guide are
roughly comparable, for reasonable mode filter spacings. Thus if the
additional average loss is small, as it is in present guides, the loss fluctua-
tion will also be small.

I'or diameter variations, the total additional average loss for a 20-mile
guide is roughly comparable with the total loss fluctuation. Here the
total loss fluctuation can remain serious even though the additional av-
erage loss in db per mile remains small, as it does in present guides.

The results for diameter variations given here are pessimistic, since
the differential loss to the TEg," spurious modes is neglected over the
total guide length of 20 miles in the present analysis. The loss fluctua-
tions in practice will be much smaller than those given here. The results
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TaBLE X (n = 4) —4-Foi. YieLpING 1 DB/MILE ADDITIONAL
AvVERAGE TEg, Loss ror THE Loss CoMPONENT A 4,,) DUE TO
EacH oF THE TE,, ™ Spurious MoDES, AT 55 EKMC

Liota1 = 20 miles, total guide length.
<4 [lm}tntul)

8.6859 = 1 db/mile, additional average loss for each
Jtotal component.
f = 55 kme, midband frequency.
a = 1 inch, guide radius.
I. = 200 feet, mode filter spacing.
Case M = 528, number of mode filters.
1 868500/ <(8A (1m jeata1)®> = 0.6155 db, rms total loss fluetuation for each

component, for 20-mile line.

I = 996.23 feet, mode filter spacing.
Case M = 106, number of mode filters.

2 8.68594/<(8A (sm tota)®> = 1.3736 db, rms total loss fluctuation for each
component, for 20-mile line.

([

Case 1 Case 2
.| Beat Wavelength | RMS 4-Foil in | ¢ 5
Spurious | puioe for 50-60 Beat Wave- Epectral : 3-db Band- : 3-db Band-
Mode ﬂklgm: %rnnd lenegﬂlh Raz.l‘jfge Dil_.'ls—,-lsﬁ of wiA tLdgf Power %rrlsec- w?{{gl??ﬂ' 3l’uwera§1]i:c-
trum of Loss Fluctu- | trum of Loss Fluctua-
ation tion
feet mils mils?/foot™! mc mc
TE,+ | 2.0100-2.4344] 0.2991 0.2647 1225 246
TE,s* | 0.3757-0.4562 0.5433 0.1571 229 46
TE*" | 0.1782-0.2186)  0.6059 0.0885 109 22
TET | 0.1039-0.1295  0.6414 0.0540 64 13
TE:s*t | 0.0663-0.0847)  0.6719 0.0344 42 8.4
TE,et | 0.0438-0.0586] 0.7091 0.0218 28 5.7
TE,;t | 0.0275-0.0416] 0.7890 0.0127 19 3.9

for other cross-sectional deformations are of course valid, since the differ-
ential loss will be small in the short distance between mode filters.

4.6 Conclusions

The TEq loss of a long waveguide has been treated as a random proc-
ess, and its statistics determined in terms of the statistics of the geo-
metric imperfections. A statistical analysis is necessary hecause it would
be impractical to make mechanical measurements of the complete geom-
etry of aq‘ly great length of guide, even if this were possible.

The numerical results show that rms tolerances of the order of 1 mil
are required, for any of the various types of imperfections, to yield an
additional average TEy loss of the order of 1 db per mile. The rms di-
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TaeLe XI (n = 5) — 5-Foi. YieLpiNnG 1 DB/MILE ADDITIONAL
AveEraGE TEy Loss ror tHE Loss CoMpoNENT A5, DUE TO
Kacu or tHE TE;,™ Spurious Mobes, AT 55 KMC

Liotar = 20 miles, total guide length.

S.GSEQM = 1 db/mile, additional average loss for each
Liotar component.
J = 55 kme, midband frequency.
a = 1 inch, guide radius.
Case L = 200 feet, mode filter spacing.
1 M = 528, number of mode filters.

8.6859/<(84 [am10a1)®> = 0.6155 db, rms total loss fluctuation for each
component, for 20-mile line.

L = 996.23 feet, mode filter spacing.
Case M = 106, number of mode filters.

2 8.68504/< (5.1 lsmtota)?> = 1.3736 db, rms total loss fluetuation for each
component, for 20-mile line.

Case 1 Case 2
_— K
S— Beat Wavelength |RMS 5-Foil in -
Spurious Ra for 50-60 Beat Wave- Spectral ) . 3-db Band- for: 3-db Band-
Mode IEE:C gl:-n:d le:Elh RH;ISEB DC_;I}SF]:',%'] of \n-:i{iﬁj l(]1f %’uwer %il}wecf i\'ﬁflihdgf %’ower aSnpec-
| trum of Loss trum of Loss
Fluctuation Fluctuation
T feet o mils mils?/foot™! mc mc B
TEx* | 1.0317-1.2458  0.3297 0.1632 626 126
TEs" | 0.2771-0.3375] 0.5439 0.1144 169 34
Tlgt | 0.1417-0.1748| 0.6057 0.0687 87 17
Tst | 0.0855-0.1076] 0.6436 0.0432 53 11
TE:T | 0.0554-0.0719]  0.6787 0.0277 35 7.1
Tzt | 0.0363-0.0503| 0.7269 0.0172 24 4.8

ameter variation of present copper waveguide is of the order of 0.1 mil.
Consequently the diameter, ellipticity, tri-foil, and higher-order defor-
mations must have comparable or smaller tolerances, so that they should
have a negligible effect on present TI transmission measurements.
Txperimental observations support this conclusion. The only spurious
modes ever observed in measurements on relatively short (i.e., a few
hundred feet in length) waveguides are TE;." and TEy", arising from
straightness deviations. TEqg,”, TEs, ", TE;, ', and higher TE,,," modes
have never been observed with significant magnitudes.®

Straightness deviation is the one tolerance about which in the past
we have had no information at all, via mechanical measurements; it is
the only significant tolerance in present measurements. Random straight-
ness deviations are believed to account for substantially all of the addi-
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TaBLe XII (n = 6) —6-Foi. YieLping 1 DB/MILE ADDITIONAL
AveraGe TE, Loss ror THE Loss ComPONENT A, DUE TO
Eacu oF tHE TL,T Spurious MobDES, AT 55 KMC

Liotar = 20 miles, total guide length.

