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A connecting system consists of a set of terminals, a control unit for
processing call information, and a connecting network. Together, these
three elements provide communication, e.g., supply telephone service, among
the various terminals. In this paper we present a comprehensive view of the
theory of connecting systems, an appraisal of its current status, and some
suggestions for further progress.

The existing probabilistic theory is reviewed and criticized. The basic
features of connecling systems, such as structure, random behavior, com-
plexity, and performance, are discussed in a nonlechnical way, and the
chief dificullies that beset the construction of a theory of traffic in large
systems are described. It is then poinled out that despite their great com-
plexity, connecting systems have a definite structure which can be very useful
in analyzing their performance. A natural division of the subject inlo
combinatory, probabilistic, and variational problems is drawn, and 1s
illustrated by discussing a simple problem of each type in detail.

[. INTRODUCTION

»

Mass communication long ago spread beyond the manual central
office and assumed a nationwide character; it is presently becoming
world-wide in extent. Many of the world’s telephones already form the
terminals of one enormous switching system. The scale, cost, and im-
portance of the system make imperative a comprehensive theoretical
understanding of such global systems.

Nevertheless, a lack of knowledge about the combinatory and prob-
abilistic properties of large switching systems is still a major lacuna in
the art of mass communication. It is a fact of experience that each time
a new switching system is planned, its designers ask once again some of
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the perennial unanswered questions about connecting network design
and system operation: How does one compute the probabilities of loss
and of delay? What method of routing is best? What features make
some networks more efficient than others? Ete.

The present paper is an informal discussion of problems in the theory
of traffic flow and congestion in connecting systems (called traffic theory,
or congestion theory, for short). The comments to be made are pref-
atory, tutorial, and illustrative. They are intended as background for
several papers of a more technical nature; one of these papers! appears
in this issue, and the remaining three?®* are to appear later. In these
papers, topies touched on in the present work are considered in greater
depth and detail. Together, the papers are an attempt to describe a
comprehensive point of view towards the subject of connecting systems.
I believe that this point of view will be useful in constructing a general
theory of connecting networks and switching systems. What follows is
then in part a prospectus for research to be reported on in the future.

My concern in this paper is with some of the physical bases and princi-
pal problems, with the fundamentals and difficulties, of the subject. I
wish to emphasize some important properties and distinetions on which
a systematic approach may be based. I am making a plea for a much
more general, abstract, and systematic approach to large-scale congestion
problems than has been envisaged heretofore.

Naturally, it is impossible to explore all the consequences of such a
comprehensive approach in one paper; I do not pretend to have solved
even some of the basic problems of the theory. I am only saying “Look,
perhaps these observations will help provide a general approach.”

Examples and simple problems appear in the text as illustrations of
the principal points made. For tutorial purposes, I have chosen particu-
larly simple and clear illustrations, which may seem trivial to cognos-
centi of traffic theory. Nevertheless, it has been my experience in talking
with engineers that the comprehensive view here presented is sufficiently
new to warrant clear, simple examples. More complex problems do not
belong in an introduetory work; they are to appear in later papers.

II. SUMMARY

In Section III we give a historical sketch of traffic theory, which is
followed by a critique of existing theories in Section IV. The general
properties of switching systems are discussed in Section V. The per-
formance of switching systems and desiderata for a theory of congestion
are considered in Section VI and Seection VII, respectively. Sections V
to VII are heuristic and nonmathematical in character. Mathematical
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models are considered in a general way in Section VIII, while Section IX
concerns itself with some of the hasic difficulties and questions that
arise in constructing a theory of traffic in a large-scale system.

In Sections X and XI we show that, despite their great complexity,
connecting systems actually have a definite structure which can be very
useful in analyzing their performance. This usefulness is exemplified by
four specific instances in Section XII. In Seetion XIIT we make a general
division of the subject into combinatory, probabilistic, and variational
problems. The remaining sections, Sections XIV to XVI, are devoted to
illustrating this division by working out a simple problem of each type in
full detail.

11I. HISTORICAL SKETCH

We shall not attempt to canvass systematically the literature of con-
gestion theory. For the interested reader, the best single theoretical ref-
erence on the theory of probability in connecting systems is undoubtedly
the treatise of R. Syski;® the historical development of the subject has
been deseribed in papers by L. Kosten® and R. I. Wilkinson.” Neverthe-
less, we include a brief account of previous work in order to substantiate
our eritique (Section TV) of present theories of traffic in connecting sys-
tems.

The first contributions to traffic theory appeared almost simultane-
ously in Europe and in the United States, during the early years of the
20th century. In America, G. T. Blood of the American Telephone and
Telegraph Company had observed as early as 1898 a close agreement
between the terms of a binomial expansion and the results of observa-
tions on the distribution of busy calls.* In 1903, M. C. Rorty used the
normal approximation to the binomial distribution in a theoretical at-
tack on trunking problems, and in 1908 E. C. Molina improved Rorty’s
work by his® (or Poisson’s) approximation to the binomial distribution.

In Europe, the Danish mathematician A. K. Erlang, from 1909 to
1918, laid the foundations of the first dynamie theory of telephone traffic,
which is in general use today. Perhaps influenced by statistical mechanies,
Erlang introduced the notion of statistical equilibrium, and used it as a
theoretical basis for deriving his now well-known loss and delay formulae.
An account of Erlang’s work is given by Jensen.?

I'rom 1918 to 1939 traffic theory developed in many directions that are
(on retrospect) closely allied to specific problems that arose in the design
of the autormtlc telephone systems that were coming into use, and in

* Bloocl s unrecorded work was reported by E. C. Molina and described by
R. I. Wilkinson.”
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related queueing systems, We mention only a few topies: T. Engset!? in-
troduced the notion of a finite number of sources of traffic, G. I. O’Dell!!
published a classical paper on gradings, C. D. Crommelin'* studied con-
stant holding-time delay systems with many servers, E. C. Molina" made
contributions to trunking theory. F. Pollaczek'* and A. I. Khinchin's
studied the queue with one server, and derived the delay distribution
that bears their linked names. Pollaczek has also solved single-handedly
many other difficult loss and delay problems. All these important con-
tributions are concerned with congestion in specific parts of connecting
systems. During this period, T. C. Fry wrote the first systematic and
comprehensive book! on applied probability; this book devoted a chap-
ter to telephone traffic, and appeared in 1928.

Between 1939 and 1948 there developed an increasing awareness
(among workers in traffic theory) that the mathematical bases of traffic
theory were closely related to the modern theory of stochastic processes
initiated by A. N. Kolmogorov!'” in 1933. In particular, Erlang’s idea of
statistical equilibrium was identified with the stationary measure of a
Markov process (or more generally with a semigroup of transition prob-
ability operators). Also, C. Palm' stressed the importance of recurrent
processes, and W. Feller that of birth-and-death processes, to traflic
theory. However, particular problems continued to form the bulk of
the new literature. Palm'® made a penetrating theoretical analysis of
traffic fluctuations, and L. Kosten studied such topics as retrials for lost
calls,?® and error in measurements of loss probability.2

The introduction of crossbar switching and common control of con-
necting networks in 1938 (see Ref. 22) was accompanied by a new kind
of problem: calculating the loss due to mismatching of available links
(rather than to unavailability of trunks). The first comprehensive treat-
ment of loss in such systems was given by C. Jacobaeus®; his theory is
adequate for practical purposes, but is based on assumed a prior: dis-
tributions for the state of the system. R. Fortet* has also made contribu-
tions to this topie in the spirit of Jacobaeus’ approach. A less satisfactory
method for the same problems based only on the possible paths for a call
has been developed (independently) by C. Y. Lee?® and P. Le Gall.%t

The statistical equilibrium approach to congestion in crossbar systems
is rendered extremely arduous by the large number of possible states.
The difficulties in this method have been faced with some success by K.
Lundkvist?” and A. Elldin®. However, no practically feasible approach
exists at present that simultaneously includes both the concept of sta-
tistical equilibrium and the structure of the connecting network. A
fortiori, no approach exists that also includes the effect of the common
control equipment that places calls in the network.
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IV. CRITIQUE

In comparison with the highly sophisticated communications systems
that are being built, the models and assumptions on which theoretical
studies are based are often crude and fragmentary, almost more indica-
tive of our ignorance than of the properties of systems. It may be argued
that such a harsh appraisal of the condition of traffic theory is unjustified,
and is disproved by the practical successes of current engineering meth-
ods. However, it is not the efficacy of these methods, but their theoretical
basis and scope, that we are questioning. Who knows to what extent
present systems are “‘overdesigned’’?

