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Necessary and sufficient conditions are presented for the realization of the
shorl-eireuil admitlance matriz or open-circuit impedance matriz of the
most general n-port structures characterized by such matrices obtatned by
imbedding a tunnel diode, represented by a parallel combination of a capaci-
lor and a negative resistor, in a fintte lossless reciprocal network. Techniques
for realizing prescribed immittance matrices are included.

I. INTRODUCTION

It is generally well known that the tunnel diode possesses a small-
signal equivalent circuit that can often be approximated by a parallel
combination of a capacitor and a negative resistor. This model has been
used extensively in the study of gain-bandwidth relations and optimum
synthesis procedures for specitic amplifier configurations.!-* It has also
been used to derive bounds on the natural frequencies obtained by im-
bedding the tunnel diode in a passive network.®7

The purpose of this paper is to present necessary and sufficient con-
ditions for the realization of the short-circuit admittance matrix or open-
circuit impedance matrix of the most general n-port structures char-
acterized by such matrices obtained by imbedding a tunnel diode,
represented by the above mentioned model, in a lossless reciprocal net-
work.

The properties of the short-cireuit admittance matrix are considered
also by another writer.® With the exception of certain remarks of a
tutorial nature, the arguments, results, synthesis techniques, and basie
approach to the problem presented here are quite different from that in
Ref. 8. In particular, it is not assumed here that the short-cireuit ad-
mittance matrix of the (n 4 1)-port lossless network invariably exists.

857



858 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

Also, the necessary and sufficient conditions are stated directly in terms
of the n X n short-circuit admittance matrix and its even part. They
do not involve a knowledge of the short-circuit admittance matrix ob-
tained when the tunnel diode is short-circuited.

II. DESCRIPTION OF THE STRUCTURE TO BE CONSIDERED

The basic structure under consideration is shown in Fig. 1, in which the
(n + 1)-port network is assumed to be a lossless reciprocal configuration
containing inductors, capacitors, and ideal transformers. Port (n + 1)
is terminated with a unit capacitor and unit resistor in parallel. This
involves no loss of generality since a similar termination with other values
of positive capacitance and/or resistance (positive or negative) can be
treated with the aid of simple transformations which are explicitly stated
in Section VII. The overall network is restricted initially in that the
symmetric positive-real short-circuit admittance matrix Y(s), relating
the port currents and voltages at ports (1,2, - -- ,n), is assumed to exist.
The realizability conditions for the open-circuit impedance matrix Z(s)
can be obtained in a manner similar to that to be described for Y(s)
and are stated in Section VIIL.

The (n + 1)- p01t lossless network is characterized by the regular
para- umt:n vy scattering matrix S(s) or by the short-circuit admittance
matrix Y(s) when it exists. We initially assume that Y(s) does exist
and consider in a subsequent section the case in which Y(s) does not
exist.

—
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Fig. 1 — Most general structure defining Y(s).
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111, NECESSARY CONDITIONS FOR THE REALIZATION OF Y(s) WHEN Y(s)
EXISTS AND THE EVEN PART OF Y(s) 1S NOT A MATRIX OF CONSTANTS

The necessary and sufficient conditions for the realization of Y(s) are,
of course, well known.
It is also well known that{

1
_ — Y. Yt .
Y=Y, YooY Yo T s i (1)

where the matrices in (1) are defined by the following partition of i’(s) :

n 1
Yo Y |n

Y=[ } | o
Y Vo]l

The arguments to be presented center about a study of Y., the even
part of the matrix Y. This matrix is given by

Yn = %[Y(S) + Y(—S)]
) (3)

= — Y of
Y e T T Ve — s T 11

It is convenient to introduce the notation: Y = d 'nes, Yio = d 'Nys
where d is an even polynomial, ns is an odd polynomial and Ny is a
matrix of odd polynomials, with the understanding that d, ns. and every
element in Nj» may have a common simple zero at the origin. In this
way it is unnecessary to treat separately the cases in which  is even or
d is odd. Accordingly,

1
[ + (s + 1) dl[nn(—s) + (—s + 1) d]’

Y, = — NpNw! (4)
Note that the polynomial [ras + (s 4+ 1) d] can be assumed to be strictly
Hurwitz except possibly for a simple zero at the origin, since na; and d
can be assumed to be relatively prime except possibly for a simple com-
mon zero at the origin.

