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Differential Equations with Periodic
Coefhlicients
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An analysis technique is presented lo provide an essentially explicit
solution for a system of n stmultaneous first-order linear differential equa-
tions with periodic coefficients. This representation of a periodic variable-
parameter linear system of arbiirary finite order is chosen for its theoreti-
cal and practical advantages over the classical nth order lincar differential
equation. Kmphasis ts placed on natural mode solutions of a homogeneous
set of equations. The characteristic exponents for these solutions are deter-
mined from a polynomial equation the coefficients of which are linear
combinations of n — 1 convergent infinite-order determinants. A pprovimate
calculation of these determinants is feasible for problems of moderate order.

I. INTRODUCTION

Systems of linear ordinary differential equations with periodic coeffi-
cients are assuming an increasing importance in engineering problems.
Two applications of present interest are periodically time-variable net-
works and multimode waveguide with periodic physical distortions.
Such applications have usually been analyzed by methods appropriate
to special cases such as the second-order case or by approximate tech-
niques valid for almost constant-parameter systems. However, pertur-
bation techniques for almost stationary systems are inadequate for
careful analysis of large-signal behavior of time-variable networks.
Similarly, a periodically distorted helix waveguide, for which more than
two modes must be considered,' should be described by a differential
system of order greater than two. These examples illustrate the impor-
tance of a technique for obtaining essentially explicit solutions of
periodic variable-parameter linear systems. Solutions in terms of char-
acteristic exponents are known to exist for systems of linear differential
equations with periodic coefficients.” However, the methods usually
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employed for solving such systems, such as power-series techniques,
iterative processes, and incremental numerical solution methods, fail
to provide a system response description valid for all values of the
independent. variable (time, distance, ete.).

The analysis method to be presented below provides an essentially
explicit solution for periodic variable-parameter linear systems of arbi-
trary finite order. The solution describes the system behavior for all
values of the independent variable. Emphasis will be placed on obtain-
ing a set of basis functions for a homogeneous system, since the solution
in the inhomogeneous case can be obtained from the basis functions.
As shown by Darlington,® these functions may be regarded as analogues
of partial fractions in fixed network theory.

1I. FORMULATION OF DIFFERENTIAL SYSTEM

In this discussion the system of equations to be solved will be repre-
sented by the vector differential equation

F'(t) = B(O)F(¢) (1)
where F({) and B(t) are nth-order column and square matrices, re-
spectively, and the prime denotes differentiation with respect to the
independent variable ¢ It is supposed that the elements of B(¢) are
known functions of ¢ with a common period of unity, i.e.,

B(t) = B(t+ 1). (2)

The formulation of this problem in (1) is chosen not only for its
elegance, but also because of its practical advantages. As indicated by
Kinariwala® these include the ability to write such an equation directly
from a time-variable network, the fact that the eigenvalues of B(¢) are
natural frequencies for stationary networks, and the eonvenience of (1)
in obtaining the quadratic forms representing stored energy and dissi-
pated power in stationary or nonstationary cases. These advantages have
their translated versions in other physical problems, including multi-
mode waveguide problems. Moreover, an equation such as (1) is
easily obtained from an nth-order linear differential equation, but the
transformation from (1) to such an equation can be quite difficult (or
analytically inconvenient).® Thus, (1) represents a well-founded be-
ginning for the analysis of variable-parameter problems of practical or
theoretical interest.

III. FORM OF SOLUTIONS

The form of solutions of (1) is well known;® pertinent properties of
such solutions will be reviewed here briefly. If B(t) is piecewise con-
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tinuous (1) has the unique solution

F(t) = X(t)F(0)
where X (¢) is the unique nonsingular square matrix satisfying

X' = BX

X(0) = I = diag {1}.

When B(¢) satisfies (2), X({) may be written as

X(t) = J(t) ™
where

J)y =Jt+1)
and

& = X(1).
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(3)

(4)

(6)

(7)

I'or convenience it will be assumed here that the eigenvalues of K
are distinet, or at least that K can be diagonalized; thus, a constant

nonsingular matrix P exists so that

K = PMP™!

where

M = diag {p.}

(8)

(9)

and the constants u; are the eigenvalues of K. The matrix exponential
funetion in (5) may be similarly diagonalized, so that the solution (3)

may be constructed in the form
F(t) = J(t)P[diag {¢"')]PT'F(0).
By establishing the special initial conditions
0
0
F.(0) =P :

1 |« 2t row
0
the corresponding unique solution

Fi(t) = & ()Fi(0),

(10)

(11)

(12)

is obtained from (10). Thus, by proper choice of initial conditions a



1278 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1962

set of n solutions of the form
F(t) = ¢Q(1) (13)

where u is a scalar constant and Q(¢) is a column matrix with period
unity, have been shown to exist.