To be sure, measures of performance, loss and delay formulas, and
routing methods are in daily use. Still, only in very special cases have
they been investigated, let alone analyzed and understood in the full
context of the system to which they are applied. Although the published
literature on telephone traffic alone is vast, and many models and prob-
lems have been considered, the existing theories tend to be incomplete
and oversimplified, applicable to at most a small portion of a system.
Useful comprehensive models are needed; to date, only individual pieces
of systems have been treated with theoretical justice. As R. Syski re-
marks on p. 611 of Ref. 5: “At the present stage of development . . . the
theoretical analysis of the [telephone] exchange as a whole has not been
attempted.” The general theory of switching systems now consists of
some apparently unrelated theorems, hundreds of models and formulas
for relatively simple parts of systems, and much practical lore associated
with specific systems. It will stay in this condition until sufficient the-
oretical underpinning is provided to unify the subject. We believe that
this sad “state of the theory” is due largely to these three factors:

() The large scale, and consequent inherent difficulty of the problems.
(i) The absence of a widely accepted framework of concepts in which
problems could be couched and solved.

(##7) The lack of emphasis on and success with the combinatorial as-
pects of the problems.

More generally, many of the basic mathematical properties of con-
necting networks and switching systems have either never been studied,
or, if studied, have not been digested, advertised, and disseminated for
engineering use. As a result, the design and complexity of systems has
consistently run ahead of the analysis of their performance.

V. GENERAL PROPERTIES OF CONNECTING SYSTEMS

We start by discussing some universal properties of connecting systems
from the point of view of congestion, without reference to definite mathe-
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matical models for their operation. Specifically, we describe, in a
nontechnical way, (¢) the general nature and outstanding features of con-
necting systems, (77) the principal kinds of congestion that interest en-
gineers, and (727) some of the difficulties and desiderata in both the theory
and practice of large-scale switching. No mathematical abstractions are
used at first. Some observations made may seem obvious or trivial;
nevertheless, they are necessary for the general understanding that we
desire. On these observations, we shall base a systematic division of the
theory into three kinds of problems, combinatory, probabilistic, and
variational.

By a connecting system we shall mean a physical communication sys-
tem consisting of (Z) a set of terminals, (¢Z) control units which process
requests for connection (usually between pairs of terminals), and (#iz)
a connecting network through which the connections are effected. The
system is to be conceived as operating in the following manner: (1) calls
(or requests for connection) between pairs of idle terminals arise; (2) re-
quests are processed by a control unit, and desired connections are com-
pleted, if possible, in the connecting network; (3) calls exist in the net-
work until communication ends; (4) terminals return to an idle condition
when a call terminates. (Naturally, the arising requests may ‘“‘defect’” at
any point during the process of connection.)

The gross structure of a connecting system is depicted in Fig. 1. Most
modern connecting systems follow this basic pattern. Particularly im-
portant examples are telephone central offices, toll centers, telegraph
networks, teletypewriter systems, and the many military communica-
tions systems.

All the examples cited share three important properties. These are (7)
great combinatorial complexity, (¥¢) definite geometrical or other struc-
ture, and (7#7) randomness of many of the events in the operating system.

It is obvious that many connecting systems are highly complicated.
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Tig. 1 — Connecting system.
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Both the control unit and the connecting network contain thousands of
parts which may (together) assume millions of combinations. That is,
the system can be in any one of millions of possible “states.” These num-
bers are inereased when several switching centers are considered together
as a unit, as in toll switching. Our purpose in calling attention to this
complexity is to suggest that it calls for theoretical methods that, like
those of statistical mechanies, are especially designed to distill important
facts from masses of detail.

1t is less often realized, however, that this complexity is accompanied
by definite mathematical structure, and is frequently alleviated by many
symmetries. The control unit and the connecting network always have a
specific combinatory, geometric, and topological character, on which the
performance of the system closely depends.

By imputing randomness to the systems of interest we do not imply
that their operation is unpredictable; we mean only that the best way of
describing this operation is by use of probability theory. It is not prac-
tical, even though it might be possible in principle, to predict the opera-
tion of a switching system by means of differential equations in the way
that the flight of a rocket is predicted. However, differential equations
have been used for many years to describe, not the motion of an actual
system, but the changes in the ltkelihoods or probabilities of its possible
states. Such equations govern the flow or change of probabilities and
averages associated with the system, not the detailed time behavior of
the system itself. It is in this weaker sense of assigning likelihood to
various events that we can predict the behavior of switching systems, a
fact first emphasized by A. K. Erlang’s pioneering work on telephone
traffic.” For instance, certain features (such as average loads offered and
carried) of telephone traffic that are predictable in this weaker sense form
the basis on which toll trunking routes are engineered.

We now turn to examples of the structure of connecting networks and
of control units. The basic features of the connecting network for the
No. 5 erossbar system are shown in a simplified form in Fig. 2. The net-
work has two sides, one for subscribers’ lines and the other for trunks.
Small squares represent rectangular crossbar switches, capable of con-
necting any inlet terminal to any outlet terminal. These switches are
arranged in groups called frames, either line link frames for subscribers’
lines, or (on the other side) trunk line frames for trunks. I'rames are indi-
cated in Fig. 2 by large dashed squares enclosing four small squares; dots
indicate repetition. The pattern of links which interconnect the switches
is shown by solid lines between small squares. At most one link connects
any pair of switches.
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Fig. 2 — Basic No. 5 crossbar network.

As a second example of a connecting network, consider the three-stage
Clos network (see Ref. 29) depicted in Iig. 3. The interpretation of this
figure is the same as that of Ifig. 2: small squares stand for crossbar
switches, and lines between them represent links. Each call can be put
into the network in m ways, one for each of the m switches in the middle
column. This network has the property that it m = 2n — 1, it is non-
blocking.

A control unit consists of parts that are arranged in a manuner reflect-
ing their function, and are determined by the operations necessary to
establish a connection, and by the philosophy of design and the tech-
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Fig. 3 — Clos three-stage network.
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Fig. 4 — Simple control unit.

nology that are basic to the system. To establish a connection, the control
unit must do some or all of the following: (¢) identify the calling party or
terminal, (77) find out who the called party is, and (#%) complete the con-
nection. Three examples will be considered, in order of increasing com-
plexity and modernity.

A simple example of the structure of a control unit is given in I'ig. 4.
The unit consists of a dial-tone marker which assigns and connects avail-
able idle registers to subscribers for dialing. The dialed digits remain in
the register until a completing marker (one of possibly several) removes
them and uses them to complete the call. The calls, or requests for con-
nection, may be thought of as arriving from the left, and proceeding
through the diagram from left to right. There may be a delay in obtain-
ing dial tone, a delay in securing the services of a completing marker, or
a eireuit-busy delay (or rejection) in the network. It should be observed
that the switching equipment necessary for connecting subseribers to
registers, or registers to completing markers, is left out of account in this
model.

A second example is obtained from the first by inserting a buffer
memory between the registers and the markers as shown in I'ig. 5. (One
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REQUESTS 0
FOR | ARKER [ — CONNECTING
SERVICE NETWORK
2
A

! |

/
CALL INFORMATION MOVED TO BUFFER |
MEMORY AS SOON A5 POSSIBLE,
TO FREE REGISTER

Fig. 5 — Control unit with buffer memory.
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can argue that registers are expensive special-purpose units and should
not be used for storing call information when cheap memory is available.)
When dialing is finished, the call information is forthwith transferred to
the buffer memory, there to wait for a completing marker without pre-
empting a register. The markers and registers are now effectively iso-
lated, so that delays in completing calls do not cause delays in obtaining
dial tone. Again, traffic is viewed as moving from left to right.

The high speeds possible with electronic cireuits have led to new con-
figurations and problems (for control units and networks) which have
not yet received much attention in congestion theory. Although it per-
forms the same functions, the control unit of a modern electronic central
office usually has an organization differing from that of the examples of
Figs. 4 and 5, which are characteristic of electromechanical systems, Four
principal reasons for this contrast are:

() The electronic office relies heavily on a large digital memory to aid
in processing calls and (in time division systems) to keep track of calls
in progress; electromechanical systems, on the other hand, are based
largely on ‘““wired-in”’ memory.

(72) In the electronic office, processing a given call usually requires
several consultations of the digital memory; thus, the flow of traffic in
the control unit is re-entrant and not unidirectional as in I'igs. 4 and 5.

(¢72) The speed of electronic components often makes it possible to
perform only one operation at a time; thus, a single unit may be (alter-
nately) part of a dial-tone marker, part of a register, part of a completing
marker, ete., depending on the details of organization of the control unit.

(iv) The replacement of “wired-in’’ memory, whose stored information
is immediately available, by an electronic memory which has to be con-
sulted, creates problems analogous to the problem of connecting complet-
ing markers to registers in the No. 5 crosshar system: special access units
are needed. Subunits of the control unit, such as dial-tone markers, com-
pleting markers, senders, etc., must take turns in using the access circuit
to the digital memory.

I'ig. 6 depicts a (hypothetical) control unit for an electronie switching
system built entirely around a memory which stores all information on
the current status of calls. The control unit consists of various special-
purpose units such as a sender, a receiver, a completing marker, a dial-
tone marker, and registers. Each of the listed units can operate inde-
pendently of and simultaneously with the others; however, they compete
for (take turns at, possibly with priorities) the access circuit to the
memory. Each unit depends on the memory to give it a new assignment,
to file the results of the last one, or both. Every operation of a special-
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Fig. 6 — Block diagram of electronic control unit.

purpose unit requires access to the memory, either to obtain data from it,
or to file data in it, or both. The memory contains several classes of calls:
those waiting for dial tone, those waiting for a completing marker, those
actually in progress in the connecting network, ete.