Tt is convenient to treat separately the cases in which Y, is or is not a
matrix of constants.

t The superseript ¢ denotes matrix transposition.
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Consider the following

Definiion:
The matrixz Y, is said to be in standard form if and only if

¢ 1
—uu v(s)v(—s)

where v(s) is a positive coefficient polynomial which s strictly Hurwitz ex-
cept possibly for a simple zero at the origin and U' = [uy ,uz, -+ , U]
s a matrix of odd real polynomials with the property that there is no facior
n(8)n( —s) common to all the u; such that n*(s)n*( —s) divides v(s)v(—s)
where 4(s) 1s a strict Hurwitz polynomial. The polynomials v. and v, are
respeclively the even and odd parts of v(s).

In Section IV the following result is proved.

Y, =

Theorem 1:

A rational positive-real symmetric matria Y(s) with nonconstant even
part is realizable as shown in Fig. 1 when Y(s) exists only if Y. is ex-
pressible in standard form with v(s) such thatt

i k= [&:' = 1, and
SV, |

W Ifk=1 [YJe=0,

G I k> 1, [EY — k..
8§ 0 ]\; -1
18 nonnegative definite.
The case in which Y, is a matrix of constants is treated in Section VI.

IV, PROOF OF THEOREM I

We begin by observing from (4) that Y, can be expressed in standard
form if Y is realizable. The problem of factoring a given matrix Y,
into the required form is discussed in detail in Appendix A.

Assume now that Y, is given in standard form and consider the proh-
lem of identifying Njs, n2» , and d in (4). A common factor may have
been canceled in the expression for Y., and hence an unknown factor
must be reinserted before Nya , 722 , and d can be determined. However,

1 Throughout we use the notation lim [-] = [-], .
8->»00
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the common factor must be of the form a’(s) = b(s)b(—s) where b(s)

is a strict Hurwitz polynomial. Therefore, ignoring a possible minus

sign, a(s) = n(s)n(—s) where n(s) is a strict Hurwitz polynomial.
Thus, for some unknown strict Hurwitz n(s),

1 1

Ny NS = Un(s)n(—s) TS (5)

and
Np = UTI(S)U(“S) (6)
ne + (s + 1) d = v(s)5*(s). (7)

In the following we shall denote by 7. and n, the even and odd parts re-
spectively of 7. Equations (6) and (7) read

N = Uln' — 2] (8)
Nas + (8 + 1)d= Uw(flug + T’"‘z) + l’u("}ce + nag) + 200m.m0 + 20m0m0 . (V)

Equating even and odd parts of (9) gives

d = vu!(ﬂcﬂ + 1702) + gpoﬂcﬂo
2 2 (10)
Nae = Qvuﬂeﬂo + vo(ﬂa- + Mo ) —sd
and therefore
ne (0. + 1) + 2vamm.
YEE = = 5 5 . — 8. ( 11 )
d v+ n?) + 200
From (11) it is clear that Y is realizable provided
B Yzz] =0 (12)
However,
Yo 20270
Yﬂ _ Nao _ .H,_ _ﬁilf_n- +_7‘Ja‘ s (13)

and since 7(s) is a Hurwitz polynomialf

1 1] 1 ,
|:s Y] = [s ;.;l., ra ! (14)

+ We have assumed that the degree of v, exceeds the degree of v, . It is easy to
show that it is impossible to satisfy (12) unless this is so.
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where

2
0<a= {1”‘3 [_”"7" ]} < w. (15)

Clearly, it is necessary that

1o,
=1 -— = 1. )
] [s uc:L =1 (16)

4.1 Derivation of the Inequality Involving K, and (Y],

Consider now the derivation of a key inequality that must be satis-
fied by the coefficient matrix K, = [(1/5)Y]. .
Let the constant matrices A;; be defined by

A= E Y.—,v:L . (17)

K, = [; Y] = Ay — ApAp' — (18)

1
Y. = a = ch N 2—!—’0 —
v | 7+ 10°
and thus
1 +1
A = | —
r [svc U:L 1+ a (19)

where « is defined in (15) and the plus or minus sign applies according
as the degree of 5, exceeds the degree of 4, or not. Recall from (14) and
(16) that

k

A22:1+a

- 1. (20)

Using (18), (19), and (20)

A, —|L Lo 1t
Ko = Au [sv. U]m I:szlc v ]m k(1 + a) (21)
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where Aj; is unknown. However, if the (n 4+ 1)-port lossless network is
to be realizable, it is necessary that the matrix

A Ay, A, (22)
B Amt Ao -

is nonnegative definite. Assume initially that 4. = 0. We require the
following result.