The n solutions in the form (12) or (13) represent natural modes of
the periodic system described by (1) and (2). If the n values of u; are
distinct the corresponding n solutions are certainly independent and
form a set of basis solutions of (1). Any other solution of (1) comprises
a linear combination of solutions like (12) or (13). Moreover, as Dar-
lington® has pointed out, these natural-mode solutions are essentially
unique because of their simple form. Hence the natural modes given by
(12) represent a complete and essentially unique description of the
natural behavior of the periodic system. The eigenvalues u; , frequently
referred to as characteristic exponents, play a role analogous to response
poles or natural frequencies of stationary systems. The strength of each
natural mode in the homogeneous case is determined by the initial
conditions and the constant matrix P. Moreover, the natural-mode
solutions allow a complete solution to be calculated in the inhomogene-
ous case. Thus, the determination of n corresponding solutions for u
and Q(¢) in (13) is central to the problems associated with (1) and (2).

The object of the present treatment is to indicate a technique for
determining the characteristic exponents g, as well as the corresponding
matrices Q(t) if desired. Primary attention is given in finding the char-
acteristic exponents u because of their practical importance and because
the solution for Q(t) is not greatly difficult in principle if the appropriate
characteristic exponent is known. Solutions for @(¢) are mentioned in
Appendices A and B.

The method to be discussed resembles the technique used by Hill™® in
solving the second-order equation -

2 () + A(Dx(t) =0 (14)

where A(t) is periodic. It will be shown that the characteristic exponents
may be determined from roots of either a transcendental or polynomial
equation in which certain infinite-order determinants enter as parame-
ters. A technique similar to Hill’s was employed by H. von Koch in the
last century to provide an explicit solution in terms of infinite-order
determinants for a general nth-order linear differential equation with
periodic coefficients. This technique is carefully discussed by Forsyth’
and Riesz,® who also give references to von Koch’s original papers. Thus,
the method presented here, although developed independently, does
not solve an unsolved mathematical problem when applied to a periodic
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variable-parameter system described by an nth-order linear differential
equation. It does, however, solve the stated problem in a way that
appears to have several advantages, mostly associated with its formula-
tion as a system of n simultaneous first-order linear equations. These
advantages, already mentioned in Section II, seem likely to make the
present solution technique more useful in the analysis and synthesis
of periodic variable-parameter systems than one based entirely on the
classical nth-order linear differential equation.

1V, INTEGRAL FORM FOR THE PERIODIC SYSTEM

The analysis of the periodic system begins by multiplying both mem-

bers of (1) by ¢, where a is an arbitrary constant, and adding and
A ) g
subtracting aFe "' to yield, whenever F' exists,
(Fe™™) + aFe ™ = BFe ™, (15)

Integration of (15) results in the integral equation
Fe ™ +a f Fe™dt = fBFefMd't + C (16)
where (' is a constant. Any solution of (15) is also a solution of (16);
thus, let F be a solution given by (13) and let
a = p+ j2nk (17)

where k is an arbitrary integer. Equation (16) becomes
Qe ™ 4+ (u + j2xk) f Qe ™ dt = f BQe #™dt + €. (18)

If (18) is evaluated at { = 0 and ¢ = 1, and the results subtracted, the
first, term in (18) makes no contribution, being periodic. Hence, (18)
implies

1 1
( + j2mk) f Qe dt = f BQe ™ dt (19)
0 0

for all integers k. It will be seen below that this integral equation suffices
to determine g and Q(t), which are essentially eigenvalues and eigen-
functions.

V. MATRIX DIFFERENCE EQUATION

To make use of (19) in finding solutions of (1) it will be assumed that
the given matrix B(f) and the solution matrix @(¢) may be expanded in
the Fourier series
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B(t) = > B,e™™ (20)
p=—m

and

Il
[Ms
<
N

m‘.n

=]
]
=

Q) (21)
where matrices B, are square matrices and @, are column matrices.
Requirements on the asymptotic behavior of the elements of matrices
B, and @, for large values of | p | will be discussed in Appendix A in
relation to convergence of certain infinite-order determinants. The
Tourier series for the matrix product BQ may be written as

BQ = X (BQ),e"™ (22)

. p=—m

in which the column matrices (BQ), are given by the convolution

(BQ)p = rgﬂ Bp—rQr- (23)

Except for a factor of 2r the integrals in (19) express the l'ourier
coefficients of @ and B@. Thus, if @ and B possess I'ourier series (19)
is equivalent to the infinite set of linear equations

(u + 7276)Q, = (BQ): (24)
or
(o + j27k)Q: = ;w Bi—Q:, (25)

where & assumes all integral values. Equation (25) might be regarded
as a matrix difference equation for @, ; however it is more convenient
here to consider (25) as defining an eigenvalue problem for an infinite
matrix. In terms of Kronecker’s 8, (25) is

0= 2 [Biy = bulp + j2rk)11Q: (26)
where I is the nth-order unit matrix. The expanded form of (26) is
shown in the following infinite-order matrix equation, in which the
first matrix is partitioned into n X n size blocks and the second into
n X 1 size blocks. The ““origins” of the matrices fall at (B, — pf) and

Q.
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- By— (u— jAmI B, B_s Q.| |0
B Bo— (u—j2m B B_: Qs |0

B, B By — pl B B_s Q |=|0

B, B By— (u+ 201 B, o} 0

B B: By — (a4 g4m)I -+ || Q2 0

(27)