8_68,59<A'5&L> = 1 db/mile, additional average loss for each
total component.
f = 55 kme, midband frequency.
a = 1 inch, guide radius.
L = 200 feet, mode filter spacing.
Case M = 528, number of mode filters.
1 8.68594/<(84 (om1t0ta)?> = 0.6155 db, rms total loss fluctuation for each

component, for 20-mile line.

L = 996.23 feet, mode filter spacing.
Case M = 106, number of mode filters.

2 8.6859/< (84 [6mtota)?> = 1.3736 db, rms total loss fluetuation for each
component, for 20-mile line.

1

Case 1 Case 2
o oo s K
. Beat Wavelength | RMS 6-Foil -
Spurious| “p: for 50-60 |in Beat Wave- Spectral .3 _ -3 -
Mose " Rapge or S in Beat Nove: | pULfvor | afians bob Bt | afian: kb Band.
trum of Loss trum of Loss
Fluctuation Fluctuation
feet mils mils?/foot™? mc mc
TEx* | 0.6532-0.7902| 0.3394 0.1085 397 80
TEg." | 0.2138-0.2614| 0.5418 0.0861 131 26
TEg" | 0.1154-0.1433] 0.6047 0.0543 71 14
TEqt | 0.0714-0.0007| 0.6461 0.0349 45 9
TEg* | 0.04656-0.0617| 0.6873 0.0223 30 6
TEg* | 0.0205-0.0434| 0.7582 0.0133 20 4.1

tional loss observed in present copper waveguides, and to account for a
substantial part of the additional loss in helix as well.

Diameter variations in both copper and helix guide give rise to the
TEy,, spurious modes, which cannot be satisfactorily attenuated by ex-
isting structures. It may not be sufficient to have a good enough diam-
eter tolerance to yield a small additional average THEy loss, since the
TEy loss fluctuations may still remain objectionable. The diameter
tolerance must thus be substantially better than the tolerance for ellip-
ticity, tri-foil, ete., in copper guide. However, the present results for
diameter variations are too pessimistic, since the differential loss over
the entire length of guide was neglected.

Tolerances on diameter, ellipticity, tri-foil, ete. for drawn copper
guide are tolerances at a single cross section, and are controlled pri-
marily by the accuracy of the die through which the guide is drawn. A



REFERENCES 1149

good straightness tolerance requires accurate alignment between differ-
ent cross sections separated by substantial distances (equal to the beat
wavelength of T]']12+, TE,L ). This depends on many factors other than
the dimensional accuracy of the dies; for example, random variations in
hardness or wall thickness may cause the axis of the guide to curve as
it is being drawn. Consequently, a good straightness tolerance is more
difficult to attain than any of the other ecross-sectional tolerances, in
drawing copper guide. Numerous other manufacturing processes for
copper guide are currently under study.”

The variation of the TEy loss statistics with mode filter spacing is
illustrated in the examples given above. The average loss is unaffected
by the mode filter spacing, but the rms loss fluctuation is inversely pro-
portional to the square root of the number of mode filters. As discussed
in Section 3.4, the total TEy loss will be approximately a Gaussian
random process.

While the present analysis applies only to copper waveguide with the
differential loss neglected, further study*' shows that adding loss to the
spurious mode has an effect similar to that of increasing the number of
mode filters; for moderate values, as Aa increases the average loss changes
very little, while the loss fluctuation will be progressively reduced. Thus,
accurate tolerances will be important in helix (or in copper guide with
a lossy dielectric lining) as well as copper guide, although in helix the
principal effect of poor tolerances will be an increased average loss, the
loss fluctuations remaining small (diameter variations excluded).

Finally, the shape of the power spectra of the different mechaniecal
imperfections is all-important in determining the resulting TEy loss due
to mode conversion. Only components of the mechanical imperfection
in the beat wavelength range of the important spurious modes have any
effect on the T'Ey, transmission. The short-wavelength straightness devi-
ations “built in” to the guide in the manufacturing process will be prin-
cipally responsible for additional loss due to mode conversion to modes
such as TE;, " and TE;, " in copper guide; long bows or random straight-
ness deviations due to imperfect laying of the guide will have only a
very small effect.
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APPENDIX A

Coupling Coefficients for Tilts, Offsets, and Diameter Changes'®: 18

General formulas for the coupling coefficients from TEq, to the first-
order spurious modes at offsets, tilts, and diameter changes, as deter-
mined by 8. P. Morgan, are given in Table XIII. Numerical values are
tabulated at 55 kme for 2-inch diameter guide in Tables XIV, XV and
XVI; the computations here and in Appendix D were performed by Mrs.
C. L. Beattie.

Notation

Cotmy” — coupling coefficient between TIy; and forward (+) or back-

ward ( —) TE,, for an ofiset in copper guide.

coupling coefficient between TE, and forward (4) or back-

ward (—) TE,,, for a tilt in copper guide.

Coy™ — coupling coefficient between TEy; and forward TMy; for a tilt
in copper guide.

Catw)™ — coupling coefficient between TEq and forward (+) or back-
ward (—) TE,, for a diameter change in copper or helix guide.

a — guide radius.

Cotm™

A — free-space wavelength.
knm  — Bessel root given by J,/(k,.) = 0.
Un mA .
Vow = ! , cutoff factor for the TE,,, mode.