Lemma 1:

A necessary and sufficient condition that A is nonnegative definite with
Ao # 0 4s that A’ is nonnegalive definite where

, Ay — Ay 'ApA 0
A= 0 l (23)
2

To prove the lemma, note that A’ = BAB* with

L, — A A
B =
0 1

where 1, is the identity matrix of order n.
Thus,

A — A 'ApAy

or equivalently

[ 1 1
Au [sT Ulo [svc v ],, (I+a)(k—1—a) (24)

is required to be nonnegative definite. By combining this result with (21)

we find that
_ —1__ L L ¢ 25
Koo ];'(k- — 1 — a) I:SE‘L. U:Lu [Sr'c U]m (-dv))

is nonnegative definite. Recalling that (K — 1 — «) is initially assumed
to exceed zero, it is clear that (25) is nonnegative definite with & = 0.
I"'urthermore, with & = 0, (25) can be expressed as

Kno - "__’_f—] [Ys]no (26)
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by using the identities

[;? U:L. = [:TL B“ U:L (27)
Y. = [} U:L [!17 U‘:L‘ (28)

When As = 0, as is the case whenever k = 1, it is clear from (22)
that every element in A;; must vanish if A is to be nonnegative definite.

But from (19)
T +1
Ap = LI:U_,.U:LI Ta

Thus, from (28) it is evident that [Y,]J, = O when k = 1.

This proves Theorem 1. In the next section we prove that if a positive-
real matrix satisfies the conditions of Theorem 1, it is realizable as
shown in Fig. 1.

V. PROOF OF SUFFICIENCY OF THEOREM I FOR Y(5) WITH NON-CONSTANT Y,

Assume that Y(s) and

1 ¢
Y= ——-7——— 29
o(=s) 00 (29)
in standard form, are prescribed and satisfy Theorem 1.
Let
Nag Vo
Yo = _Cf = i?: — 8
(30)
1 1
Y12 = &Nn = EBU'
Then from (30) and (1)
1 t
= S . 1
Yo=Y+ O v,)UU (31)

Hence Y1, Yo, and Yy satisfy (1). We wish to prove that these sub-
matrices defined above lead to a realizable ¥(s) given by

1 f 1
[Y T V(o + ve) uu Ve u ]

¥(s) = . (32)
T

Ve Ve
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First of all, Ya is a realizable driving-point admittance function since
kz1.
The submatrix Yy, can be expressed as follows by using (29):

1 ¢ 1 .
Yll = Yu - U"(S)U('_s) l’e[po + pP] (33)
—y 1 gy
° pev(s)(—s) '

where Y, is the odd part of Y. From (33) it is apparent that Y, is a
matrix of odd functions, as it should be. Further, since from (31) Yy
is regular in the right-half plane, it follows that Y, can have poles only
on the jw axis. In fact, the finite poles of ¥y, are the boundary poles of ¥
and the zeros of v. .

Consider now the residue matrix K; at a pole of ¥(s) which arises
from a zero of v, , say at § = jw, , and let the residue matrix of Y at that
pole be K;. Thent

’(K; - .1 uvU* lU—|
N Vel'y Ve
K —_—

;= (34)
SO
Ve Ve =jwy

where a dot over », denotes the derivative of v, with respect to s. To
show that K; is nonnegative definite, we appeal to Lemma 1. Thus it is
sufficient to point out that (v,/d.) | ju, is positive and that

-l

jwg v

!z)r

Vg

=K (35)

Jwy

K + | uv'
v("i]

is nonnegative definite. )
Finally, we must show that K, = [(1/s)Y],, is nonnegative definite.
When k& = 1, the proof is trivial for then

