Reswitching of Connection Networks

By M. C. PAULL
(Manuseript received November 28, 1961.)

In cerlain types of connection networks, it is always possible to unblock
a blocked call by moving calls already set up in the network. The following
results relating o these networks are derived in this article.

I. Bounds on the number of calls which must be disturbed to unblock
a blocked call.

2. Bounds on the relation between the number of calls which are already
set up in the network, and the number of calls that must be disturbed to
unblock a blocked call.

3. Methods of systematically changing connections to unblock a blocked
eall.

I. INTRODUCTION

In a three-stage network of the type pictured in Fig. 1, it is possible
that a connection between an input and an output cannot be made
despite the fact that neither is already connected. This could happen if
other connections already oceupy at least one link in every possible
path between the input and output in question. As first established by
Slepian,! a blocked connection in such a network can be unblocked by
rearranging the connections already set up in the network. Slepian
further showed that such a rearrangement would never require disturb-
ing more than 2n — 2 calls, where the size of the switches in each stage
is n by n, and there are n switches per stage. In the first sections of this
article I give a proof that to unblock a connection in such a network
in no case requires dislurbing more than n — 1 calls, and furthermore
for every n > 1 there is at least one network state in which n — 1 ealls
must be disturbed to unblock a blocked connection.

In subsequent sections various generalizations upon which partial
results have been obtained are discussed. These include results on differ-
ent network configurations, and networks having more than three
stages.

As discussed in the body of this paper, the physical consequence of a
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network change is to momentarily disturb network connections — to
open some of these connections during the time that changes are being
made. Depending on the application of the network, and the time dura-
tion of the disturbance caused by the change, this disturbance may or
may not be of serious consequence. In an electromechanically operated
network used to connect telephone calls such disturbances might result
in disturbing conversations carried by the network. Fortunately, one
can design switching networks and find change algorithms for such
networks such that there will be no such disturbances. In the Appendix
such a network and algorithm is described.

II. MATHEMATICAL MODEL

2.1 The Network

We first need a mathematical model of the network of Fig. 1 (which
will simply be called “the network” from now on) in which we may con-
veniently represent the possible states of the network, and in which the
basic properties of this particular type of network are made exact.
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Tig. 1 — Three-stage network suitable for reswitching.
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Fig. 2 — Madtrix for representing the state of a three-stage network. The state
pictured in the figure is illustrative of a typical blocked state as discussed in the
sufficiency part of theorem 1.

We will represent the connections existing in a given network state
by a set of symbols entered in a matrix (Fig. 2). The matrix has n
columns and n rows, and there are n possible symbols which may be
placed in any matrix position. Each position may contain from zero to
n symbols. The n rows correspond to the n-input (first stage) switches;
these are numbered 1, 2 --- n. The n columns correspond to the n-
output (third stage) switches, and these are numbered 1,2 - -+ n. The n
symbols correspond to the n intermediate (second stage) switches. To
indicate a position in the matrix we use the ordered pair (a, b), where a
is the row and b is the column. An entry, say @ in matrix position (a, b),
corresponds to a connection from input switch e through intermediate
switeh @ to output switch . No entry in (a, b) indicates the absence of
any connection from a to b. Although the matrix entry does not indicate
which input line is connected to which output line, it does uniquely
specify the links (links are the nodes in which first and second, and
second and third stage erosspoints meet) involved in such a connection.
For our purposes this is the important property of a connection from an
input to an output line.

There are certain restrictions on the set of connections (network state)
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which can exist in a network of the type of Fig. 1. These must be re-
flected in restrictions on the set of entries possible in our matrix:

4. There can be no more than n symbols in any row or column. This
corresponds to the fact that there only n inputs to each input switch and
only n outputs from each output switch.

4. Notwo symbols in any row (column) may be the same. This corre-
sponds to the fact that each input (output) switch has only one connec-
tion to each intermediate switch. If the same symbol appears more than
once in a row or column, the different appearances of the symbol will be
said to conflict.

A matrix with entries meeting the above restrictions will be called
“legitimate,” or the entries will be called “legitimate.”

2.2 Blocking-Unblocking

Given a matrix with a set of entries, corresponding to a network
having a corresponding set of connections, it may be impossible to make
an entry in (a, b) and still have a legitimate matrix. This corresponds to
the impossibility of setting up an additional connection between input
switch a and output switch b. The two possible reasons for such an
oceurrence are:

7. There are already n symbols in row a or n symbols in column b.

1. There are already a total of n different symbols in row a and
column b, but there are less than # symbols in row a, and less than n
symbols in column b.