(1

21
2 .
Bim = "TW V1 — »,,2, propagation constant for the TE,,, mode.
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TasLe XIII
Coupling Coefficient S‘ﬁgi&’:s Equation
' kokeim® Bo = Bim "
Co B, | (AD
ot \/2 a (ku? — ko) N Fimi—1 V/Bubin ‘
knkrm? (Bo £ Pim)?
CitmrE — TE (A-2)
timl \/2 (kﬂl b klmﬂ)! '\/klm 1 \/ﬁﬂlﬂlm "
Cuyt = Y220 TMu | (A3)
1 kokom  Bom &= Bu
v t - - = T —— D -
Cami* = & bod — Rt Vader” M T | (B

TaBLE XIV — Covrring COEFFICIENTS FOR OFFSET

(f = 55 kme; a = 1 inch):

Spurious Mode Corm™ Colm]™
inch™! inch—t
TEn —1.052295 0.0035023
TE: 2.140300 0.0087996
TEw 0.800615 0.0143221
TEw 0.520766 0.0204174
TEys 0.392376 0.0274958
TE s 0.317601 0.0362493
TE: 0.269338 0.0480943
TEs 0.238323 0.0668142
TEie 0.230068 0.1105813

TasLe XV — CouprLING COEFFICIENTS FOR TiLT

(f = 55 kme; a = 1 inch)

Spurious Mode Cepm)* Ciiml™

radian! radian—!
TEn 5.428116 0.000060129
TE;2 9.004674 0.000152211
TE1s 0.784756 0.000251132
TE, 0.237781 0.000365504
TEs 0.103215 0.000506837
TEs 0.0534059 0.000695704
TH7 0.0306226 0.000976413
TEs 0.0187490 0.00147362
T 0.0121822 0,00282165

Ceany™ Ceany™

radian™! radian—!
TMy 5.403 0.
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TaBLE XVI — CourLiNg COEFFICENTS FOR DIAMETER CHANGE
(f = 55 kme; a = 1 inch)

Spurious Mode Ca [,"]+ Cdm)”
inch™! inch=t

TEg. 1.556796 —0.0162900
TEos 0.878135 —0.0244495
TE, 0.627935 —0.0336831
TEqgs 0.493929 —0.0447267

. TEqs 0.410428 —0.0589493
TEqr 0.355528 —0.0795021
TEs 0.324255 —0.1168700
TEo 0.425098 —0.329569

APPENDIX B

Geometry of Discrete Tilis

Let unit vectors directed along the guide axes in the two guide sec-
tions adjacent to a discrete tilt be t, and t, . Then

iz + jpn + ke [t = 1. (B-1)
iy + jy. + ke ; [t] = 1. (B-2)

i, j, and k are unit vectors along the ¥, y, and z axes respectively. Since
t, and t. are unit vectors,

t
123

o+t =1, (B-3)
-1'22 + .‘122 + 22? = 1. (B-4)
Let the tilt have angle «, orientation 6 as defined in Section 2.1.2; fur-
ther let the corresponding angles of the projections of the guide axes

on the 2-z and y-z planes be a; and a, , as in (38). Then by taking ap-
propriate dot products we have:

Cos @ = x4ty + Yiys + 212s, (B-5)
Tt + z122

oS & = T s T (B-6)
e + 212

cos a, = PR T 2 (B-7)

’\/U?"‘ 2 \/yf + 22’

where (B-3) and (B-4) of course hold true. If the angular deviation
of the guide axis from the z-axis is small, we have

1 << ], n <4 ], L9 < l, Y2 < 1. (B-S)



1154 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

Under these conditions (B-5) to (B-7) yield to first order

o \/(139 —x)? + ('UQ — ) (B_g)
a = Ty — I, (B_lo)
ay XY — Y1, (B-11)

where we have made use of (B-3) and (B-4).
Now define the unit vector p as follows:

t. — t1 ts — tl

p= [t. — t| 2sin (a/2) (B-12)
p lies in the plane of the tilt, i.e., in the ¢ = 0 plane, and bisects the
angle made by the guide axes on the two sides of the tilt. The vectors
t = (t; + t2)/2 and p are the analogs for the discrete case of the tangent
and principal normal vectors of differential geometry, introduced in
Section 2.4, in the freatment of the continuous case. Denote the trans-
verse component of p by p., ; then by (B-12), (B-1) and (B-2)

1

Pev = 5 sin (a/2) li(zs — 1) + §lgo — yo)) (B-13)

Now if the angular deviation of the guide axis from the z-axis is small
(on both sides of the tilt), as assumed in (B-8), and if a unit vector
perpendicular to the guide axis and lying in the ¢ = 0 plane is almost
parallel to the z-axis, then the angle of p., with respect to the xz-axis
will be approximately equal to the orientation 8 of the tilt; under these
conditions we have from (B-13)

cos 6 o (B-14)
Viee — o)+ (12 — m)?’
U — 1
sin 6 ~ V(s — ;12)2 +J1(1/2 — ) (B-15)
From (B-9) to (B-11), (B-14) and (B-15) we then have
acos 0~ a,, (B-16)
asin § X a, (B-17)

as stated in (38).



APPENDICES 1155
APPENDIX C

Energy Relations for Guides with Real Coupling Coefficients

Consider the coupled line equations given in (85)

I/ (z) = —=Toly(z) + je(2)11(z) (C-1)
I(z) = je(z)lo(z) — Tuli(2)
Ty=a+jB; Ti=a~+jb. (C-2)
We assume in this appendix that ¢(z) is pure real;
Ime(z) = 0. (C-3)

Consider first the case of ideal metallic guide, for which g = & = 0-
The total power P(z) flowing in the guide at the point z is simply

P(Z) = ' To(2) F + l Ii(z) rg = IU(E)II)*(Z) + ]1(2}11*(2'). (C-4)

Now in general, for guide whose walls are not perfect conductors, the
a’s will not be identically zero, and neither (C-3) nor (C-4) hold true.
Helix waveguide furnishes an interesting example. Here the coupling
coefficients are complex, so that (C-3) is not valid; further the powers
in the various modes are not orthogonal, so that (C-4) is untrue. In this
appendix we consider cases where @ 0 but where (C-3) holds true,
so that e(z) is pure real. We define a quantity P(z) by (C-4); however
only for ideal metallic guide, where the o’s are equal to zero, are we
assured that P(z) really represents the total power. If the a’s are not
zero we have no reason to think that P(z) should be the total power;
however the results given below render this plausible when ¢(z) is real.
From (C-4) we write

PE) 1) + 1) 14)
dz (C5)