VI. PERFORMANCE OF SWITCHING SYSTEMS

In general, the gross or average features of switching systems are both
more accurately predictable and more economically important than the
specific details. The average load carried by a trunk group is usually more
easily predicted than the condition of a particular trunk; and the “all
trunks busy”’ condition of the group is of greater concern to the telephone
administration than the busy condition of a single trunk.

IFrom the point of view of economics and traffic engineering, only cer-
tain average features of the behavior of a system (used as measures of
performance) are important. These few quantities of interest depend on
the multitude of details of “fine structure” in the control unit and the
connecting network. Although the intricate details give rise to the im-
portant averages, the details themselves are of relatively little interest.
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In the rest of this paper, we shall repeatedly contrast the few average
quantities that are of engineering interest with the many millions of de-
tailed features and properties (of connecting systems) on which the av-
erages are based, The central problem in the theory of connecting systems
is to understand how the interesting quantities arise from the details,
and to caleulate them.

We shall start our discussion of the contrasting roles of averaged fea-
tures and details by considering some of the different kinds of congestion
that interest engineers, and in addition some associated measures for the
performance of systems.

Congestion is said to oceur in a connecting system when a requested
connection cannot be completed immediately. By “immediately” we
mean, of course, not “instantancously”, but “as fast as control equip-
ment, assumed available, can do its work”, The time it takes to complete
a call contributes to congestion only if it keeps other calls from being
completed at the normal rate. That a call cannot be completed imme-
diately (in this sense) may be due to facts of three kinds: (¢) certain nec-
essary units of switching equipment (like trunks, or markers) are all
busy; (77) there are available units, but they oceur in an unusable com-
bination, or “fail to mateh”; (#74) congestion has occurred previously,
and other requests are awaiting completion.

In telephone traffic theory, requests for connections which encounter
congestion are traditionally termed lost calls. This terminology is used
whether the request is refused (and never completed), or merely delayed
(and completed later). Switching systems differ in the disposition of lost
calls, i.e., in what is done with requests which encounter congestion.
There are in theory two prineipal ways of disposing of lost calls. In the
first way, termed ‘“‘lost calls cleared”, the request is denied and leaves the
system; this way of dealing with lost calls naturally gives rise to the
proportion of requests denied, or the probability of blocking or loss, as a
measure of performance. The second way of disposing of lost calls is
termed “lost calls delayed”, and consists in delaying the request until
equipment becomes available for completing the conneection; associated
with this is the probability of delay in excess of a specified time ¢, as a
measure of performance.

On the simplified account of the last paragraph we must impose at
least two qualifications. First, whether a request suffers blocking or de-
lay (or both!) may depend on the condition of the system at times shortly
after the request is made; second, the completion of a request usually in-
volves a sequence of steps, any one of which may expose the request to
delay or loss. For example, a request may encounter delay in obtaining
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dial tone, delay in securing the services of a completing marker, and
delay or blocking in the attempted completion of the desired connection
through the connecting network.

We conclude this section by briefly considering what general features
of connecting systems are particularly relevant to their performance as
measured (for example) by probabilities of blocking or delay, or by av-
erage loads carried, offered, or both. Now, a connecting system has two
principal parts, the control unit and the connecting network; the features
of the system that are relevant to performance are conveniently distin-
guished according to whether they are features of the control or of the
network. This distinction is fundamental because the performance of the
control is largely determined by the speed and number of the various
sub-units comprising it, while the performance of the network is largely
dependent on what combinations of calls ean be in progress simultane-
ously.

The control unit is basically a data processing system: it collects in-
formation about desired connections, digests it, makes routing decisions,
and issues orders for completing requested calls in the connecting net-
work. Its capacity is measured, e.g., by the number of customers who
.an be dialing simultaneously, or by the number of calls which are being
completed in the network at the same time. Its performance is deseribed
by the probability distributions of delay before receiving dial tone, and
of delay after completion of dialing until the desired connection is com-
pleted.

For a simple model of a control unit (such as depicted in Iig. 4), the
features pertinent to performance are: (z) the calling rate, (¢%) the num-
ber of registers for dialing, and (iz7) the speed and number of completing
markers. Tn the case of the prototype electronic control unit (depicted in
Fig. 6) some additional features appear: (i) the speed of the access cir-
cuit to the memory, (v) the order of priority of the funetions being per-
formed, the discipline of access to various services, and the competition
for access among marker, dial tone marker, sender, ete., (v7) the presence
of re-entrant traffic (every call must “use” the access circuit at least
twice), and (v47) the number and arrangement of the various functions
which are going on simultaneously.

The connecting network, in contrast to the control unit, determines
what calls ean be in progress, rather than how fast they can be put up.
Its configuration determines what combinations of terminals can be con-
neeted simultaneously together, I'or example, if m = n, the Clos network
of Fig. 3 has the property of rearrangeability: any preassigned set of calls
can be simultaneously connected. The No. 5 network of Fig. 2 does not
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have this property: the number of calls between a line link frame and a
trunk link frame is limited by the number of links between those two
frames. Such combinatory properties of the structure of the conneeting
network play a determining role in estimating the cost and the per-
formance (probability of blocking) of the network. If the structure is too
simple, very few calls can be in progress at a given time and blocking is
high; if it is extensive and complex, it may indeed provide for many large
groups of simultaneous calls in progress, and so a low probability of
blocking, but the network itself may be prohibitively expensive to build
and to control.

VII. DESIDERATA

Our discussion of the three prominent features of switching systems —
(7) great complexity, (¢7) definite structure, and (#7) randomness — has
exposed or suggested some of the problems and desiderata which a theory
of congestion in large-scale systems must (respectively) encounter and
supply. Specifie statements of requirements and tasks are now given,

General desiderata can be obtained by examining the purpose served
by a theory of congestion. The function of such a theory is twofold: it is
(i) to describe the operation of switching systems, and (i) fo predict the
performance of systems. More specifically, the descriptive function (7) is
to provide a theoretical framework into which any system can be fitted,
and which permits one to evaluate the performance of the system, e.g.,
to compute the chance of loss, to estimate a sampling error, or to prove
a network nonblocking. The predictive function (¢7) has logically the
same structure as (z), but emphasizes the use of theory to make future
capital out of past experience, to extrapolate behavior and thus to guide
engineering practice.

More specific tasks than these appear when we list some of the activi-
ties comprised by the theory and practice of traffic engineering. A possi-
ble list is as follows:

. Deseribing and analyzing mathematical models.

4. Computing measures of performance for specific models,

112. Studying the accuracy of traffic measurements, the effects of
transients, and problems explicitly involving random behavior in
time,

ir. Comparing networks, control systems, methods of routing, ete.

v. Using traffic data to verify empirically the assumptions of theories.

vi. Making predictions and estimates for engineering use.

On the basis of this list, and of our previous discussions of complexity,
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randomness, gross features, and details, we can say that a satisfactory
theory of congestion must meet the following requirements:

7. It must be sufficiently general to apply to any system.

#1. 1t must yield computational procedures for system evaluation and
prediction of performance, based on masses of detail. These pro-
cedures must be at once feasible and sufficiently accurate, and if
approximations are made, their effect must be analyzable.

715, Tt must encompass all the three basic elements simultaneously,
viz., the random traffic, the control unit, and the connecting net-
work.

VIII. MATHEMATICAL MODELS

We shall now consider what mathematical structures are appropriate
theoretical deseriptions of operating connecting systems. The discussion
will provide an intuitive picture of an operating system, and will help to
motivate a natural division of our subject into combinatory, probabilistic,
and variational problems.

By a state we shall mean a partial or complete description of the condi-
tion (of the system under study) in point of (z) busy or idle network links,
crosspoints, and terminals, and (i2) idle or busy control units or parts
thereof. Complete, highly detailed descriptions correspond to fine-grained
states specified by the condition of every crosspoint, link, or other unit
in the system, in absolute detail. Incomplete descriptions correspond to
coarse-grained states, or to equivalence classes of fine-grained states.

During operation, the connecting system can pass through any per-
mitted sequence of its states. Each time a new call arises, or some phase
of the processing of a call by the control unit is finished, or a call ends,
the system changes its fine-grained state. These changes do not usually
oceur at predetermined epochs of time, nor in any prescribed sequence;
they take place more or less at random. At any particular time, it is
likely that some terminals, links, and parts of the control unit are idle,
that various requested calls are being processed, and that certain calls
are in progress in the connecting network.

The last paragraph suggests the following intuitive account of an op-
erating switching system: it is a kind of dynamical system that describes
a random trajectory in a set of states. Such an intuitive notion can be
made mathematically precise in many ways. Any one precise version is
a mathematical model for the operation of the switching system. In con-
structing such a model, it is neither necessary nor desirable always to use
the most detailed (the fine-grained, or microscopic) states; often a partial
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deseription in terms of coarse-grained states suffices, and is less difficult
to study. Indeed, in building a model it is to some extent possible to
choose the set of states to suit special purposes. One ean, for instance,
control the amount of information included in the state so as to strike
a balance between excessive detail and insufficient attention to relevant
factors. It is possible to make the notion of state more or less complete
80 as to achieve certain (desired) mathematical properties (such as the
Markov property, or a suitable combinatory structure) which simplify
the analysis of the random trajectory. Finally, one can add supplemen-
tary variablesanalogous to counter readings or cumulative measurements,
and obtain their statistical properties.