If 4. holds, (a, b) will be said to ke trivially blocked. This corresponds
to the case where either all input lines to input switch a or all output
lines from switch b, or both are already connected.

If 7i. holds, (a, b) will said to be blocked, or legitimately, or non-
trivially blocked. This corresponds to the case in which an input line
on switch @ cannot be connected to an output line on switch b despite
the fact that neither is already connected.

Note we do not have to be specific about input and output lines,
because a connection between an input and output line is legitimately
blocked if and only if their corresponding switches are legitimately
blocked. This is so because all switches in the network are non-blocking.

We will speak about changing connections of a network in a given
state. By this we will not mean changing the input and output switch
involved in the connection, but changing only the intermediate switch
involved. That is, if a network has a connection between a certain input
line and a certain output line before a change, it will still have a connee-
tion from the input to output line in question after the change. In terms
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of our matrix a change corresponds to changing the symbols at various
positions, but a change leaves the number of symbols in any position
unchanged. A legitimate change is one which does not result in a matrix
(set of network connections) which violate restrictions 7. or 4%. of Section
2.1.

By unblocking a blocked connection (a, b), we mean making legitimate
changes in matrix symbols (network connections) in such a manner as
to provide that there are a total of at most n — 1 different symbols in
row a and column b. In the sequel we prove a theorem on the maximum
number of such changes which are sufficient and necessary to unblock
any connection.

2.3 Theorem 1

In order to unblock a blocked connection in a network, no more thann — 1
changes are required. For any n > 1, there are network states in which a
conneclion 1s blocked that require n — 1 changes to unblock that connection.

Proof. Figures 2 and 3 are provided to aid the reader (and the author)
in following the proof.

2.3.1 Suffictency

Assume (71, ¢1) is non-trivially blocked. This implies that there is a
symbol, say A, in column ¢, which does not appear in row r, . Because if
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Fig. 3 — Matrix representation of the blocked network state which requires a
maximum of changes to be unblocked.
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there were no such symbol, then every symbol in column ¢, would also
appear in row r; . And since all n symbols must appear in the union of
column ¢; and row r; (condition for non-trivial blocking), it would
follow that all n symbols appear in column ¢; making (¢, 1) trivially
blocked, a contradiction of our hypothesis. Similarly there must be a
symbol, say B, in row r, which does not appear in column ¢; .

Let A be in (2, ¢1).

Let B be in (ry , ¢3).
Thus far we have completely defined:

r1, the row in which the blocked connection appears,

¢1, the column in which the blocked connection appears,

r2, the row in which the A in column ¢, appears, and

ez, the column in which the B in row r; appears.

Now we wish to define other rows and columns:

r3 , the row in which an A appears in column ¢, if there is such a row

(otherwise r3 is undefined),

¢s , the column in which a B appears in row r, if there is such a column

(otherwise ¢; is undefined),

r1, the row in which an A appears in column ¢; if ¢; is defined and

there is such a row (otherwise 74 is undefined),

¢4, the column in which a B appears in row ry if 73 is defined and there

is such a column (otherwise ¢, is undefined).
In general, for all j > 1:

r; is defined to be the row in which A appears in column ¢;; , pro-
vided ¢j_; is defined, and provided that A does appear in column
¢;_1 . If not, r; is undefined.

¢; is defined to be a column in which B appears in row r;_¢, pro-
vided 7;_; is defined, and provided that B does appear in row r; .
If not, ¢; is not defined.

The above definition has the important property that if r; and 7. are
both defined, and j 5= k, then r; # 7, . Also, if ¢, and ¢, are both defined,
and j # k, then ¢; # ¢, . This is justified by the following argument:
consider the sequence '

P1,Cl,Ta,Co, " Fi,Ciy """ TnyCn. (1)

Assume there is a first member equal to a previous member of the
sequence.

This is either a row or column.

1. Assume row r; is the first member of the sequence which is both
defined and the same as a previous defined member, say 7., k # j. First
of all & cannot be 1 since 7;, j > 1 is defined to have an A in it, and
row 7, hasno 4 init. Sory # 7;,7 > 1. Now then assume & > 1,7 > 1,
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7 # k. Then an A appears in (¢, ¢¢—1), and in (r;, ¢;1), (by our defini-
tion of r;). So unless ¢,_y = ¢;_1,j — 1 # k — 1, there would be two
different A’s in row r, = r;. There cannot be two different 4’s in a
single row. Therefore ¢,_; = ¢,_; . But this contradicts the assumption
that the first member having this property is row 7; . That leaves only
the possibility of column ¢; being the first such member.