+ L(2) ¥ (2) + I)(2)1,*(2).
Substituting (C-1) into (C-5), making use of (C-2) and (C-3), we find
P'(z) = =200 | 1o(2) [' — 2a1 | Li(2) |. (C-6)

P(z) =

If P(2) is the total power flowing along the guide, (C-6) has a simple
physical interpretation. It says that each mode contributes to the de-
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crease in power along the guide in proportion to the product of its at-

tenuation constant and the power it carries. Equation (C-6) may be

extended to any number of modes via straightforward matrix techniques.
Finally, consider the case where

A = a1 = a, Ao =ay— ap = 0. (C-7)
From the transformation of (88)—(89), (C-4) becomes
P(z) = | Gol2) [ + | Gu(2) [)): (C-8)
Similarly from (C-6), (C-7), and (C-4), we find
P'(z) = —2aP(z2), (C9)
which has the solution
P(z) = ¢*P(0) = ¢ *[| I(0) " + | 1:(0) []. (C-10)

Assuming as usual that the guide is excited by a unit TEy wave so that
the initial conditions of (87) apply, i.e.,

1,(0) =1, 1,(0) = 0, (C-11)
(C-10) becomes
P(z) = e ™. (C-12)
From (C-8) and (C-12) we have finally
|Go(2) P+ [ Gu(2) [P =1, (C-13)
subject of course to the following conditions:
Go(0) = 1, G(0) = 0. (C-14)
a = a1, Ae = ag — a1 = 0. (C-15)
A similar treatment may of course be given for the coupled line equa-

tions of (93).

APPENDIX D (See Section 2.3.8)

Coupling Coeflicients Ejnm for General Continuous Deformations, and Beat
Wavelengths Bium T, for Metallic Guide (Guide Diameler = 2 Inches)
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m

Frequency = 50 Kme

Frequency = 55 Kmc

Frequency = 60 Kmc

Bum)* Z(nm] Blum)? Z(nm] Bam* Z(nm]
feet inch™2 feet inch—2 feet inch—2
2 0.78861  1.033665 0.87104 0.935818 0.95318 0.855165
3 0.30028 1.531489  0.33298  1.380849  0.36543 1.258058
L 0.15879 2.072235 0.17717 1.855771L 0.19531 1.682663
5 0.096k1  2.689180 0.10863 2.380811 0.12055 2.142344
6 0.06272  3.452634 0.07182 2.992239 0.08053 2.658456
7 0.04176  L.57h033 0.04936 3.771644 0.05630 3.271486
8 0.02590 7.815578 0.03405 L.986672 0.0k021 L.o77331
4 CUT OFF 0.02066  10.765911 0.02842 5. 422487
1 -2.b526hk 0.22L648  -2.70093 0.203996 -2.94898 0.186837
2 1.99720 0.561114 2.20291 0.508716 2.40812 0.465363
3 0.46389 0.903729 0.51323 0.816787 0.56232 0.745451
b 0,21503  1.268585 0.23908 1.140518 0.26289 1.036959
5 0.12293  1.673662 0.13773 1.491619 0.15228 1.348056
6 0.07762 2.151892.  0.08805 1.888713 0.09815 1.690k415
T 0.05134k 2.78ko72 0.05953 2,368870 0.06723 2.084309
8 0.03377  3.901930 0.0k119 3.029237 0.04763 2.572121
9 CUT OFF 0.02776 4.333118 0.03402 3.272356
10 CUT OFF CUT OFF 0.02321 4.869801
1 -5.16225 0.41LBBE  -5,68690 0.376608  -6.21100 0.344833
2 0.90059  0.730808 0.99444 0.661825 1.08797 0.604918
3 0.31537 1.081k01 0.34959 0.975358 0.38358 0.888839
L 0.16314  1.k62636 0.18196 1.310395 0.20053 1.188501
5 0.09816  1.8g724k2 0.11054 1.680662 0.12263 1.512888
6 0.06357  2.433800 0.07274 2.111386 0.08153 1.876880
7 0.0k225  3.217515 0.04a87 2.659138 0.05685 2.308706
8 0.02631  5.387660 0.03437 3.507377 0.0kosk 2.874896
9 CUT OFF 0.02108 7.134864 0.02865 3.812804
1 9.28358 0.617958 10.23270 0.560645  11.18001 0:513138
2 0.546k2  0.905720 0.60417 0.819106 0.66165 0.747918
3 0.23147  1.265707 0.25719 1.138773 0.28266 1.035917
L 0.12849  1.667518 0.14385 1.487579 0.158095 1.345276
5 0.08006  2.141126 0.09072 1.881991 0.10105 1.685882
6 0.05262  2.763190 0.06091 2.357577 0.06872 2.0772k2
7 0.03k59  3.837927 0.0k200 3,006912 0.04848 2.5603L0
8 CUT OFF 0.02835 k4, 252609 0.034s57 3.248210
9 CUI' OFF CUT OFF 0.02366 4.759583
1 2.01904  0.83h2kg 2.22697 0.756350 2.k34 0.691899
2 0.37568  1.087248 0.h41c03 0.981657 0.h5615 0.895260
3 0.17821  1.458kok 0.19854 1.308247 0.21863 1.187591
L 0.10386  1.886313 0.11679 1.673870 0.12945 1.508455
5 0.06627  2.412943 0.07568 2.099151 0.08471 1.868999
[ 0.04377  3.169891 0.05147 2.036799 0.05856 2.295676
7 0.02754  5.053602 0.03538 3.h5h117 0.04157 2.851181
8 CUT OFF 0.02221 6.258648 0.02936 3751777
9 CUT OFF CUT OFF 0.01672  24.592342
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Freguency = 50 Kme Frequency = 55 Kmec | Frequency = 60 Kmc
m
" Bnm)* E(am) B[nm]+ E(nm] Bam]* Z(nm]
feet inch™® feet inch™2 feet inch™2
5
1 1.0317L 1.063496 1.13893 0.963362 1.24k582 0.880700
2 0.27706  1.276544 0.30740 1.150302 0.33750 1.047565
3 0.14174%  1.661453 0.15842 1.485036 0.17484 1.34473%
L 0.08552  2.123151 0.09669 1671474 0.10755 1.679382
5 0.05538  2.725027 0.06388 2.337156 0.07193 2.064780
6 0.03629  3.724150 0.04371 2.965282 0.05029 2.538314
7 CUT OFF 0.02954 4.111601 0.03571 -3.202782
8 CUT OFF CUT OFF 0.02456 L.570756
6
1 0.65318  1.305633 0.72180 1.181454 0.'79015 1.079233
2 0.21378  1.474795 0.2377L 1.325829 0.26139 1.20539L
3 0.11540  1.877243 0.12947 1.670557 0.14326 1.508273
i 0.07137  2.38393h 0.08123 2.083255 0.09074% 1.859682
5 0.04651  3.099496 0.05437 2.0603525 0.06168 2.276663
6 0.02954%  L.66325k 0.03715 3.374330 0.04340 2.814772
7 CUT OFF 0.02386 5492384 0.03060 3.660164
8 cUT OFF CUT OFF 0.01927 7.278403
7
1 0.45817  1.560845 0.50693 1.410610 0.55543 1.287362
2 0.17024%  1.683378 0.18977 1.509104 0.20906 1.369320
3 0.09560 2.108882 0.10773 1.866529 0.11957 1.67927L
i 0.06011  2.677695 0.06899 2.313116 0.07746 2.051409
5 0.03903  3.582532 0.04652 2.910415 0.05327 2.50953L
6 0.02148 10.369537 0.03140 3.937248 0.03755 3.141ks52
7 CUT OFF CUT OFF 0.02593 L.3kks516
8 -
1 0.34163 1.829591 0.37853 1.651012 0.41518 1.505110
2 0.13874  1.903988 0.15512 1.7011k1 0.17125 1.540005
3 0.08022  2.360640 0.09090 2.075128 0.10125 1.858998
i 0.05092  3.019453 0.05908 2.56667L 0.066Tk 2.257265
5 0.03243  L.298900 0.03988 3.279521 0.04625 2,776706
3 CUT OFF 0.02603  4.903585 0.0324% 3.549922
7 CUT OFF CUT OFF 0.02122 5.84532h
9
1 0.2653 2.112618  0.29451  1.90304% 0.32342 1.732653
2 0.11507 2.138800 0.12910 1.903182 0.14287 1.718219
3 0.06797 2.638691 0.07752 2.299234 0.0867L 2.049035
L 0.04320  3.4371hk7 0.05087 2.852180 0.05792 2-.1+8095h
5 0.02597  5.866004 0.03410 3.755552 0.04026 3.071952
6 CUT OFF 0.01929 11.251662 0.0278k% 4,113642
10
1 0.21225 2.410992 0.23602 2.167296 0.25955 1.970313
2 0.09673 2.390696 0.10898 2.116784 0.12093 1.90L4895
3 0.05796 2.952529 0.06666 2.54k2807 0.0T7kOk 2.251409
n 0.03650 3.992360 0.04393 3.184628 0.05052 2.727785
5 CUT OFF 0.0288 b, 456392 0.03506 3.434146
6 CUT OFF CUT OFF 0.02344 5.078573
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Frequency = 50 Kme Frequency = 55 Kmc Frequency = 60 Kmc