The abstract entity appropriate for deseribing the random behavior of
a switching system is a stochastic process. For our present heuristic pur-
poses, we can define a stochastic process as follows: by a possible history
of the system we mean a function of time taking values in the chosen set
of states; a stochastic process is then a collection @ of possible histories
of the system in time, with the property that many (presumably in-
teresting) subsets A of £ have numerical probabilities Pr{A} associated
with them. The probability Pr{A} of the set A of possible histories is
interpreted as the chance or likelihood that the actual history of the
system be one of the histories from the set A. Models of this kind furnish
information because desired quantities can be calculated from the basice
probabilities Pr{A}.

IX. FUNDAMENTAL DIFFICULTIES AND QUESTIONS

The systematic use of mathematical models (such as stochastic proe-
esses) in congestion theory and engineering has been largely limited to
small pieces of systems like single-server queues, groups of trunks with
tull access, ete. More complex models of systems involving connecting
networks have hardly been touched by theory. This limitation has been
due almost entirely to the large number of states such models require,
and to the complex structure of the transitions (changes of state) that
can occur. In short, the essential characteristics (of large-scale connect-
ing systems) themselves generate the basie difficulties of the theory.

In most congestion problems, it is easy enough to construct (say) a
Markov process that is a probabilistic model of the system of interest.
But it is difficult, because of the large number of states and the complex-
ity of the structure, to obtain either analytic results or fast, reliable
simulation procedures. This circumstance has been a major obstacle to
progress in the congestion theory of large systems. One of its conse-
quences has been that in some cases, models known to be poor repre-
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sentations of systems have been used merely because they were mathe-
matically amenable, and no other tractable models were available. Even
overlooking such extremes, it is fair to state that, to date, problems of
analysis and computation have limited the amount of detail embodied
in the notion of state for models of switching systems. Every effort has
heen made to keep the number of states in models small, and their com-
plexity low.

Having exposed some basic properties of and theoretical problems
arising from congestion in connecting systems, let us acknowledge that
an operating, large-seale connecting system cannot be done full theoreti-
wal justice except by a stochastic model with an astronomical number of
states and a very complicated structure of possible transitions. At this
point, let us try to take a synoptic view of the subject, and ask some
general questions whose discussion might indicate new approaches and
emphases. Let us, in the current idiom, lean back in our chairs, make a
(n) (agonizing?) reappraisal, and draw ourselves the “big picture.”*

The following three questions seem (to this writer) to be pertinent,
and are taken up in the next sections:

i. What is the value of mathematical models that have a very detailed
notion of state?

71 Is it possible to make explicit theoretical use of the very properties
of connecting systems that appear to be most troublesome? How can the
two principal difficulties (large number of states, complex structure of
changes) be turned into positive advantages?

iii. What features of connecting systems are especially relevant to the
mathematical analysis of system operation?

We do not pretend to provide iron-clad answers to these questions.
We try to give a helpful discussion of relevant matters, illustrated by
examples.

X. THE MERITS OF MICROSCOPIC STATES

We have raised the question: To what extent can detailed probabilistic
models of the minutiae of operating switching systems (i.e., models with
“microscopic’’ states) improve our understanding of these systems, and
so our ability to engineer them? Against the value of such detailed models
it can be argued that for engineering purposes only certain performance
data are of interest, and that the detailed model produces a vast amount
of information with no apparent practical method for reducing this in-
formation to probabilities of delay or blocking.

* Supplying_those clichés whose substitution leaves the content of this last
sentence invariant is left as an exercise for the reader.
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Since the usefulness of mathematical models depends entirely on the
desired information they can be forced to yield, it is not reasonable to
dismiss detailed models a priori. For in truth, few if any such models
have been considered, and it has not been shown that they are useless
in the sense that no practical method for extracting useful quantities from
these models exists.

To be sure, the congestion engineer is not as concerned with the min-
utiae themselves as with their effect en masse. But he has to base his
conclusions and recommendations in some way on the total effects of a
large number of individually trivial events. Hence, at some point in his
procedure, he must take account of the large number of states and the
complex structure of possible transitions of his system,

Traffic engineering practice is based on (relatively few) probabilities
and averages, such as average loads, deviations about them, and blocking
or delay probabilities. Any reliable theoretical estimate of these averages
must be based on the combinatory and probabilistic properties of a
theoretical model (stochastic process) for system operation. At worst,
an approach or model that provides detailed information might yield a
much-needed check point for the methods that are in current engineering
use, and so increase the engineer’s understanding of and confidence in
these methods.

However, there is a much more general, positive sense in which atten-
tion to the details of connecting systems can contribute to theoretical
progress. This is taken up in the next section.

XI. FROM DETAILS TO STRUCTURE

The prospect of solving (say) statistical equilibrium equations for
models with a very detailed notion of state is discouraging indeed, al-
though it has been faced, notably by Elldin® in Sweden. Nevertheless, a
sanguine and useful approach (along this line) to connecting systems can
be obtained by a shift of emphasis from “details” to “structure.” We
have emphasized that deseribing an operating connecting system means
keeping track of numerous details, none of which is interesting in itself.
We have said that the operation of such a system could be pictured as a
trajectory in a very complicated set of states. We now claim that the
inclusion of enough details (in the notion of state for a model) gives the
set of possible states a definite structure that is useful because it makes
possible or simplifies the analysis of the probabilistic model.

Whatever may be the value of detailed probabilistic knowledge for the
immediate problems of engineering, such knowledge is useful if not essen-
tial in theoretical studies. By using a highly detailed, “miecroscopic”
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description for the state of the system, it is possible to exploit the exten-
sive mathematical structure (properties) that such a set of states nat-
urally has. Indeed, the combinatory properties and geometrical structure
of the set of states are two of the very few weapons available for attacking
large-scale problems of traffic theory. I believe that in the past these
properties and this structure have not been sufficiently exploited. They
can only be put to use by a systematic application of “microscopic”
states.

The three basic properties of switching systems discussed in Section
V were (i) extreme combinatory complexity, (z7) definite geometrical
structure, and (777) randomness. The preceding paragraphs of this section
can be related systematically to these properties, and elaborated into a
sort of program: Instead of throwing up our hands at (?) in trying to do
justice to (#17), we should realize that a detailed notion of state allows us
to turn (i) to our advantage in studying (z77). Let us then disregard the
fact that there are many states, and analyze the structure of possible
changes of state, to see how to capitalize on it.

For, indeed, the possible microscopic states of a particular connecting
system are not arbitrary. They are rigidly determined by the combina-
tory and topological properties of the connecting network, and by the
organization of the control unit. Such a set of possible states has a mathe-
matical structure of its own, and this structure is relevant to the per-
formance of the system, and to any stochastic process that represents its
operation.

It can be seen quite generally that when a switching system changes
its microscopic state, it can only go to a new state chosen from among a
few “neighbors’ of the state it is leaving. These neighbors comprise the
states which ean be reached from the given state by starting a new call,
ending an existing call, or completing some operation in the control unit.
In a large system, a state may have many such neighbors, but they will
be few in comparison with the total number of microscopic states.

A striking and useful example of how details give rise to structure can
be obtained by considering the possible states of a connecting network.
These states can be arranged in a pattern as follows: At the bottom of the
pattern we put the zero or ground state in which no calls are in progress;
above this state, in a horizontal row, we place all the states which consist
of exactly one call; continuing in this way, we stack up level after level
of states, the kth level L consisting of all the states with & calls in
progress.

We now construet a graph by drawing lines between states that differ
from each other by exactly one call. (Such states, needless to say, are
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always in successive levels of our diagram.) This graph we call the state-
diagram. It is a natural (and standard) representation of the partial or-
dering = of the states: where @ and y are states,

T =y

means that y can be obtained from 2 by adding zero or more calls to x,
or alternately, that x can be got from y by removing zero or more calls.
The importance of this state-diagram lies in two facts:

7. The state diagram gives a geometrical representation of the possible
states of the system. The myriad choking “details’ of the connecting
network have been converted into a vast geometrical structure with
special properties. The operating system describes a trajectory through
the state diagram, moving between levels as calls begin and end.

7i. Any stochastic process describing the operation of the connecting
network is a point moving randomly on the state diagram. The motion
is only between adjacent levels. New calls put into the network cor-
respond to jumps to the next higher level; hangups correspond to jumps
to the next lower level.

As a simple example, we consider the possible states of a single 2 by 2
switch. These consist of (i) the zero state, (¢i) the four ways of having
one call up, and (777) the two ways of having two calls up. These states
are depicted in Fig. 7. Fig. 8 shows the states of a 2 by 3 switch.