2. Then assume column ¢; is the first member of the sequence which
is both defined and the same as a previous defined member, say column
ek # 7. Then k # 1, because ¢; has no B, and ¢;,j > 1 does by defini-
tionof ¢; . If k£ > 1,7 > 1,k # jand ¢; = ¢, then for similar reasons
to those of the above paragraph r;.; = 7.1 . Therefore our second
assumption, ¢; = ¢, is also contradicted, completing the proof.

Having shown that the defined members of (1) are distinet, we wish
now to examine this sequence further. I'or convenience it is rewritten
below.

T1,€, T2, """ Tj, €5y " Tu,Cy (1)

There is a first member of this sequence which is defined but whose
succeeding member is undefined, say ¢; . Since rpy is the first member
of the sequence which is undefined, it follows from the definition of r,
that there is no 4 in column ¢, . We then know that according to our
definition of ¢; and r; the following matrix positions contain A’s

(r2, e1); (ray e2); oo (rpy €4m1)
and the following contain B’s
(r1,¢2);5 (r2, €); ==+ (rp1, €p)

Now in order to unblock (71, ¢;) we make the following changes.

2.3.2 Change Algorithm

Change the original B’s to A’s in columns ¢;:7 = 3,5 -+« fif fis odd
(or in columns j = 2,4 ... if [ is even). This involves changing B’s to
A'sinrowsr;:j = 2,4---f— 1if fisodd (j=1,3---f — 1if fis
even).

Change the original A’s to B’sinrows rj,j = 2,4 ---f — 1, if fis
odd ( = 3,5 --- f — 1if fis even). This involves changing A’s to B’s
incolumnse;: j = 1,3, - f — 2/ if fisodd (j = 2,4 ---f — 2,if f
is even). Note that the total number of changes is f — 1.

We see that if fis odd then after the change (r, ¢;) will still contain
a B, but (r, ¢;) which formerly contained an A now contains a B.
Therefore an A may now be legitimately placed in (ry, ;). A similar
argument holds if f is even.
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It remains to show that the changes we have preseribed do not lead
to any conflicts. For this demonstration assume f is odd. (A similar
argument holds for f even.) The only conflicts possible must involve
A’s and B’s, since these are the only symbols changed and resulting
from the change. Furthermore, the only conflicts possible are in rows
71,72 - 7y or columns ¢1, €2 - - - ¢/, since these are the only rows and
columns in which changes were made. Also, at most one A has been
added to any row or any column. Similarly, at most one B has been
added to any row or column. Before the change there were single A’s in
columns ¢;, 7 = 1 tof — 1, and in rows r;, j = 2 to [. As a result of
the change single A’s were added to columns ¢;, 7 = 3,5 --- f and no
others, and torows r; , 7 = 2,4 --- f — 1 and no others. So it is only
these columns and rows which could possibly contain more than one A.
But these columns and rows each contain only a single A, because
although an A has been added to each, the original 4 in each has been
changed to a B. For according to our prescribed changes, the original
Asine:i = 1,3 ---f — 2 were changed to B’s. This takes care of
all columns to whichan A was added except column ¢; , and column ¢, did
not originally contain an A. Also, the original A’s in rows r;t 1 = 2,
4 --- f — 1 were changed to B’s and this takes care of all rows to which
an A was added.

Again as a result of the change, single B’s were added to rowsr;: ¢ =
2,4,6,---f— 1,and to columnse;: 4 = 1,3,5 -+ [ — 2. It is there-
fore only those columns and rows which could have more than one B.
But the original B’s in columns ¢; ,j = 3,5 -+ - f have been changed to
A’s. This takes care of all columns to which a B was added except
column ¢; , and column ¢, originally did not have a B. Also, the original
B'sinrowsr;: i = 2,4 --- f — 1 were changed A’s and this takes care
of all rows to which a B was added.

If all members of sequence 1 are defined, then ¢, is the last defined
member, and there cannot be an 4 in ¢, , because such an A would have
to be in some row other than row 7, . There are A’s in all rows other than
7, but none of these A’s are in ¢, . This follows from the definition of
r; . From here, then, our argument goes on as the general case in which
7741 was the first undefined member of sequence (1).

Thus the maximum number of changes required to unblock a call is
n — 1.