[L U] - [1 U] ~0
S, o g E)
" K., 0
R, = } (36)
0 0

t When » = su = s(u, + u,), where u is a strict Hurwitz polynomial, it is neces-
sary to replace v, , v, , and U respectively with u, , u, and the n-vector of even
polynomials s 'U before this argument is applied to verify the nonnegative
definiteness of the matrix of residues associated with the pole at the origin.

and
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When k exceeds unity,

Km+k[%UW} k[lU]
-~ Uy w0 Vo )

K., = . (37)

k[lUﬂ k=1
[ 0

According to Lemma 1, K, is nonnegative definite if and only if

1 . I 1 .
Ke +k|=UU| — —— | = UU
Uy” @ k-1 Vo £

B I 1 :
= K I—c—l[v?UU:L

is nonnegative definite. However, from Theorem 1 [condition(7i7)] and
the fact that

(38)

Y] = [;— Uu‘]w (39)
it follows that (38) is indeed nonnegative definite.

Therefore, the conditions of Theorem 1 are sufficient for the realiza-
tion of Y(s). It is of interest to note that in the preceding constructive
proof it was sufficient to assume that 5(s) [defined in Section I'V] is unity.
All other possible matrices ¥(s) corresponding to a realization of Y(s)
can be generated by exploiting the permissible choices of n(s).

To complete the theory we consider in the next section the cases in
which ¥(s) does not exist or Y, is a matrix of constants when ¥(s) does
exist.

VI. NECESSARY AND SUFFICIENT CONDITIONS FOR THE REALIZATION OF
Y(s) waeN Y(s) pors NoT EXIST OR WHEN Y, IS A MATRIX OF CON-
STANTS

The results of this section for the case in which ¥(s) does not exist
are based on the following result which is proved in Appendix B.

Lemma 2:

If Y(s) in Fig. I exists but Y(s) does not exist, then v,.,, the voltage
across the RC combination terminating port (n + 1), is related to the other
port voltages by

Ung1 = Z:.ﬁ-'vi (40)

where the B8; are real conslants.
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We wish to prove the following:

Theorem 2:

If the rational positive-real symmetric matriz Y (s), defined by the
structure in Fig. 1, exists bul Y(s) does not exist, or if Y(s) is such that
Y, is a matrix of constants, Y(s) can be expressed as sK + K, + Y'(s)
where Y'(8) 1s an odd rational mairiv in s such that Y'(s) — Q0 as s — =,
and K, is a real constant matrix with rank nol exceeding wnity such that
K. — K, is nonnegative definite. Further, if Y(s) satisfies the above con-
dition, it can be realized as a reactance n-port in parallel with a network of
ideal transformers that is terminated with a parallel combination of a
unit resi.tor and a unit capactlor.

To prove the theorem for the case in which ¥ (s) does not exist, first
consider the expression for P, the average power entering the n-ports
defining Y(s), in terms of Y. | ,—; and V= [y, 00, o, 0]

P =VY.|._WV* (41)

where the asterisk denotes the complex conjugate. Since P is also equal
t0 Vupitasr®, we have from (41) and Lemma 2

VY, | WVE = 2 BB~ (42)
i, =1
Because (42) is valid for arbitrary »;, we find
Yo|cw = BB' = K, (43)
where B' = [8,, 82, - -+, 8.). Thus Y(s) can be expressed as
Y(s) = sK,, + Ki + Y'(s) ('l"l‘)

where Y'(s) is a matrix of odd rational functions which vanish at in-
finity. Tt is evident from (43) that K, satisfies the rank conditions of
Theorem 2.