Blum)* = (um] Bnm? Z(nm] Blam)* Z(nm]
feet inch™2 feet ] inch™2 feet inch2
1 0.17355 2.726150 0.19341 2.444562 0.21303 2.218565
2 0.08217 2.663620 0.09302 2.343950 0.10356 2.101187
3 0.04961  3.317918 0.05768 2.811536 0.06524 2.468802
4 0.03040  L4.859555 0.03794 3.588797 0.04Y422 3.005794
5 CUT OFF 0.02364 5.918920 0.03042 3.899372
A CUT OFF CUT OFF 0.01796  10.206978
12
1 0.1L43%  3.059998 0.16128 2.735980 0.17796 2.478048
2 0.07035 2.963187 0.08012 2.587323 0.08953 2.308543
3 0.04248  3.763972 0.05011 3.11k0%6 0.05711 2.70L883
n 0.02390  7.400976 0.03262 4 ,119666 0.03877 3.328012
5 CUT OFF CUT OFF 0.0261k4 L.574673
13
1 0.12168  3.415043 0.13636 3.042884 0.15078 2.749591
2 0.06057  3.297766 0.06949 2.850485 0.07800 2.528816
3 0.03621  4,353961 0.04363 3.464397 0.05020 2.964872
Iy CUT OFF 0.02769 L .,929759 0.03396 3.717676
5 CUT OFF CUT OFF 0.02185 5.901255
1h
1 0.10368  3.794511 0.11660 3.367083 0.12924 3.03424L
2 0.05233  3.680031 0.06060 3.138L45E 0.06838 o.76UL2g
3 0.03043  5,271752 0.03797 3.BB7661 0.0kk42s 3.256582
L CUT OFF 0.02257 f.850328 0.02962 4. 222458
15
1 0.08911  L.20317F 0.10063 3.710887 0.11183 3.333332
2 0.04526  L,13465% 0.05305 3.458593 0.06025 3.018632
3 0.02433  7.682039 0.03290 L.435540 0.03905 3.592421
I CUT OFF CUT OFF 0.02555 L .966220
16
1 0.077T11  L.646504 0.08750 L,o77300 0.09755 3.648526
2 0.03905 4.704352 0.0k&sh 3.8z22244 0.05330 3.295920
3 CUT OFF 0.02820 5.243552 0.03443 3.993906
L CUT OFF CUT OFF 0.02139 5.491317
17
1 0.06707 5.134532 0.07655 4 . 470288 0.08566 3.081936
2 0.03343  5.495075 0.0k08s 4 .2L828)4 o.ok727 3.602748
3 CUT OFF 0.02341 6.919841 0.03025 k.503227
18
1 0.05856 5.679004 0.06731 L 895211 0.0756h 4,336278
2  0.02800 6.872935  0.03579  L.7T1L80  o.0b1loo 3.948853
3 CUT OFF CUT OFF 0.0063k 5.221466
19
1 0.05122 6.300569 0.05941 5.359516 0.06710 4.71507%
2 0.02050 22.459224 0.03116 5.466895 0.03730 4,349893
3 CUT OFF CUT OFF 0.022kY 6.509164
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\ Frequency = 50 Kmc Frequency = 55 Kmc Frequency = 60 Kmc
"
Bam]* Elnm] Bam)* Z(nm] Bam)* Z[nm]
feet inch™2 feet inch—2 feet inch™2
20 ]
1 -o0.okkB1 T7.033398 0.05257  5.873928 0.05974 5.123026
2 CUT OFF 0.02675 6.549116 0.03308 L4,83337h
21
1 0.03910 7.941831 0.04659 6.454660 0.05335 5.566509
2 CUT OFF 0.02197 9.289222 0.02920 5.454350
22
1 0.03388 9.169691 0.04130  7.127805 0.0477h 6.054504
2 CUT OFF CUT OFF 0.02552 6.349417
23
1 0.02886 11.158150 0.03654 7.939276 0.04277 6.600202
2 CUT OFF . CUT OFF 0.02175 8.047971
24
1 0.02315 17.4hhh2s 0.03217 8.981077 0.03832 7.22k001
25
1 CUT OFF 0.02804  10.482045 0.03428 7.959870
26
1 CUT OFF 0.02382 13.335010 0.03057 8.870500
27
1 CUT OFF CUT OFF 0.02707 10.091403
28
1 CUT OFF CUT OFF 0.02364  12,010406
29
1 cUT OFF CUT OFF 0.01979 16.923252