2.3.3 Necessily

The network has n intermediate switches which we represent by the
symbols 4, B, @, -+ - Q,—2. Assume that (1, 1) is blocked by the follow-
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ing network sfate:

(7,7);% = 1 ton — 1 each contain all the symbols @, , -+ @Q,_= .

(4,74 1);7 = 1 ton — 1 each contain the symbol B.

(14 1,2);7 = 1 ton — 1 each contain the symbol A.

There are no other symbols in the matrix. To unblock (1, 1) the
symbols in (1, 2) and (2, 1) must be made the same because:

(a) After any change there must still be n — 2 different symbols in
(1, 1)

(b) There must still be one symbol in (1, 2) different from all those in
(1, 1)

(¢) There must still be one symbol in (2, 1) different from all those in
(1, 1)

(d) If then the symbolsin (1, 2) and (2, 1) were different, there would
be a total of n symbols in row 1 and column 1, leaving no symbol avail-
able to unblock (1, 1).

Assume that the symbols in (7 + 1,7) and (i,7 + 1);7 = k — 1 must
be the same, say X, in order to unblock (1, 1). Now (7, 7); ¢ = k, which
is in row & must, after the change, still contain n — 2 different symbols,
say Yy, Yo - YV, ». The symbol X in (: + 1,%);7 = k — 1 which is

also in row & must be different from Y,, Ya .-+ Y,_s. Therefore the
symbol in (¢, 7 4+ 1); 7 = & which is also in row k& must be different than
X, Y, Yy - Y, s. There is only one symbol that can be different from

alln — 1 different symbols X, ¥, - -+ V,_», say Z. So Z must appear in
(7,7 + 1),7 = k + 1. Similarly as stated previously (7, 7), ¢ = k, which
is in column &, must still have the n — 2 different symbols ¥, ¥y -+
Y. . Also in column % the symbol X is in position (7,7 + 4),7 = k — 1.
Therefore it follows that the symbol in (7 + 1, 7), ¢ = k, which is also
in column k& must be different than X, ¥, , --- ¥V, _,, and must be Z.

Hence the induction is complete, proving that if (7,7) z = 1 ton — 1
cach contain n — 2 different symbols (this must be true because of the
given initial network state), and (1, 1) is to be unblocked, then for each
i = 1ton — 1, the pair (i + 1, 7) and (7, 7 + 1) must contain the same
symbol. Since initially (¢ + 1, 7) contained a different symbol from
(Z,7 4+ 1) fors = 1 ton — 1, at least n — 1 changes are necessary to
put the network in a state both equivalent to its initial state, and in
which (1, 1) is unblocked.

11T, COMPARISON WITH SLEPIAN’S RESULT

I have been able to obtain the bound of n — 1 on the number of
changes by considering changes of both input and output connections
involved in the blocked connection, that is changes in both rows and
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columns of our matrix. Slepian, on the other hand, considered, in effect,
only the changes in rows. That is, he gave a method for changing the
blocking symbol in a row (B in our proof) without taking advantage
of the symbol in the column (A in our proof) for reducing the number of
changes.

In the following sections a number of generalizations are developed.

1V. METHODS FOR RESWITCHING A NETWORK TO UNBLOCK CALLS

In the proof of Theorem 1 there is a method given for determining
the changes required to unblock a blocked connection. This method
involves two second-stage switches (4 and B in the proof). If (ri, ¢1)
is blocked, we look for a symbol in r; not in ¢; , and a symbol in ¢; not
in 71, and carry out the Change Algorithm of Theorem 1 (Section 2.3.2).
We will call this “method 1.” We could use a slightly more complex
method in which we test all symbol pairs, (4, B), such that A isin n,
but not in ¢; , and B is in ¢; but not in ry , to find which pair will require
the fewest changes. The changes are then made on this pair according to
the change Algorithm. We will call this “method 2. Methods 1 and 2
both involve changing only two second-stage switches. We can develop
methods which are not restricted to changes of only two second-stage
switches.