Note that Y(s) has the form (44) if ¥(s) exists but Y. is a matrix
of constants; for, in this case also, the rank of Y, cannot exceed unity.t
Next consider Y(s — 1), which must have a nonpositive definite real

part on § = juw:

Yis—1)=sK,+ Ky —K_ ]+ Y(s—1) (45)

It is elear that if the real part of ¥Y(s — 1) on s = jw is to be nonpositive

+ This is obvious from the form of (4).
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definite for arbitrarily large values of |w |, [K, — Ky] must be a non-
negative definite matrix.t

Finally, assume that Y(s) satisfies the conditions of Theorem 2 and
consider

Y(s) = ClsD., + DiC" + Y'(s) (46)
in which the real nonsingﬁlnr n X n matrix C is chosen so that
C'K.,C"=D,
C'K.C" =D,

(47)

where D_ and Dy are diagonal matrices.] Note that there can be at
most one nonzero term in Dy and that this term cannot exceed the
corresponding entry in D_ for otherwise (K, — K] would not be non-
negative definite. Hence Y(s) can be rewritten as

Y(s) = (s + 1)CFC' + Y"(s)

where Y”(s) is realizable as a reactance network and F is a constant
diagonal matrix with at most one nonzero element. This nonzero element
is, of course, positive. The interpretation of the congruence transfor-
mation CFC' in terms of an ideal transformer network is well known.
This proves Theorem 2.

VII. SUMMARY AND RELATED REMARKS

The prineipal results can be summarized as follows.

Theorem 3:

The rational positive-real n X n symmetric short-circuit admaittance
matriz Y(s) s realizable as a lossless nelwork containing inductors, ca-
pacitors, and ideal transformers and a two-terminal element comprising a
parallel combination of a unil resistor and a unil capacitor if and only if

1. When Y. = Ky, a matriz of constants, the rank of X, does not exceed

unily and [(1/5)Y], — K, is nonnegative definite.

1. When Y, 2s not a matrix of constants, (a) Y, can be expressed in

T This conclusion, with K, defined as [Y,], , is valid when any number of unit
resistor-capacitor parallel combinations are imbedded in a general lossless net-
work.

1 This is always possible since K, and K, are nonnegative definite.
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standard form (defined in Seetion I11) with v(s) such that

k= [v/svl, 2 1; (b) if k=1, Y., = 0;

() k> 1, ['—Y] -y

s o k—1

15 nonnegative definite.
Further, if Y, is a matrix of constants and satisfies condition (1), Y can be
realized as a reactance n-port in parallel with a network of ideal trans-
formers that s terminated with a parallel combination of a unit resistor
and a unit capactlor. If Y, is not a matrix of constants and satisfies con-
dition (i), Y can be realized as an (n + 1)-port lossless network, char-
aclerized by the short-circuil admittance matrix Y, terminated at port
(n + 1) with a parallel combination of a unit resistor and a unit capaci-
tor. The matrix Y is given by

Y T
¥ o(re + 0. :
L ! U Yo g
v, Ve

For completeness, we state the following extension of Theorem 3.

Theorem 4:

The short-circuit admiltance matriz Y(s) is realizable as a lossless
network: containing inductors, capacitors, and ideal transformers and a
two-terminal element comprising a parallel combination of a resistor of
value R ohms (R > 0) and a capacitor of value TR™" farads (T > 0)
if and only if Y(s) = Y(s/T) is a symmelric positive-real matrix that
salisfies the conditions of Theorem 3. If instead the resistor is equal to — R
ohms, the matrixv is realizable if and only if Y(s) = —Y(—s/T) is a
symmelric positive-real matriv that satisfies the conditions of Theorem 3.

The proof of Theorem 4 follows from two elementary transformations
and is omitted.f In each case the parameter 7' is, of course, the time
constant of the RC combination. It is convenient for some purposes to
have the realizability conditions stated explicitly in terms of 7. This
can easily be done with the aid of the above theorem and is discussed in
Appendix C.

+ The fact that an n X n short-circuit admittance matrix Y(s) of real rational
functions is realizable as a network containing only lossless elements and nega-
tive resistors if and only if —Y(—s) is a positive-real matrix was first established
by Carlin and Youla.*
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The following theorem states an interesting inequality involving
[(1/5)Y]. and [(1/s)Y.] where Y, , if it exists, is the value of Y(s)
when the RC combination, with unit capacitance, is shorted.

Theorem 5:

I:l Y:| - ] [; Y,,,.:' 18 nonnegative definile,

B C

The proof follows at onee from (21) and the fact that (24) is nonnega-
tive definite,

The following theorem is of assistance in simplifying the tests indi-
cated in Theorem 3 for the important case in which K., = [(1/$)Y].. is
positive definite.