XII. THE RELEVANCE OF COMBINATORY AND STRUCTURAL PROPERTIES:
EXAMPLES

In this section we elaborate, by discussing examples, our theme that
the combinatory and structural properties of connecting systems are of

o o

e (e,

O

Fig. 7 — States of a 2 by 2 switch.
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Fig. 8§ — States of a 2 by 3 switeh.

the greatest import (7) to their performance, and (#i) to the analysis of
mathematical models of their operation. The organization of the control
unit and the configuration of the connecting network largely determine
the possible microscopic states of the system. Let us see what effects
these features can have on problems of system analysis.

Ezxample 1: Any connecting system has a “zero” or ground state in
which all terminals and links are idle, no ecalls are being processed by
the control unit, and the connecting network is empty. The existence of
this zero state is a structural property common to all switching systems.
This zero state seems most uninteresting. Nevertheless, many probabilis-
tic models (for switching system operation) have the property that if
the equilibrium probability of the zero state is known, then that of any
other state ean be determined in a simple way. Several specific examples
of this phenomenon are worked out later in this paper, so none will be
given here. (See Sections XV and XVI.)

Example 2: The relevance of combinatory properties of the connecting
network to the ealeulation of probabilities can be vividly illustrated by
reference to Clos’ work on nonblocking networks (see Ref. 29). The
blocking probability of a conneeting network is the fraction of attempted
alls that cannot be completed because no path for the call exists in
the current state of the network. Until Clos’ article appeared it was
not generally known that, no matter what probabilistic model was used,
an exact ealeulation of blocking probability for a Clos network with
m = 2n — 1 (see Fig. 3) would yield the value zero!*

* Zero, not zero factorial, which equals unity!
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Ezample 3: Consider the class of connecting networks which have the
property that in any state of the network, two idle terminals (forming
an inlet-outlet pair) can be connected in at most one way. For each
member of this elass of networks we construct a Markov stochastic
process to represent its operation under random traffic, as follows: in
any state, if an inlet-outlet pair is idle, the conditional probability
is Ah + o(h) that it request connection in the next interval &, as h — 0;
also, an existing call terminates in the next interval & with a probability
h + o(h), as h — 0; requests that encounter blocking are denied, and
do not change the state of the system (lost calls cleared).

If X is a finite set, let | X | be its cardinality, i.e., the number of
elements of X, and let S be the set of all states of the network under
discussion. For 2 in S, define

A, = set of states accessible from z by adding a call
B, = set of states accessible from @ by removing a call
| x| = number of calls in progress in state x

L; = set of states with k calls in progress.

Note that | B, | = | 2].

Let p, be the stationary or equilibrium probability that the system
is in state x. By reference to Fig. 9, it can be seen that the statistical
equilibrium equations for our probabilistic model are

WA+ e )pe = 2o+ 22 vy, el

YeAdy weB

Since in any state an idle pair can be connected in at most one way,
no routing decisions need to be made, and the solution of this equation

Lz

Lixi-1

Fig. 9 — A state z, and the sets A, , B in the state diagram.
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(regardless of the network configuration!) is given by

pe = pan ™ x#0
pit =1+ 22"

veS

y>0

IP

Z | L |

where 0 is the zero state. We have therefore shown that the simple
combinatory property, that a call can be put up in at most one way,
implies that the stationary probabilities of the Markov process we de-
fined are of a simple geometric type. Note the important role played
by the zero state, as discussed in IExample 1.

Example 4: The Markov stochastic processes of the previous example
can be used to illustrate another important point. There are many
switching system models for which quantities of interest (such as the
probability of blocking) can be given rigorously, without approximations,
by a formula in which the distinction between system combinatorics
and random customer behavior appears explicitly. In Example 3, the
state probabilities {p,, v € S} are completely determined by the quan-
fities

| Lk E N k ; 0

i.e., by the number of states with & calls in progress, for k& = 0. For
these models we can express the blocking probability as a function of
the traffic parameter X and of | Ly |, & = 0. The numbers | L, | repre-
sent purely combinatory properties of the network.

The blocking probability b can be calculated as follows: b is the frac-
tion of attempted calls that are unsuceessful, so that

total rate of successful attempts

1—-0b=
total rate of attempts

In equilibrium, the total rate of successful attempts must equal the
total rate of hang ups. The total rate of hang ups is

> p. | x| = mean number of calls in progress

ze8
(because the mean holding time is used as the unit of time). Let N
be the number of terminals offering traffic. Since an idle inlet-outlet
pair calls at a rate A, the attempt rate in a state x is

A+ (number of idle pairs in a state ) = A (N N 92 @ l) .

&
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The total rate of attempts is then

)\Epz(N—BZ[a:]).

TeS
Hence,
2P|
b — 1 _ IESN )I |
- 2|
e (V)
TeS
(/2]

2 Nk | L |
_ E>0
/2] YA
RZ?\"ILH(N “’“)
Ez0 2

where [N /2] is the greatest integer less than or equal to N /2. This for-
mula exhibits the blocking probability as a rational function of the
calling rate A per idle pair and as a bilinear function of the combinatory
constants [| Ly |, & = 0}. The degree of the denominator in A is one
more than that of the numerator, so b — 1 as A — o ; also, note that

Iimb=1—~|—Ii|.

A0 N
2

This limit is greater than zero if there are calls which cannot he put up
in any way. Finally, we observe that if the network is non-blocking, then

N —-2|x
.0
zeLp

N —2k 42
ILkﬁll( 2i+ )

and so b = 0, as it should, if we interpret

(N - g[N/m)

]CIL;;[

Il

as Zero.

XIII. COMBINATORY, PROBABILISTIC, AND VARIATIONAL PROBLEMS

The preceding discussions have established that the ingredients going
into a mathematical model of a connecting system are of two kinds,
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On one hand are the combinatory and structural properties, and on the
other, the probabilistic features of traffic. We emphasize the distinetion
between these aspects, and claim that by carefully drawing it, we can
extend the general understanding of connecting systems, unify or
modify existing theoretical methods, and obtain new engineering results.

Our discussion also suggests that to study stochastic processes that
represent operating connecting systems, it is essential to have an ex-
tensive theory of the combinatory and topological nature of the micro-
scopic states of such systems.

In any specific model of a connecting system, one can distinguish the
combinatory from the stochastic features. However, it is also of interest
to compare models of systems in an effort to determine optimal systems.
These facts suggest a useful though imprecise division of the entire
subject (of connecting system models) into three broad classes of prob-
lems. In order of priority, these are

1. Combinatory problems.

1i. Probabilistic problems.

727. Variational problems.

This order of priority arises in a natural way: one needs to study com-
binatory problems in order to calculate probabilities; one needs both
combinatory and stochastic information in order to design optimal
systems.

The tripartite division just made provides a rational basis for organiz-
ing research effort. Since so many of our pronouncements have been
generalities, we devote the remainder of the paper to illustrating care-
fully each of the three divisions (combinatory, probabilistie, variational)
by working out and discussing in detail a very simple (yes, a trivial)
problem from each division. These problems have been chosen for their
tutorial value rather than their realism or usefulness. In discussing them,
we place emphasis on furthering insight rather than solving practical
problems, on exposing principles rather than providing engineering data.

XIV. A PACKING PROBLEM

Tt has long bheen suspected (and in some cases, verified experimen-
tally) that routing calls through a connecting network “in the right
way”’ can yield considerable improvements in performance. This pro-
cedure of routing the calls through the network is called “packing”
(the calls), and the method used to choose routes is called a “packing
rule.” The use of the word “packing” in this context was surely sug-
gested by an analogy with packing objects in a container. However,
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the existence and description of packing rules that demonstrably im-
prove performance (e.g., by minimizing the chance of blocking) are
topics about which very little is known.

What, then, is the “right way’ to route calls? 1t has been argued
heuristically that it is better to route a call through the most heavily
loaded part of the network that will still take the call. Appealing and
simple as this rule is, nothing is known about it. We know of no pub-
lished proof of either its optimality or its preferability over some other
rule. The rule will be proven optimal for an example in Section XVI.

The question naturally arises, though, whether for a given network
in which blocking can occur there exists a packing rule so cunning that
by following it all blocking is avoided. Then, use of the rule makes the
network nonblocking. Such a network may be termed nonblocking in
the wide sense, while a network none of whose states has any blocked
calls may be termed nonblocking in the strict sense.

The existence of such a rule is a purely combinatory property of the
network, and so serves as an example of the first type of problem de-
scribed in Section XIII. Unfortunately, practically useful connecting
networks that are nonblocking in the wide sense are yet to be found.
Since we are primarily interested in exemplifying principles, we shall be
content with discussing an impractical network that is nonblocking
in the wide sense. The example to be given was suggested by 5. I.
Moore.*

Let us first consider the three-stage connecting network depicted in
Trig. 10. All switches in the middle column are 2 by 2, and there are 2n — 1
of them, so, by a result of C. Clos,” the network is nonblocking. Suppose
that we use the rule that an empty middle switch is not to be used unless
there is no partially filled middle switch that will take the call. In other
words, do not use a fresh middle switch unless you have to! In general,
this rule is not quite the same as the one exhorting use of the heavily
loaded switches wherever possible, because it only tells us what to
avoid, but it is in the same spirit. In the case to be considered, however,
a middle switch is either empty, half-full, or full; hence the two rules
coincide.