Assume that (71, ¢) is blocked. Assume that A is in r;, but not in ¢
and B is in ¢; but not in 7, . As in the proof of the theorem, assume ¢,
is the first member of sequence (1), which is itself defined but whose
succeeding member is not defined. Then by making f — 1 changes of
A’s and B’s, we know (r, , ¢;) could be unblocked. If, however, some of
the A’s or B’s which serve to define ¢, , and 7;, 7 < [, could be changed
without conflict to a symbol other than A or B, to ' for example, then
we could unblock (r;, ¢;) in less than f — 1 changes. This is best illus-
trated by an example (see Fig. 4). In summary, method 3 involves:
first, finding a symbol in r, not in ¢ , say A; a symbol in ¢;, not in ry,
say B; second, finding the last defined term of sequence (1); and third,
examining the A’s and B’s which define sequence (1) to determine if
any can be changed to a symbol other than A or B. If not, change the
B’s to A’s according to the Change Algorithm. If so (say a B in column
k, k < f, can be changed to a € without conflict) then make this change
and make all changes given by the change algorithm in columns ¢;,
for j < k rows r; forj < k.

In method 4 we try method 3 on all pairs of symbols (4, B); A inn
not in ¢; ; B in ¢; not in 71, and actually carry it out on the pair which
requires the fewest changes.

The methods discussed vary in complexity. A legitimate question to
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ask is, what do we get for this complexity? The least upper bound on the
number of changes required to unblock a blocked call has been estab-
lished and is independent of which of the four methods is used. The
greater complexity, however, does serve to decrease the average number
of changes required per blocked call. We can get a quantitative idea
of the value of the different methods by finding for any number of
changes required to unblock a call, a lower bound on the number of calls
which must already be set up in the network for each of the four methods.

These bounds are illustrated by examples in which it can be seen that
the removal of any ecall will lower the number of changes required. These
can be shown to be greatest lower bounds (I'ig. 5)

a = the number of changes required
y = the number of calls already set up.

IF'or methods 1 and 2

y=2r+n—2 ...bound 1 (See Fig. 5a).
IFor methods 3 and 4
x
y=2r+3 (n —2) for a even
y = 2x + (n — 2) for @ odd --- bound 2 (See Fig. 5b).

-

These bounds do not indicate the difference between methods 1 and
2, or between methods 3 and 4, because as far as these bounds are con-
cerned there is no difference. However, I'ig. 6 indicates a case in which

(1,1) (1,1) 1S UNBLOCKED
1S BLOCKED BY METHOD 3
A A
A B © )
A B A B
€D B co | (&)
[

~~_ B maAY BE
PLACED HERE

Fig. 4 — Illustration of change method 3.
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WHICH ACCOUNTS FOR 2X SYMBOLS
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S Y=2x+n-2 2

Fig. 5 — Tllustrations of the smallest number of calls which must oceupy a
network (x) if a call is blocked and x changes are required to unblock the call.

method 2 or 4 requires (assuming A and B were changed) one change to
unblock (1, 1), whereas methods 1 and 3 require five.

There are more complex methods possible, in which more complex
changes are allowable than any of the four methods, discussed above.
Tig. 7 indicates how a network state which requires four changes with
method 4 could be unblocked with three ehanges. It would be interest-
ing to obtain the general hound, equivalent to bounds 1 and 2 in the
case in which no restriction was made on possible changes.

A 704 program for simulating method 2 on a simulated four-stage
network is being written by J. Nervik. Also it should be fairly simple to
realize circuitry for any of the four methods described.

V. GENERALIZATION TO MORE THAN THREE STAGES

In the proof of Theorem 1 we were able to show how the necessary
changes to unblock a blocked connection can be made disturbing at
most only two second-stage switches. This gives the following corollary.
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(1,1) IS BLOCKED

A
A |CDEF| B
A B
A |CDEF| B
AC B
EF | BD|
||
METHOD 10R 3 METHOD 2 OR 4
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® A
A |CDEF| B A |CDEF| B
® |@ N
A |CDEF| B A |CDEF| B
®,c (a) AC B
E,F | B,D EF B, |
Y LY
~~ A CAN BE ~~ D caN BE
PUT IN HERE PUT IN HERE

Fig. 6 — Illustration of the advantage of methods 2 and 4 over methods 1 and
3 respectively.

5.1 Corollary 1

A blocked connection may be unblocked by changing connections in
such a way as to disturb no more than two second-slage switches.

This corollary will serve to obtain bounds on the number of calls which
are disturbed in unblocking a blocked connection for five, seven, and
nine-stage networks.