APPENDIX E

Geometry of Continuous Bends

Let 2(z) and y(z) be the transverse displacements of the guide axis
from the z-axis, in a rectangular co-ordinate system. Then we write

r(z) = iz(z) + jy(2) + ke, (E-1)

where i, j, and k are unit vectors along the z, y, and z axes respectively.
Assuming that (215) holds true, from (216a) we have

SRz, (E-2)



APPENDICES 1161
Thus, arc length along the bent guide axis is approximately equal to
distance measured along the z-axis. I'rom (211a) and (E-2),

=AW+ @)+, (1-3)

where primes indicate differentiation with respect to z. I'rom (211b)

1 _ dt dt ” ” D
‘;pmal—gw{?gwlﬂr (Z)+]J (Z) (D-4)

Therefore the curvature is approximately
L~ VG F ) (E5)

so that
_ _x"(z) + jy"(2)
PRV e

(E-6)

Then from (211c¢)

]/p . (E-7)

Since p and b are approximately transverse, i.e., their z-components are
small, from (211) and (212)

b = tXkaXpN

0~ éb—g% Zp, (15-8)
since by (211e¢) b L p. From (I2-4)
tan 0 iﬂiz—) . (E-9)
x”(2)
Thus,
2 (2)
cos 0 X —== — X p-2”(2), (E-10
Va"(z) + ¢ ) :
U”(Z) )
~ p-y”(2). (E-11)

0~
sin \/1”“(z) + Jlro(z)
From (E-10) and (E-11) we finally obtain the approximation of (216);

cos § ~ a”(z), (E-12)
p
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&;9 ~ " (2). (E-13)

The above analysis has been a little crude; it is helpful to get a pre-
cise estimate on the error in the approximate result of (E-4) for the

vector 1 -p, which in the above approximation is assumed to be purely
trans‘.-'o’:'se. We write
r(z) = ix(z) + jy(z) + ke (E-14)
as before. Next,
ds = \/de? + dy* + dz?, (B-15)

ds _
dz

V1 + 2"%(z) + y2(z), (E-16)

where as before we reserve the prime to denote differentiation with
respect, to z. Then

t = dr _ drdz
T ds  dzds .
] (E-17)
= Vitee foe e H e i
IFurther
1 dt _dtdz _ 1 .{,_”_ .
R o e O R ORI )
Now we may write (I2-18) as follows:
%-p = iz"(z) + jy"(z2) — A — B. (E-19)
L2 o
A x(z) + y(2) lie” (2) + jy" (2)). (E-20)

T 1+ 2(z) + ¥ (2)
_a'(2)2"(2) + ' (2)y" (2)

[T+ 2"(2) + y"™*(2)]
The first two terms of (E-19) are identical to the approximation of

(E-4); the vectors A and B represent correction terms that we shall
show to be small compared to the first two terms.

B liz'(2) + jy'(z) + K. (E-21)
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From (E-20)
|A | o 2"(2) + y%(2)
V" (z) + y™(z) 1+ 2%z) + J”(z) -
From (I-21)
_ [ 2(2)a"(z2) + ¥ (2)y"(2) | ” ()]
Bl = e +map T )
< 2'(2)a"(z) + ¥ (2)y"(2) |
= VaR(z) + ¥ (z) Va"(z) +y"(2),
where the last step follows from the Schwarz inequality. Then
J B l YY) n
Ve e = Ve @) (E-24)

If (215) is satisfied, (E-22) and (E-24) show that the correction terms
A and B of (I5-19) are small compared to the first two terms, so that
the approximation of (I5-4) will be valid.

a%(z) + y*(2). (E-22)

(E-23)

APPENDIX F

Rigorous Treatment of TEy Loss Statistics for the Discrete Clase

In treating the TEy loss as a Fourier series with random coefficients,
the frequency dependence of the Aa’s and the ("sin (218) was neglected,
since the principal frequency dependence occurs through the Ag's. While
this provides a simple and accurate analysis, a rigorous treatment of
the TEy, loss statistics as a function of frequency is of interest.