Theorem 6:

If A and B are n X n real symmetric nonnegative definite matrices
with det A # 0 and B of unit rank, A — B is nonnegative definite if and
only if det [A — B] =z 0.

To prove this result note that A — B can be written as Q[D, — D4|Q’,
where Q is a real nonsingular matrix such that A = QD,Q’, B = QD,Q’,
and D, and D, are diagonal matrices. Thus

det[A — B] = det’Q-det[D, — Dy].

The realizability conditions can be expressed also in terms of the
open-circuit impedance matrix Z(s) by exploiting an approach similar
to that used in treating the short-circuit admittance matrix Y(s).
Since the ideas involved are so similar to those discussed earlier we
shall omit the details and simply state the result: '

Theorem 7:

The rational positive-real n X n symmelric open-circutt impedance
matriz Z(s) s realizable as a lossless network containing inductors, capaci-
tors, and ideal transformers and a two-terminal element comprising a paral-
lel combination of a unit resistor and a untt capacttor if and only if the
even part of the matriz Z, Z, | is expressible in standard form (defined in

Section I11) with
[1 &] >1.
S V|

Further, if v, # sv, and Z satisfies the above conditions, Z can be realized
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as an (n + 1)-port lossless network:, characterized by the open-circuit
impedance matric Z, terminated at port (n 4 1) with a parallel combina-
tion of a unit resisior and a unit capacitor. The matrix Z is given by

(s +1) 1
Z + UU’ - U ——
N + (ve — sv,) (v, + v0) Ve — Sl
7 =
Ul ] Un
Ve — Sl be — 8V,
If v, = sv,, and Z salisfies the above conditions, Z can be cxpressed as

Z = [1/(s + 1)) F + Z" where F is a real symmetric nonnegative defintte
matrix of constants of rank not exceeding unily and Z' is the open-circuit
impedance matrix of an n-port reciprocal lossless network.

The simple form that the conditions assume is attributable to the
fact that the impedance of the parallel RC combination is regular at
infinity and that the matrix Z. is not a matrix of constants unless every
element vanishes identieally in s.

APPENDIX A

Factorization of Y.(s)

Recall that Y, is the even part of a rational symmetric n X n posi-
tive-real short-cireuit admittance matrix. It is convenient to partition
this matrix as follows:

£y E;
Y.(s) = ! (48)

Ep» Ex
where £, , Eia, and Eu are respeetively 1 X 1, 1 X (n — 1), and
(n — 1) X (n — 1) submatrices of ratios of even polynomials in s.

We may assume, without loss of generality, that £y does not vanish
identically in s.
Consider the following identity which is readily verified:

|:E11 EwiI
t
El? Eﬂ'.! (49)

1 0 ][ Ex 0 1 EwEn‘il
UEWE L]l 0 Ew— Eu EuEn'][0 Lo |

It is evident that the normal rank of Y. cannot exceed unity if it is to
be expressible in standard form. Accordingly we may assume that
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i —1
E.», — ELEpky = 0, and hence

En E - P B
. = Eu[l Epliy 11 EwEn | (50)
E]g E.

The right-hand side of (50) can be rewritten as SPP' where

P{=[.’P1;P27"‘:Pnl

is & row matrix of even real polynomials and f is an even real rational
fraction in s, analytic on s = jw [—® = w = =], and such that

Jlw) 2 0.
As is well known, f(s) ean be expressed as either

A S
h(s)h(—s) m(s)m(—s)

where g and [ are respectively even and odd real polynomials and A(s)
and m(s) are real strict Hurwitz polynomials. In either case, since

g —(sg)*

h(s)h(—s) — [sh(s)I[—sh(—s)]’

Y. can be written as

© w(s)w(—s) ’
in which W' = [w,, w., + -+, w,] is a row matrix of real odd polynomials

and w(s) is a real strict Hurwitz polynomial except possibly for a
simple zero at the origin.

Note that Y is realizable as shown in Fig. 1 when ¥ exists only if the
degree of w(s) is odd.

APPENDIX B

Proof of Lemma 2

First note that if the (» + 1)-port lossless network does not possess
a short-circuit admittance matrix, the short-circuit admittance matrix
of N, the lossless (n 4+ 1)-port with a unit capacitor added in parallel
at port (n + 1), also does not exist.