The five-stage network to which we refer is obtained by starting with
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(1,1) IS UNBLOCKED

A
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A B
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BY METHODS
1,2,30R 4 BUT IT CAN BE
WE REQUIRE UNBLOCKED WITH
4 CHANGES ONLY 3 CHANGES
TO UNBLOCK

-
m
>
w

coer | (A) A |coEr| B
A B @ B8
CDEF @ (A)oEF @

THE CIRCLED SYMBOLS THE CIRCLED SYMBOLS
HAVE BEEN CHANGED HAVE BEEN CHANGED

IN FACT, FIG.5(D) CAN ALWAYS
BE UNBLOCKED THIS WAY WITH
ONLY 3 CHANGES

Fig. 7 — A change method more efficient than method 4.

a three-stage network as in Fig. 1. Each second-stage switch of this
network is then expanded into a three-stage switch having +/n input 1st,
2nd, and 3rd stage switches (Fig. 8).

Now suppose a three-stage switch is blocked. We can find the two
switches (say A and B) in which changes can be made by the Change
Algorithm. We ealculate the changes which must be made in A and B
by the same algorithm. When we are done we have a list of all the connec-
tions which must finally be made in second stage switches A and B. Now
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n_
INPUTS

N 3-STAGE
INTERMEDIATE
SWITCHES

Fig. 8 — Five-stage network suitable for reswitehing.

all connections which are initially set up in switches A and B may be
taken down, and the new set of connections put up in their place.

If A and B are the two switches which are changed by the Change
Algorithm, there can be no more than n — 1 connections in either of
them, since by definition there is no 4 in ¢;, and no B in 7, , assuming
(71, 1) is blocked. Since we take down all conneetions in A and B, no
more than 2n — 2 calls are disturbed.

If A and B were three-stage switches themselves, our network and
the above argument would remain the same. The only question which
might arise is whether we could make the final connections in three-
stage switches 4 and B. These connections could be made. One would
caleulate exactly how to set them up by repeated application of the
Change Algorithm. First one would conceptually set up one connection
arbitrarily, then one would try to conceptually set up the next connec-
tion. If it were blocked, the Change Algorithm could be used to unblock
it. This would continue until the final connections were decided con-
ceptually. Then they could actually be made.

This result extends easily to seven, nine - - - stage switches.
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5.2 Generalization of Theorem 1

For ag-stagenetwork, q odd and q > 3, of the type described above (Fig. 8),
no more than 2n — 2 calls need be disturbed to unblock a blocked call.

This bound can probably be lowered. If A and B are the two second-
stage switches in which connections are to be changed, it has been
shown that no more than a total of n — 1 connections in both A and B
need be changed. However, if A and B are themselves three-stage
switches, in order to make the initial n — 1 changes it may be necessary
to juggle other connections in both 4 and B. A closer study of the ways
in which this juggling can be done might serve to lower the 2n — 2 bound.

5.3 Generalizations to Other Nelwork Configuralions

So far we have discussed networks in which all stages have the same
number of switches. The matrix representation, with the restrictions
given in Section 2.1, is applicable to a more general class of three-stage
networks than that of Iig. 1. In this more general class the numbers of

n 15T STAGE m n 2NP STAGE
SWITCHES OUTPUTS SWITCHES
|

n
INPUTS

m 2ND STAGE
SWITCHES
m=n

Tig. 9 — Generalization to more second-stage switches than first-stage
switches.
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intermediate switches may be greater than n (Fig. 9). Assume there
are m intermediate switches, m > n. There are still n input (output)
switches. There is one link from each input (output) switch to each of
the intermediate switches.

For this more general class of switches the condition for legitimate
blocking (Section 2.1) must be generalized to read:

(a, b) is legitimately blocked if there are a total of m different
symbols in row a and column b. There are less than n symbols in row

a (column b).

We have shown that if m = n, then no more than n — 1 changes are
required to unblock a blocked connection. Clos? has shown that if
m = 2n — 1, the network is nonblocking. (0 changes are required to
unblock a blocked connection.) 1 can also prove that if m = 2n — 2,
no more than one change is required to unblock a blocked connection.
(This is justified later.) These results lead to the conjecture that if m =
2n — 3, no more than § — 1 changes are required fo unblock a blocked
conneclion.

We will now prove a simple lemma which was useful in finding the
bounds for m = 2n — 2, and which may prove helpful in attacking our
conjecture.

5.3.1 Lemma

If m = n+ k and (a, b) is legitimately blocked, then there must be at
least k + 1 symbols in row a, none of which are in column b, and there
must be at least k 4+ 1 symbols in column b, none of which are in row a.

5.3.2 Proof

By assumption, (a, b) is blocked; therefore there are a total of n + &
different. symbols in row a and column b, by the blocking condition.
There are less than n symbols in row a, and less than n symbols in
column b, also by the blocking condition.