We consider only the case of independent offsets or tilts, treated in
Sections 3.3.1 and 3.3.2 respectively. From (218), (235), and (236)

A=1d+s4 (F-1)
A =134, (F-2)
N—1
84 = IA oS )l._\,Blu (1‘1-3)
k=1
N—k
Ap = NN (v + witeia®) (I'-4)
i=1
Ap = #N,  <AD = #N(N + 1) (F-5a)
44
<A =0, <A = % (N —k) ™™ 1=k<N—1 (F-5b)
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CAydp =0, L # l (F-5¢)

The new quantity A is defined by (F-2); 84 remains the same as before.
We have for the expected values of the various losses:

<A> = cdp, wA> = 0. (I-6)

Therefore
CA> = ¢A> = 4> = = N. (F-7)

Equation (F-7) gives the expected value of the TEy loss as a func-
tion of frequency, since the rms conversion coefficient £ will in general
vary with frequency (this variation will be small for offsets and diam-
eter changes, approximately inversely with the free-space wavelength
A for tilts). We may now average over wavelength (indicated by a bar)
and obtain instead of the result given in (237):

Thus, the average of 4 over the band should be used instead of the value
of #* at the middle of the band. Over reasonable bandwidths the error
will be small.

Next from (F-5¢), A and 84 are easily shown to be uncorrelated.

<A(s4)> = 0. (I-9)

We next find the mean square value of §4. From (I*-3), (I-5b), and
(F-5¢):

N—1 N—1

(8A) = D0 D <AAp cos kAL cos 1ABL

k=1 1=1
1

N—

= <A cos® kABl

<(8A)" = %Z (N — k) 2% cos® kAgl, . (F-10)

The summation of (F-10) is easily written in closed form, but its gen-
eral behavior is much more easily seen by examining the usual two
special cases, small and large differential loss.

1. Small differential loss over total length Ly = Nl .

b . 2
(84)> = %[N(N _9) + (%%’) ]; — N2Adde < 1. (F-11)
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2. Large differential loss over total length Ly, small differential loss
over pipe length 1 .

1+ 1 (sin A,Bl[.)2
.. & N 2\ —Aaly/ .
(84)> =" — - w5 —N2Aaly > 1,
4 —Aal 4 (sm A,Blo)

—Aa[o

(F-12)

—24aly L 1.

Sketches of the general behavior of <(84)* vs ABly (proportional to
the free-space wavelength \) are given in Tig. 11 for a single period,
these functions being periodic of period . In both cases <(64) is al-
most constant except in narrow bands centered at ABly = mmwr, where
it becomes twice as large; these peaks occur because we have assumed
equally spaced mode converters. The half-width of these peaks initially
decreases as 1.39/N as long as the differential loss remains small, ap-
proaching a limiting value of ( — Aaly) when the differential loss becomes
large. Since these peaks are narrow, they may be neglected in averaging
over X (or ABly), yielding for small and large differential loss respectively:

i w
EA)D = <(6A4)D = 'tg N(N —2);  —N2al < 1 (F-13)
G = <Ay = (S —N2Aaly, > 1
(84)% = <(84)* = (—Aa 8, 2Aaly > 1, (F-14)
—2Aaly K 1.

Comparing with (241) and (242), we see that the average of &' or of
ad

over the band should be used rather than their values at the middle

of the band. Again, over reasonable bandwidths the error will be small.

The minor difference between (1-13) and (241) for #' independent of
frequency — i.e., the factor (N — 2) instead of (N — 1) — arises be-
cause of our approximate integration of the function of Fig. 11(a), in
which the narrow peaks and small ripples were ignored and the function
set equal to N(N — 2). It is clear that this yields a result that is too
small. An exact integration of (1'-11) yields a result identical to (241).

The above caleulations have considered only a single mode, the mode
subseript being omitted as usual. F'or the total é4, including all first
order spurious modes, we have

64 = 3 6A(m, (I-15)
[m]

E Z <A [.,,]5:1 [,,r). ( I-16 )
[m] [n]

<(84)%

II
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<(FA)°>
z4/e

2_
2N ENTT— (a)
: N¥2 -NAalg<<1

<(dA)Z>
(84/a)(N/-Aalo)
1
(b)
075 ﬁ ~NAaLy>>1
0.50 ml —% -Aaxlg<<i
| |
"L U |
At 7

Aply
Fig. 11 — General behavior of <(34)* vs ABly .

In violation of our usual convention that [ ] indicate only TE spurious
modes, in the present appendix this notation includes in addition the
TMy " spurious mode in the case of tilts.

The <(64(n)*> have been discussed above; we need in addition the
cross terms <84 (84 ,>. These cross terms did not appear in the ap-
proximate analysis, so we expect to find them negligible here. The differ-
ent 64, are of course not independent. From (218), (221) and (173)
we see that 84 (A1) = 84 (X)) where Ay « Ag; ie., the TEqy loss
component due to the mt spurious mode at one frequency is propor-
tional to the TEy loss component due to the n'™ spurious mode at a
widely separated frequency. However, at the same frequency 8A [ and
A, are almost uncorrelated, so that the cross terms in (F-16) may
be neglected.
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We have
N—1 N—1
<6‘-![m]6‘4[u]> = Z E <.'1A~[,,.].‘1.l[,,]> cos f\'Aﬁ[m]]o CcOos IA,B[,,]]O (I“-IT)
k=1 i=1
where

A 2.4 2
_ Tpm) Tpa) 1) JFAapm)taam) i,
<Ak[mjAA'ln]) - 2 (N A) € ! (F-]S)

Apppadagn> =0, k&=L
Setting
cos kABlo cos kABL L = § cos B(ABLm — ABra)l
+ 3 cos k(ABpm + AB)h
(I"-17) now becomes

. 2. 2 N—1
) _ :vﬂ]_ -v[u] N : k(da [y +dafu])io
<BAdA > 1 E (N k) e (F-19)

'[UOS JT\'(,AB[m] - Aﬂ[:t]-)lu + cos I"(AB[m] + Aﬁ[nl)[u]

This summation is of the same general type as (I'-10). In the special
cases of small and large differential loss:

a

:f"[m]'-):i,hi]‘ ‘ sin %N (ABIYH] — ABI"])IU)g
GA ALY = 2 [ =2N -
trf 8 I: v ( Sin 3 (ABmy — ABLg)h