We shall show that if this rule is used, then no more than [3n/2] middle
switches are ever used, where [z] is the greatest integer less than or equal
to x. Thus the rest, about one quarter of the middle switches, could be
removed and no blocking would result if the rule were used. It can be
verified by examples that if there are only [3n/2] middle switches and
the rule is violated, then calls can be blocked. Thus, the network of

* Private communication.
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Fig. 10 — Three-stage nonblocking connecting network (Clos type).

Tig. 11 is not nonblocking in the strict sense, but is nonblocking in the
wide sense,

A state x of a connecting network is called reachable (under a rule p)
if using the rule p to make routing decisions does not prevent the system
from reaching = from the zero state. We set

S(x) = number of middle switches in use in state z.

Let us use the diagram of Fig. 12 as a canonical representation for a
2 by 2 middle switch. The numbers at the left [top] indicate to which
outer switch on the left [right] the numbered link connects. The seven
possible states of a middle switch are depicted in Fig. 13, and are in-
dexed therein by letters a,b, - -+, g. A state x may then be represented
(to within renaming switches and terminals) by giving seven integers
a(x), b(x), -+, g(x) where

a(x) = number of middle switches of type @ when network is
in state x

2x2

ng | 1 1 TN

[3n72]

Fig. 11 — Three-stage network which is nonblocking if proper routing is used.
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Fig. 12 — Representation of a 2 by 2 middle switch.

g(x) = number of middle switches of type g when network is
in state x.

It is clear that for any state x

a(r) + blxy + --- +glx) =2n — 1
b(x) + e(x) + -+ + g(x) = S(x).
MIDDLE SWITCH STATE TYPE CALLS
12
. 7
s a NONE
o 0
i b (1,1
o o
(o,
c (2,2)
(o
d (2,1
7
(=2
e (1,2)
0 0
o
o f (1,1)(2,2)
[e]
g (2,001,2)

—+— = CLOSED CROSSPOINT

Fig. 13 — Seven possible states of a middle switch.
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Theorem 1: Let p denote the rule: Do not use an empty middle switch
wnless necessary. Let x be a state of the network of Fig. 10. Let x be reach-
able under p. Then forn 2 2

Sr) = [3n/2] (1)
b(x) + e(x) + fl2) = n\ @)
d(r) + e(x) + glx) = nf -

Proof: Each reachable state is reachable in a certain minimum number
of steps. The theorem is true if z consists of one call and is reachable
from the zero state in one step. As an hypothesis of induction, assume
that the theorem is true for all states reachable in k& steps or fewer.
All changes in the state are either hangups, or new calls of the following
kinds:

Type 1:
a(y) —aly) — 1
(1, 1) by —by +1 with e(y)
(2,2) e(y) —ely) + 1 with b(y)
2,1 d(y) —dy) + 1 with e(y)
(1,2) e(y) —e(y) + 1 with d(y =

([
o o © ©

I

Type 2: (preferred by p)
a(y) remains fixed and

(LD f —=f +1, ey —ely) —1 with ¢ >0
(2,2) f) — Sy + 1, b(y) — by) — 1 with b(y) > 0
(2,1 g —g + 1, ey —ely) — 1 with e(y) >0
(1,2) gOp — g + 1,  dyp —d(y) — 1 with d(y) > 0.
All states, reachable or not, satisfy the inequalities

b(y) + e) + 1) + 9y = n

c(y) +dy) + f(w) + g(w)

b(y) + dy) + f) + 9(y)

c(y) + e(y) + ) + g(y) = n.

n

IIA

IA

"

The alternative preferred by p changes neither the value of S(-)
nor the truth of (2) of the theorem. Consider a state x first reachable in
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k 4 1 steps. If x is first reachable by a hangup or by putting up a call
of Type 2, then (1) and (2) are true of x. Suppose then that z is first
reachable in & + 1 steps only by putting up a call of Type 1. Without
loss of generality we can consider only the case where the new call is a
(1, 1) call; the other three cases are symmetric. Let y be a state from
which x is thus first reachable. Since the avoided alternative is used,
we have

c(y) = 0.

Sinee a (1, 1) call is possible in state y, we must have

b(y) +dy) +fy) +g@) En—1

b(y) +e(y) +fw) + g =n—1
and from the induction hypothesis

d(y) + e(y) + g(y) = n.
Hence,
2(b(y) + d(y) + e(y) + () + g} = 3n — 2

or, since ¢(y) = 0

v, 3n
Sy =5 — 1.

&

However, S(z) = S(y) + 1, so S(z) = [3n/2]. To show that (2) also
holds of x consider that

b(y) + e(w) + f) + g(y)
c(y) = 0.

IIA

n—1

It follows that
b(y) + ely) + fly) = n — 1.

However, since x is obtained from y by putting up a (1, 1) call of Type
1, we have

It

b(x) =b(y) +1, e(@) = e(y)
e@) =cly) =0, [fl) =[y
d(x) = d(y), gx) = g(y).

Hence, (2) of Theorem 1 is true of x. This proves the result.

Il
Il
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XV. A PROBLEM OF TRAFFIC CIRCULATION IN A TELEPHONE EXCHANGE

We shall deseribe and analyze a simple stochastic model for the
operation of the control unit of a switching system. The connecting
network is assumed to be nonblocking and is left out of account.

To set up a telephone call in a modern electromechanical automatic
exchange usually involves a sequence of steps which are (traditionally
and functionally) divided into two groups. The first group consists in
collecting in a register the dialed digits of the called terminal. The
second group, performed by a machine called a marker, consists in
actually finding a path through the connecting network for the desired
call, or otherwise disposing of the request for service. For even if a path
to the called terminal be found, this terminal may already be busy.

In the exchange, enough registers and markers must be provided to
give customers a prescribed grade of service. Ior engineering purposes,
then, it is desirable to know the probability that r registers and m markers
are busy. Let us assume that the exchange serves N customers, and that
there are R registers and M markers. All calls are assumed to go to
terminals outside the exchange.

We may think of each customer’s line as being in one of a number of
conditions, and moving from one condition to another. It makes no
difference whether we aseribe these ‘“‘conditions” to the line itself, or
to a fictitious single customer if several people use the line. A given
line may be idle (i.e., not in use); at some point in time it may request
a connection, i.e., the customer picks up the receiver and starts waiting
for dial tone; after obtaining a register he spends a certain amount of
time dialing; he then wails for a marker to complete his call (freeing the
register meanwhile) ; upon obtaining a marker, he must wait until the
marker completes the connection; at this point he begins his conversation;
at the end of his conversation his line becomes idle again.

One may now ask, what is the distribution of the N customers among
these various conditions? Clearly, if not enough markers are provided
there will be a tendency for the customers to collect in the “waiting
for a marker” condition; a lack of registers will make the customers
collect in the “waiting for dial tone” condition.

To obtain a simple probabilistic model for the “circulation” of custo-
mers, we assume that the probability that an idle customer starts a
call in the next interval of time of length A is Ah + o(h), the chance that
a dialing customer completes his dialing in the next interval i is 6k +
o(h), the chance that a busy marker finishes the call it is working on is
wh + o(h), and the probability that a conversation ends is h + o(h),
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all as A — 0. The probability of more than one such event in A is o(h)
as h — 0.

These assumptions are in turn consequences of assuming that the
time a customer stays idle, the time a customer takes to dial, the time
a marker takes to complete a call, and the holding time (conversation
length) are all mutually independent random variables, each with a
negative exponential distribution, and the respective means A, 571,
g1 and unity. The number X is the calling rate per idle customer, &
and yp are the average rates of dialing and call completion by a marker
(respectively), and time is measured in units of mean holding time,
so that the hangup rate per call in progress is unity. The assumption
that the marker operation times are exponentially distributed is not
realistic, but we make it here in the interest of obtaining a global model
whose statistical equilibrium equations can be solved in a simple way.
This restrictive assumption could be avoided at the cost of complicating
the mathematics. The important features of our model are depicted in
Iig. 14; the labeled arrows indicate the rates of motion for various
transitions.

The state of the system is adequately described by stating the number
7 of idle customers, the number r of customers that are dialing or waiting
for dial tone, the number m that are being serviced by a marker or are
waiting for a marker, and the number ¢ of calls in progress. Actually,
any three of these numbers suffice, since for physically meaningful states

i+r+m-+c=N.
Let pirwe be the equilibrium (or stationary) probability of the state

R REGISTERS

1

Al MaX (0, T-R)

. |
> m" " WAITING FOR = ! —_—
LE DIAL TONE 1
R
i dMIN (1,R)
1
c ALMIN (M, M) ! MAX (0, M-M)
CALLS IN | o———— , WAITING FOR ~—oI
PROGRESS i A MARKER
M

Fig. 14 — Diagram of a telephone system.
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(i,r,m,e). The “statistical equilibrium’’ equations are, with suitable
conventions at the boundaries.