Let B = no. of symbols in row a, not in eolumn b
(' = no. of symbols in column b, not in row a
X = no. of symbols appearing in (a, b)
B = no. of symbols in both row a, and column b, but not (a, b)

Then we have

1.B4+C+B+X=n+K
2. R+B4+ X <n
3..C+B+ X <n
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which by substituting for X in 2, and 3 the value obtained from 1 gives:

C <k
R <k

We illustrate the use of this lemma by proving the Clos non-blocking
network is non-blocking. In the Clos network & = n — 1. Therefore if
(a, b) is legitimately blocked, there must be n = k& + 1 symbols in row
a (C' = n). This immediately contradicts the hypothesis that (a, b) is
legitimately blocked.

Tor the case in which & = n — 2, it follows from our lemma that if
(a, b) is blocked, ' = n — 1 and £ = n — 1. If this were all the con-
nections that were up, a single change of any of the € symbols in row a
(called a-symbols) or any of the R symbols in column b (called b-symbols)
would unblock (a, b). So, in order that more than one change will be
required, all the proposed unblocking changes must produce conflicts.
This means that in the eolumn of each of the symbols in row a,alln — 1
b-symbols must appear. Also in the row of each of the symbols in column
b, alln — 1 a-symbols must appear. It follows that if there are to be no
more than n symbols in any row or column that there must be no symbol
in (a, b), and one symbol in every other location in row a, and column
b. Now we look at row %. There must be one b-symbol and all n — 1
a-symbols in this row. One of the a-symbols in row & must be in column
p, (p # a). In column p however, there must already be an a symbol
and n — 1 b-symbols, these together with the a-symbol in row £, column
p total to n + 1 symbols in column p. This is not allowed. Therefore
one change will always be sufficient to unblock a blocked connection of
m = 2n — 2.

VI. CONCLUSION

There are other directions in which generalizations appear feasible
with the techniques of this paper. We can deal with rectangular matrices
in an analogous manner to that used for the square matrix here. These
correspond to concentration networks. Triangular networks seem some-
what more difficult, but still feasible to treat. Finally, results on various
network configurations can probably be generalized to more than three
stages.

We have discussed here the use of the reswitching to make networks
non-blocking. One might also consider a more modest goal in which
provision is made for fewer than the number of reswitches or changes
required to make the network non-blocking, in an attempt to improve
blocking characteristics. The program being written by J. Nervik will
be used to obtain some estimate of this improvement.
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APPENDIX

A.1 I'ntroduetion

In the body of the paper there are some algorithms by which networks
not originally non-blocking can be made non-blocking by rearranging
connections already set up in the network. These algorithms involve
the temporary disturbance of calls already set up in the network.

Here I propose to describe a slight modification of the network and
of the algorithm which will allow one to make the network essentially
non-blocking or rearrangable without requiring any disturbance of
existing calls set up in the network.

A2 Network Modificalion

The basic three-stage network, each stage requiring n, n X n switches,
is modified to a three-stage network in which stage 1 consists of n,
(n) X (n + 1) switches, stage 2 consists of n + 1, (r) X (n) switches,
stage 3 consists of n, (n) X (n 4+ 1) switches. Each first (third) stage
switch has one link to each second-stage switch, as pictured in I'ig. 10.

As in the body, we represent the connections in this network with a
1 X n matrix. I'or each input switch, there is a row in the matrix. These
are numbered 1 to n. For each output switch, there is a column in the
matrix. These arec numbered 1 to n. A connection between input switch
7 and output switch & through middle switch A is indicated by an A4 in
position (7, k). Middle switches are lettered A, B, ete. There are n + 1
letters. There cannot be more than n + 1 letters™® in any row or column
or location of the matrix.

A3 Algorithm Modification

In order to make this network essentially non-blocking we use the
following procedure.

We choose not to use middle switch A until we get a blocked condi-
tion. When we get a blocked condition, we are in the same situation as
it the network were a three-stage network with each stage having nn X n
switches. From the corollary of Section V, we know that this blocked
connection could be unblocked without disturbing more than two (inter-
mediate) middle switches (not including switch A, which has not as yet
been used). Suppose the two middle switches in which connections are
to be changed to unblock the blocked connection are €' and D. According
to the change algorithm we would change a certain set of connections

* In the operation of this network there are times during which a single input
lead is connected to two middle switches. Thus, although there are only » inputs
per input switch there may be n + 1 connections in a single input switch.
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STAGE 1 STAGE 2 STAGE 3
(INPUT) (MIDDLE) (OUTPUT)
1
| : 1 1
| n(n+t) I : nxn } { (Nn+1) n :
2 B 2
| | | | | |
1 n(n+) ! ! nxn | l (n+1) N !