3V ( IAY (F-20)
' o =N (e + Aap)lh K1
( s %{A.B[m] + Aﬂ[,,])[u ( X m] + 4] ]) 0
i _ -'i:[m]E.f'[nl2 N
<a‘l[”‘]6‘4["]> - 4 _(Aa[m] + Aa[nll)l(l
1= 2 - I\‘ill l(Aﬁ — AB )[ ]2
— (Aam) + Aag )l ' 2 [m] [»]/to
2 FaE— 2 sin _ 2
: + (:(_A;H—:l'—.’laln] )IU) [Lln Q(Aﬁ["'] A-B[n])lﬂl (F-'..)l)
2
1 N V‘-‘ l‘- ‘l m n [ 2
+ — (Aapm) + Aagu )l [sin 3 (ABt1 + ABp ol —|
t) 2 - ;
— sin 1 2
: + (W(Aa[m] "|" Aa[,,])[(,) [. m 2(A'8['"] + AB[»])IU]J

— N(Aap,) + Aap)le > 1, —(Aapg + Aapg )l < 1.
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Equations (F-20) and (F-21) again exhibit narrow peaks of the same
general type as illustrated in Fig. 11; away from these peaks the func-
tions will be quite small. Thus if (A8(m F ABp )l # mm, from (I-20)
and (TF-21) for either small or large differential loss:

W 24 2
<6A[JJL]6A[?I]> = _ﬂ'ﬂ%ﬂ Ar; _(Aa{m] + Aa[n])lﬁ << 1,
(F-22)

(ABI'!:] + AB[“])IU # mm.

From (F-22) the correlation coefficient of 84, and 84, will be small
for moderately large values of N. Therefore, for those modes that make
a significant contribution to the total <(84 )*>, the cross terms in (F-16)
will be negligible.

APPENDIX G

Correlation Coefficient of TEy Loss Components due to Different Spurious
Modes for the Continuous Case

Consider the ac components 84, and 64, of the total TEy loss,
due to two different spurious modes, each with two polarizations, gen-
erated by the same type of geometric imperfection. The geometric im-
perfection and thus the coupling coefficients are assumed to have white
power spectra.

As a specific example, consider random deviations of the guide axis
from perfect straightness, which generate principally the forward TT,.
and TE,, spurious modes. The coupling coefficients to the two polariza-
tions of the TE,,, mode are given in (308) in terms of the second deriva-
tives of the rectangular co-ordinates of the guide axis, 2”(z) and y”(2).
We assume that x”(z) and y”(z) have white power spectra.

We expand the geometric imperfection to which the coupling coeffi-
cients are proportional in a Iourier series. For random straightness
deviations:

o0
(2) = 3yl
n=—00
o0
. 1
y'(2) = 25 vt e (G-
T =—00

'Tn” = an“ -+ jﬁn“, 'Ynl = anl + ijnL-

The complex Fourier coefficients ¢, in Section 4.1 are simply proportional
to the corresponding v, . For straightness deviations, for the TE,,, mode
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we have:

I I 1.
Cufm)” = G![m] Yn TElm H

1 PR, (G-2)
Catm)” = Copmyva™, TEL™

Consequently, the v,’s have the same statistical properties as the ¢,’s,
given in Section 4.2. Since 2”(z) and y”(z) have white power spectra,

< |7n” J2> =< |'Yn1 Iz) = "?2- (G'R)

I'urther, the different v’s are strictly independent.
We next define for convenience the following quantities:

ga' (1) —’ a,' 1
gs' (t) & | B ! (—1)" sin w(t — n) _

- smrlt =n) -, _ ABL
[gﬁ(t) —VJ it —n) =
gﬂl(t) BML

These quantities are proportional to the real or imaginary parts of 7 in
(285b). These four quantities are approximately independent station-
ary band-limited Gaussian random processes in the practical case where
the length 7 is large compared to the beat wavelength B, so that | ¢ | >> 1.
The autocorrelation funetion of each of these quantities, found directly
from (G-4), is therefore

| e~

(G-4)

F(r) = <Gus" (Dgas (L + 7)> = 347 50T (G-5)

m™T

Next we define for convenience the quantity ¢*(¢) as
g = ga"(1) + g5"(0) + g2**() + g5 (1). (G-6)

The autocorrelation function of ¢*(¢) is easily found in terms of the
autocorrelation function of the individual ¢’s, given in (G-5). If z is a
sta‘nmmnv Gaussian random process with autocorrelation R.(r) and
y = a’, then the autocorrelation of y, R,(r), is given by * *

R,(7) = R20) + 2R (1), (G-7)

where the first term corresponds to the de component, the second to
the ac component of y. Since the individual quantities whose squares
appear on the right-hand side of (G-6) are independent random vari-
ables, we have from (G-7) and (G-5) for the autocorrelation function
R(7) of ¢°(1)
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1] 2
R(r) = g (Dg*(t + r)> = 44" + 24 (““T:T) ,  (G8)

where again the first term corresponds to the de component, the second
to the ac component of g*(t).

From the results of Section 4.1 we may now write the TEq loss due
to the two polarizations of the mt™ spurious mode (TE,, for straightness
deviations) in terms of the function g*(t) defined in (G-6):

¥ 2 2
i A m
(_L[m__l_ gz(t[ml): t[ml = M-

2 - 2 (G-9)

A =
Equation (G-9) is appropriate for our present purposes because it places
in evidence the relation between the different TEy loss components
A - From (G-9), (G-8), and the results of Section 4.1, the normalized
correlation coefficient py, of 84, and 8A,, the ac components of
TE,, loss due to the mt* and nt spurious modes, may be written in the
following form:

o <BA (m18A () _ {sin wTa,
P = A ) V<A  \ 7T )
[m] [=] ((}_10)
_ g Als[m] [ - IA.B[n] |)L
Tmn = 4—‘—‘—'—_—27‘_ .
Thus,
2
Pun < ( ! ) : (G-11)
wTﬂl"

Since the different spurious modes have substantially different beat
wavelengths (Appendix D), pn, < 1 for moderate values of length L.
As a numerical example consider TEp" and TEy ", for a total length
between mode filters I, = 200 feet. From (C-11), p < 0.00036. In prac-
tical cases the TEy loss contributions of the different spurious modes
will be almost uncorrelated, so that <(84)* will be given by (322).