(i + 8 min(r,R) 4+ ¢ min(m,M) + ¢)Pirme
= (¢ + Dpi—nmeesny + M@+ DPosno—tme
+ 6 min(r + LE)picinm-ve + & min(m + LMY Pirinin) ce—)-

These equations state that the average rate at which a state is left
equals the average rate at which it is reached from other states. We
observe that the flow of calls in the exchange is in a sense cyelic; in
making a call, each customer passes through four stages: idle, dialing,
marker, conversation, then back to idle, in that order. This fact yields
a way of solving the equations. Each side of the equilibrium equations
has four terms, one for each of the four stages of a call. We shall find
a way of assigning to each term on the left a corresponding equal term
on the right which will eancel it.

The solution of the equations for (7,r,m,c) # (N,0,0,0) is proportional
to

Vi I max (1,5/R) ] max (1, /M)
LV . Li=0 i=0

ilrimlel ATBTum

.lri,r,um: -

The constant of proportionality is the probability of the “zero” state

-1

Prooo = (1 + Z fl',r.m,c)

i+r4mte=N
i,r,mez0
i<N

obtained from the normalization condition for probabilities. The alge-
hraic character of the solution is closely analogous to the actual pattern
of circulating traffic in Fig. 14, for the easiest way of showing that
firme is actually a solution of the statistical equilibrium equations is to
make the following correspondence between terms on opposite sides of
the equations:

Nipirme ~ (€ + DPei-nmietn
8 min(r,R)pirme ~ M + DPiirnr—tyme
g min(m, M) pime ~ 8 min(r + 1,R)Picrsnm-1e
CPirme ~ pmin(m 4+ LM)Pirmine—1-

It can be seen that each term on the left cancels the corresponding
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one on the right when f;.. is substituted. Each term represents the
(total) rate of occurrence of one of the four kinds of possible event:
request for service, completion of dialing, completion of a call, and
hangup. In the life history of a given call, these events occur in the
natural cyclic order given. Events associated with corresponding (i.e.,
canceling) terms are next to each other in this cyclic order.

XVI. AN OPTIMAL ROUTING PROBLEM

Our final example is a variational problem involving both combina-
toric and probability. We shall exhibit some particular answers to the
following question: If requested connections ecan be put up in a con-
necting network by several different routes, leading to different states,
which routes should be chosen so as to minimize the probability of
blocking? This question poses a variational problem in which many
possible methods of operating a connecting network of given structure
are compared, rather than one in which different network structures
are compared.

We shall consider this question for a connecting network that is of
‘little practical significance because it is obviously wasteful of crosspoints.
Its virtues, however, are that it is perhaps the simplest network for
which our question can be asked, and that it clearly exhibits the prin-
ciples and arguments involved, so that these can be understood. The
network is shown in Tig. 15, the squares standing for square 2 by 2
switches,

The possible states of this network are determined by all the ways

2x2 — —

SWITCH  —

X = CROSSPOINT

Fig. 156 — A simple network in which optimal routing is studied.
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in which four or fewer inlets on the left can be connected pairwise to
as many outlets on the right, no inlet being connected to more than
one outlet, and vice-versa. These possible states are depicted in a
natural arrangement in Iig. 16; states which differ only by permutations
of customers or switches have been identified in order to simplify the
diagram. That is, there is essentially only one way to put up a single
call, there are four ways of having two calls up, two ways each of having
three and four calls up. These “‘ways’ have been arranged in rows
according to the number of calls in progress, and lines have been drawn
between states that differ from each other by only the removal or
addition of exactly one call.

Ior ease of reference, let us number the states in the (partly arbitrary)
way indicated in Fig. 16; insofar as possible, we have used small num-

1

Ly

[l
—[]
[l

]

]
o] U
0 d

Fig. 16 — (Reduced) state dingram for the network shown in Fig. 15.
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bers for states with small numbers of calls. The set of possible states of
our example then consists of (essentially) ten different configurations
of calls in the basic network of IFig. 15. The state diagram, with each
state identified now only by its number within a small circle, is schema-
tized in Fig. 17. Also indicated in this schema are two important sets of
quantities associated with the states. To the left of each state is the
number of idle inlet-outlet pairs, and to the right of each state is the
number of idle inlet-outlet pairs that can actually be connected, i.e.,
that are not blocked.

Only in the state numbered 4 are there any blocked calls. It is to be
noticed that state 4 realizes essentially the same assignment of inlets
to outlets as state 2, which has no blocked calls. The difference between
the two is that in state 2 all the traffic passes through one middle switch,
leaving the other entirely free for any call that may arise. Clearly, then,
this difference illustrates the “packing rule’” that one should always
put through a call using the most heavily loaded part of the network
that will still aceept the eall.

The question naturally arises, therefore, whether this packing rule is

Fig. 17 — Schema of state diagram.
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in any sense optimal for our particular example. We shall prove that it is,
in two senses. It is clear from an inspection of the state diagram that
only in state 1 is there ever a choice of route, and that this choice
is always between states 2 and 4. From the fact that state 4 is the only
state with any blocked ealls, it is intuitively reasonable to expeet that
the probability of blocking is the least if the “bad” state 4 is avoided
as much as possible, i.e., if from state 1 we always pass to either 2, 3,
or 5, and visit 4 only when we have to, via a hangup from state 6.

The next task is to choose a probabilistic model for the operating
network; this will be done in the simplest possible way. We postulate
that in any state of the system, the probability that a given idle inlet-
outlet pair request connection in the next interval of time h is M + o(h),
the chance that an existing connection cease is A + o(h), and the chance
that more than one event (new call or hangup) occur in A is o(h), as
h — 0. The number A is the calling rate per idle pair, and time is meas-
ured in units of mean holding time, so the “hangup’’ rate is unity. New
calls that are not blocked are instantly connected, with some specific
choice of route, while blocked calls are lost and do not affect the state of
the system, their terminals remaining in the idle condition.

To complete the probabilistic description of the behavior of the sys-
tem, it remains to specify how routes are chosen. In our example, this
amounts to specifying whether, for certain calls arising in state 1, the
route leading to state 2 or that leading to 4 is chosen. At first we shall
only consider methods of choice that are independent of time, ie.,
the choice is made in the same way each time.

The methods of choice over which we shall take an optimum may
be parametrized as follows: each time a choice is to be made between
going to state 4 and state 2, a coin is tossed with a probability « of
coming up heads. If a head comes up we choose state 4; if a tail, we
choose state 2; the toss of the coin is independent of previous tosses and
of the history of the system. The parameter a« may take on any value
in the interval 0 £ « = 1; the value @« = 0 corresponds to choosing
state 2 every time; the value @« = 1 corresponds to choosing state 4
every time; a value of a intermediate between 0 and 1 means that 4
is chosen over 2 a fraction « of the time.

Introducing a natural terminology (from the theory of games), we
may say that a choice of a represents a policy or strategy for making
routing decisions; a value 0 or 1 of « represents a pure strategy, in which
the route is specified hy a rigid rule, and there is no randomization; an
intermediate value of « represents a mared strategy.
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Fig. 18 — Schema of state diagram showing transition rates.

A choice of a determines a matrix ¢ = Q(a,)) of transition rates
(IFig. 18) among states of the system, and so a Markov stochastic
process taking values on those states. As a measure of performance we
shall use the fraction b of requests for connection that encounter blocking,
defined as follows: let b(¢) be the number of blocked ecalls occurring
in the interval (0,¢]; and let r(f) be the number of requests for service
oceurring in (0,4]; then

. b(t)
b ltlan; r(t)’
It can be shown that this limit exists and is constant with probability
one, so b is well defined.

The number & = b(a,A) can be calculated from the matrix @ as
follows: if (¢, = 0, --- , 9) is a state, let 3(2) be the number of blocked
idle pairs in state 7, and let ¥(z) be the number of calls in existence in
state 7. The stationary state probabilities {p:, 7 = 0, - -+, 9} exist and
are the unique solution of the matrix-vector equation @p = 0. Then b is
given by
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9

2 piB(i)
b — i=0
:0[4 — (i)

I [V]w'

_ &, with 5(i) = [4 — y(i)]*

; 8(2)
)

-]

—_—

p,
p,b

—

9
where the inner produet (p,r) is Z Piti .
i=0

We may therefore formally state our variational problem for this
example as follows: to find that « in the interval 0 < « £ 1 for which
the ratio

_ @8

= minimum
(p, &)

9
subject to the conditions Qp = 0, X p; =
=0

It is natural to expect that in choosing an optimum routing method
in the example above there is no point in randomizing, i.e., using a
mixed strategy with a unequal to either 0 or 1, That this is so is not
obvious from our mathematical statement of the problem, and requires
proof. We shall demonstrate a more general result:

Theorem 2: Let x and y be vectors of 10 dimensions, with y nonnegative
and not identically zero.

min
[ (p, ) .
. k) = ;= < <
01 {(p,y) Qp = 0, E]p. I, 0=a=1
max

is always achieved for @ = O or a = 1.
Proof: The equation @p = 0 may be written out in the detailed form

(1) 16Aps = Py

5
16Aps + 22 p.