Nn+15T LETTER

Fig. 10 — Modified three-stage network.

in middle switeh C to connections in middle switch D, and a certain set
of connections in middle switch D to connections in middle switch C.
This would leave either switch ' or D available for use for the blocked
call. (Which particular switch was available depends on the exact choice
of the sets of connections in ' and D which are to be rearranged.) Such
a rearrangement involves disturbing all the calls using the set of con-
nections in ¢ and D which are to be changed. In the modified network
we have an extra middle switch A available which we can use to main-
tain all calls while connections are being rearranged. The modified
algorithm is given below. The steps of the algorithm are illustrated by
an example in Figure 11.

According to the algorithm, we find the set of connections in middle
switches € and D which must be rearranged to unblock the blocked
conneections.

1. Tor every connection in ¢ which we have elected to change, we
add a corresponding connection in A. In the matrix representation this
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(CIRCLED ENTRIES ARE
START
(1,1) 15 BLOCKED T0 BE CHANGED)
i 2 3 4
11 E,F D E,F D
2| () | eF | (D) cA| EF | D
| ] STEPI _
3 C E,F D C E,F D
4 (c) | E.F c,A | EF
E,F D i E,F D
A E,F D A E,F D,C
STEP 3
C E.F D C E,F D
A | A | EF
NDS l |
’ 1
E,F D | C,E,F D
AD | EF C D E,F C
| STEP 6
_ | _ ]
C | E,F D C E,F >}
‘ | AD | EF D E,F
‘ |
‘ I
EINIS (1,1) 1S
UNBLOCKED

Tig. 11 — Example of rearranging without disturbing.

corresponds to adding an A in every position in which an elected '
appears.

2. All elected €' connections are taken down; the calls originally
carried by these connections are now carried by switch A.

3. Tor every connection in 1) which we originally elected to change,
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we add a corresponding connection in €. This means in the matrix
representation an addition of a C' in every position in which there is an
elected . This will always be possible because we have already taken
down all the elected C' connections which, according to the body of the
paper, are the only connections which would prevent this addition.

4. All elected D connections are taken down; the calls carried by these
D connections are now carried by C' conneetions.

5. To every connection carried by A we add a corresponding connee-
tion carried by D. This will always be possible according to the results
in the body of the paper.

6. Iinally, we take down all connections in A.

We thus have carried out the change algorithm, and therefore, have
unblocked the blocked connection. Switch A has no connection set up
in it so it is available for use in unblocking the next blocked call.

A4 Making Use of Dead Time (Time during which there is no activity
in the network)

Actually, the blocked call is unblocked after step 2, at which time
the desired connection can be put up using switch €' (assuming that the
C in the row or column of the blocked call was changed in step 1 and
step 2). Since either a €' or ) in the row or column of the blocked call
is changed in this algorithm the original choice of where to add connec-
tions in A4 could be made so that the call would be unblocked after step 2.

Steps 1 and 2 could have heen combined in such a way as to add a
connection in A, take down the corresponding connection in €, then
add another connection in A, take down the corresponding connection
in ', and so forth. In this case the blocked connection could be unblocked
after the first addition of a connection in 4 and the removal of its
corresponding connection in C.

If the single switch A is to serve to allow for unblocking calls without
disturbing other calls, by our algorithm, 4 must be completely available
when a blocked connection is to be unblocked. So although the blocked
call may be unblocked early in the algorithm, the remainder of the
algorithm must have been completed before the next blocked call is to
be unblocked. The extra switch A acts as a kind of connection memory
so that normal dead time in the network may be profitably used for
improving blocking characteristics.

By adding additional middle switches analogously to the way A was
added, we would effectively add more connection memory and increase
the efficient use of dead time in the network. Thus, if there were two
additional switeches 4 and B, A would not have to be cleared hefore
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another blocked call could be handled because B would be available. A
would have to be cleared before the second blocked call after the one
that engaged A4 were encountered.

There are some indications that the simple scheme proposed here
can be improved upon.

In this scheme we are calling on 4 to handle no more than n/2 con-
nections at any one time, and A is in use at all only during the unblock-
ing operation. In the network A appears like any other middle-stage
switch, but its function is much different from the other middle-stage
switches. Perhaps the organization could be changed to share the load
more symmetrically.
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