Let S(s) be the scattering matrix" of N and consider the eircuit
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L
1 1
—_—
—VWAv—F
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|
|
l
It tn
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en Vi

Fig. 2 — Network defining the relationship between E, V, I, and the scatter-
ing matrix S(s).
shown in Fig. 2. By definition
SIV4+I =V -1, (51)
and
Y(R] = (ln + S)il(]ri - S) (52}
where 8 is the matrix of elements in the first n rows and eolumns of S.
Substituting E = V 4 Tin (51) gives
V = %[g + ln+l]E- (-33)
Beeause the short-cireuit admittance matrix of N exists if and only
if det[S + L,q] # 0, and since S is the matrix of elements in the first
n rows and columns of S, it follows that [S 4+ 1,44] has normal rankf
equal to n. Further, since the rank of [S + 1,44 is invariant in the strict
right-half plane, there exists, to within an arbitrary sealar multiplica-
tive factor, one and only one real constant (n 4 1)-vector X such that

|§(Su) + 1n+llx =0 (34)

where s, is a fixed but arbitrarily chosen real positive constant. Let X
. ] + . - .
be normalized so that X'X = 1. Equation (54) then yields

X'HS-( -.\'u)x = _I (55)

t Since Y(s) exists, det [1, + S] does not vanish identically in s.
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Note that X'S(s)X is a one-port passive scattering coefficient and that
therefore (51) implies

Xr[g(s) + l,,+1]X = 0 (.’)ti)

identically in s. I'urthermore, since [S(s) + 1,41] is positive semidefinite
for all real positive s, it follows that

X'[g(s) +Lul=0 (57)
identically in s. Thus from (53) and (57)
XV=XTS+1L4E=0

or

where the a; are real constants, not all zero. However since Y(s) exists
Xas1 cannot vanish. Dividing through by ., gives an expression of
the form

n
Vg1 = E .B-l'vi
i=1

in which the 8; are real constants.
It is of incidental interest to note that the proof does not require
that N be lossless. It is sufficient that it be passive.t

APPENDIX C

The Realizability Conditions Stated Explicitly in Terms of the Parame-
ter T

According to Theorem 4, Y(s) is realizable with a lossless reciprocal
network and a two-terminal element comprising a parallel t't)mbimlinn
of a resistor of value R ohms (R > 0) and a capacitor of value TR™
farads (T > 0) if and only if Y(s) = Y(s/T) is a symmetric positive-
real matrix that satisfies the conditions of Theorem 3. Let Y.(s) be ex-

pressed in standard form:

-1 ==y
B(s)i(—s)

Y.(s) = (58)
t The original version of this proof, based also on the formulation (53) and the
fact that [S + l,.+1| is of normal rank n, assumed that the network N is lossless

and hence that S(s) is a regular para-unitary matrix. The final version of the
proof was suggested by D. C. Youla.



s
b |
<t

MULTIPORT STRUCTURES

In terms of #(s),

k= [' Bul 5/ T'} -1 (59)
si.(s/T) |=

Pl
sP. (%) |=

Also,

and

Y.(5)) = [i (;)] s

Theorem 3 and the above equations yield

Theorem 8:

The rational postlive-real n X n symmetric shorl-circuil admiltance
matrie Y(s) is realizable as a lossless network containing induetors, ca-
pacitors, and ideal transformers and a two-terminal element comprising a
parallel combination of a resistor of value R ohms (R > 0) and a capaci-
tor of value TR™" Farads (T > 0) if and only if
i. When Y.(s) = Ko, a matric of constants, the rank of K, does not

exceed unity and [(1/5)Y(s)], — TK, is nonnegative definite.
7i. When Y.(8) is not a matriv of constants (a) Y.(s) can be expressed in

standard form withk = T; (b) if k = T, [Y.(s)], =0; (e)if k > T,

1 = P2 A—
L Y(s)jlx “E_ Y. (s)].

is nonnegative definite.
Similarly, Theorem 5 can be transformed to read:

[' ?(s)i| - {[l ?Mts)]
S w k 8 P

s nonnegative defintte.
The modifieations necessary to treat the case in which the resistance
is equal to — R ohms are obvious in view of Theorem 4.
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