1=2

(i1) O\ + Dp,

(¥77) (4N + 2)p2 = N1 — adpy + pe + s
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(1v) (4N + 2)ps = Ap1 + 1

) (2N + 2)ps = hap;, + Ds

(vi) (4N + 2)ps = Ap1 + Po

(vid) A+ 3)ps = 2ap2 + 2Aps + 4Aps + 4po
(vi12) A+ 3)pr = 2Ap: + 4ps + 4ps

(iz) 4ps = Aps

(2) 4py = Apz .

These are the standard “statistical equilibrium” equations for the
probabilistic model we have assumed. They can be solved by succes-
sively eliminating every p; except po and obtaining a solution of the
form

pi = fipo, T # 0.

The value of po is then determined by the normalization condition
ELO p; = 1as
1
o= ———:
L+ 25
The f; are of course functions of A and «. We shall prove that they are
linear functions of the parameter «.

We first eliminate p; and note that f; = 16A. Since the relations
(#71)—~(iv) contain the variables {p;, i = 2,3,4,56} only on the left, these
variables may be eliminated entirely from (iz), and from (vs2)—(x). But
substitution for these variables in (vi7) and (vi7d) in terms of (4#7)—(vi)
introduces « and p, only in inhomogeneous terms. Hence, fs and f; are
linear in a, and so all {f;, 7 = 1, ---, 9} are linear in a.

Clearly, we have

(p,x) _ (f,2)
(ny) (fiw)

because the mormalization terms 1 + Y i fi cancel out, and so it
follows that (p,x)/(p,y) is a bilinear function of «, i.e., it has the form

where A,, A:, B,, and B; are constants. Now
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i (a) _ BI(Az + Bg&) - Bz(Al + Bl‘l)
da ! (A T B
_ B4, — B:A,
(A2 4 Bua)?

which is of the same sign as its numerator. Thus g'(a) is either always
nonpositive or nonnegative, and so any extremum of g(a) in0 = & = 1
is assumed at the boundary, either for & = 0 or « = 1. Since the solution
p of @p = 0 is known to have all strictly positive components for all
in the unit interval, we have As + By = (p,y) > 0.

It follows in particular that the minimum of blocking probability b
is achieved for & = 0 or & = 1. It is unthinkable that visiting a blocking
state (state 4) more frequently should decrease b, so we conjecture (and
shall shortly prove that) « should be zero rather than one.

Before doing this though, let us observe that there is only one block-
ing state (viz., 4), and that the blocking probability b can be written as

2p4
b = 5 .
16po+9p1+4§p;+ps+'pw

These facts and our intuition suggest that b should be a monotone
increasing function of

= b
Ja ~
This conjecture is correct, and provides an easy way of showing that
a = 0 gives the least blocking probability. Let us prove it.

From (i) and (¢7) we find that

]
X pi = SAON + Dpo — 2\po = T2

whence

b = 2/s
16 4+ 144N + 288N + fs + [~

From (viz)—(x) we find that
1
A+3

5
P + Pr = (7\(?6 + p) + 4N Z=; Pi — 2)\;74)

Il
=]
[=>]
>

o

=
5

|
(XS]

>

=
S
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Therefore

_ 2fs
16 + 144\ + 5560 + 1928 — I\ fy”

This is of the form

2

e

a — cx
where a and ¢ are strictly positive constants. Now

d 2z _ 2 n 2cx
dva—cx a—cx (a— cx)?
_ 2a
(a — cx)?

Y

0.

Hence, b is a monotone increasing function of fi . It follows that b is a
minimum if f; is a minimum,

To prove that the blocking probability b is a minimum for o = 0,
it remains to ealculate p, from the equilibrium equations. By eliminating
all the equilibrium probabilities except ps and p; , we find

_ 1 (87\2(] — o) 16Ap, n 8\ al6Apy + 2Aps
Py T3 Tt 2 I+ 2
AN 16Npo + 4Aps )
Ty T
_ 1 (8)\2(1 — &) 16Ap " (160)°\po + 4Ap
Pr=N13 i+ 2 i+ 2
+?\p5+4h+2(p5+137)).

We have purposely not simplified the terms so that their origin can be
verified. I'rom these two equations we find that

_ s
r=B

1-«a a 1 }‘(r:)\;az“'vmh—l)
_ v—1ly304 3 - &
= X LB 4A+2+2)\+2+8A+4+ s an
22 + 1

where
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A 2) N’ 4+ o2\
X=2x+3- - -
+ A+ L 2241 28 +4N+3
_ N+ 3 a4 N
I+ 3n + 1 I\ + 4N + 3
> 0.
The coefficient of « in f4 is
128)\° 2t 2/ " A
N+ 2 AN+ 2 Nt
2N+ 1

This is positive, because

oAt/ A =1_)\+1(4?\”+5?\+3)
INF 2 NP + 1\ + 4+ 3
TN+
AN 4+ O 4 8\ 4 3
AN 10N+ 10N + 37
po_ 32 P/
Mowever, P + DR
Hence, dJs > 0.
da

We shall now consider the problem of optimal routing in our (trivial)
network from a different point of view. Instead of minimizing the ratio
of unsuccessful attempts to attempts, let us simply minimize the average
number of unsuccessful attempts in any finite number of events, count-
ing changes of state and unsuccessful attempts as events.

In our example, the only choice is between states 2 and 4, when a
particular call requests connection in state 1. By a policy, let us mean a
function p(-) on the nonnegative integers taking the values 0 and 1.
Let a, be the state of the network after n events, n = 0. We say that
the system is operated according to policy p(-) if, for each n = 0,

given that 2, = 1 and a choice oceurs, the system moves to
state 2 if and only if p(n) =1
state 4 if and only if p(n) = 0.

Now our intuitive feeling is that going to state 2 is preferable over
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going to state 4 under all circumstances. At the cost of anticipating
results to be proven, let us partially order all the possible policies by the
definition: If p(-) and ¢(-) are policies, then
p = ¢ ifandonlyif p(n) = g(n) forall n = 0.*
The shift transformation 7' of policies p(-) is defined by the condition
Tp(n) = pn+1) >n=0.

It is evident that p = ¢ implies T'p = Tq. Let E,; ,(z) = 0, and define
number of unsuccessful attempts after n» events
E, o(x) = FE{starting from state z if the system is operated ac-
cording to policy p(-)
Let S be the set of states (0,1, -+, 9}.
We shall prove

Theorem 3: If p = q, then for alln = 1 and x € S
B, (@) =, (2.

As a preliminary result (not without its own interest) we shall need
the

Lemma: For n = 1 and any policy p(-)

E, ,(4) = max E, ,(x).
TeS

This says that starting in the (sole blocking) state 4 is always the worst
way to start, no matter how long we run the system.

Proof: For n = 1 and = # 4, E, ,(x) = 0 since no unsuccessful at-
tempts can oceur in any state except 4. However,

2\

B = o

so the lemma is true for n £ 1., Assume as an hypothesis of induction
that it is true for n < k. Now for @ = 4, Em&l,p(.tt) is a eonvex combina-
tion of values of £y 7,(-), so clearly for x = 4

B p(2) = max B ,(y) = Fip(4).
However, elementary probability arguments establish that

Eij1,p(4) = Ep p(4) + Prize = 4|20 = 4B, #,(4)
so the lemma is proven.

* Read “p = ¢’ as “p is better than ¢’’!
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Proof of Theorem 3: For any policy s(-)
Ey(z) =0 if x4

2\

El,a(4) = 0—-1-_4i .

Hence,
E, (x) = Eyg(x) forall xeS.
Assume as an hypothesis of induction that p = ¢ implies
E, »(v) £ E, 4

for all 2 and all n £ k. Now for x 5 4 or 1 and any policy s(-), Fij1..(x)
is a convex combination of values of

Ei2:().
For @ = 4, we have for any policy s(-)
2\
Eiy.(4) = 51 N + convex combination of Ej z.(-)

where the coefficients of the convex combination are transition prob-
abilities independent of the policy s(-), and

2\ i {ﬁrst event is a

4 4an blocked attempt start in stafe 4} )

Hence, p = g and  # 1 implies
Er1,5(2) £ Erpao(2)

TFor x = 1 and any policy s(-) we have

Beasol)) = e (s(DEun(2) + 1 = s(D)Ewn(8))
1+ 5 o
+ SN convex combination of Ei r.(-)

where the coefficients of the convex combination are independent of
s(+), and

a4 {ﬁrst event requires

1+ 9% lrouting decision start n state 1} ’

Suppose now that p = ¢. It is sufficient to show that
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p(])]ﬂk.?‘p(z) + [I - p(])]EiTp(“l')
= q(DEx 20(2) + [1 — q(D]Ek 2o(4).

If p(1) = ¢(1), this follows from the hypothesis of induction. The only
other possibility is that p(1) = 1 and ¢(1) = 0. By the lemma and the
hypothesis of induction we find

By rp(2) £ By rp(4)
= Eiorg(4).

This proves Theorem 3. The result at once shows that the policy p = 1
is optimal in the sense that it minimizes

lim sup #n~'H, ,(x).
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