For convenience it will be assumed that By is a triangular matrix so
that its eigenvalues appear explicitly as main diagonal elements. To
show that a constant linear transformation of the dependent variable
F can always produce this property, let

B(t) = By + A(1) (28)

where A(t) has a zero mean, and let
X =PF (29)
where P is a nonsingular matrix of constants. Then (1) is transformed to
= (PBP ' + PAP HX. (30)

This equation has the same form as (1), but the constant term in its
coefficient matrix is the matrix PBoP " derived from B, by a similarity
transformation. It is well known that a square matrix is reducible by a
similarity transformation to the classical canonical form having eigen-
values on the main diagonal and possibly nonzero constants in some
positions of the next higher diagonal.” (These constants cannot appear
if B, has distinct eigenvalues; hence, By can often be assumed to be
diagonal.) The matrix B, can also be reduced to a tllangulzu form by a
similarity transformation in which P is a unitary matrix."’. This re-
duction, which is always possible, may sometimes have advantages in
studying energy functions or related quadratic forms. Thus, by either
technique By can be reduced to triangular form. It will be assumed that
such a transformation has been effected in obtaining (1).

VI. CONVERGENT LINEAR EQUATIONS AND INFINITE-ORDER DETERMINANT

To produce convergence of the determinant of coefficients of the
infinite set of homogeneous equations defining @, Equations (26) or
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(27), divide each elementary row of the coeflicient matrix in Equation
(27) by its main-diagonal elements. When B, is diagonal this process is
identical with multiplication of each equation in Equation (26) or
each matrix row in the square matrix of Equation (27) by the diagonal
matrix [By — (u + j2rk)I]". In general, let the matrix A be defined by

A = diag {7} (31)

where A, represent the n eigenvalues of By . Then the set of equations
with convergent determinant may be written as

(M@ = 0 (32)
where submatrices M}, are given by
M = [A — (u + j20k)I) '[Bo ~ (w + j2wk)]T] (33)
and '
My = [A — (u + 720k) I 'B,_,, Esr. (34)

When B, is diagonal, M, reduces to the unit matrix. Thus, a typical
determinant d|M,] of (32) may be illustrated for n = 2 by the following
scheme:

1 0 a_y b_l a_a b_z
M+iZr—n Mtg2r—p M iZr—p Mt j2r—p
0 1 C_1 d,; C_a d,g
' et+g2r —p Mo+ 727r —p Mot g2r —p Not+j2r—p
ay b] 1 0 a_y b—l
MNo— o MN—pu N—ou M —ou
dlu) =
€1 d 0 1 [ d_y
Ap— Ae —p Ap — Ao —
s bg ay b1 1 0
M—2r—p M—J2r—pu M—27r—p M—2r—p
) 1s C 3
= -2 - .dl 0 1
MN—2r—p M—j2r—p M—2r—p A—j2r—p ..
(35)
The notation used in (35) is
a, by o
B, = , p#0 (36)
b, d,
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The determinant of the infinite-order matrix [M},] of (32), illustrated
by (35) for n = 2, will be denoted by d(u) to show its functional de-
pendence on the argument u. The function d(g) is actually a determi-
nant of infinite order. If this determinant converges it represents a
funetion of g which must vanish in order to obtain nontrivial solutions
for @, in (32). Requirements necessary for the convergence of d{(u) are
discussed in Appendix A, where it will be shown that d(x) converges
for a large class of problems. Hence the basic equation

d(p) =0 (38)

defines the characteristic exponents of the differential system (1).

VII. FUNCTIONAL EXPRESSIONS FOR THE CHARACTERISTIC DETERMINANT

Equation (38) taken alone is rather unwieldy, involving as it does
the equation to zero of an infinite-order determinant whose elements
are functions of g. However, it will now be shown that expressions for
d(p) in terms of elementary functions may be written to allow a simple
solution of (38).

The determinant d{g) is shown in Appendix A to converge for all
values of u except those for which the denominators of rows of d(u)
vanish. Multiplication of one row of an infinite-order determinant by any
sealar is equivalent to multiplication of the determinant by the same
sealar. Similarly multiplication of any row of d(u) by its corresponding
denominator A, — (g 4+ j27k) produces a determinant convergent at
Ay = u + j2rk, so that each row of d(u) introduces exactly one pole
in d(u). Moreover, d(g) is periodic in g with period j2m, since replacing
u by u + j2r only shifts the origin of the infinite-order determinant.
Iovidently d(u) has simple poles at

g = A, + j2mq, p=12 - n q integral. (39)

It will be assumed for the moment that these poles are distinet; this

restriction may be relaxed slightly, as shown in Appendix B. Finally,

as p approaches infinity along any radial line in the complex u plane

except a vertical line, the off-diagonal elements in d(p) tend toward
zero, or briefly 7

d(=) = 1. (40)

The periodicity of d(u) implies that the residue of d(u) at any of the
poles in (39) is independent of the particular integer g. Thus, a formal
expansion of d(g) in partial fractions is

dlp) = Ko + 2. > ——I‘—— (41)
p=1 a=—= g — Ap — J2mq
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According to the Mittag-Leffler theorem' this expansion defines the
function

d(w) = Ko + 5 3 K, coth (“_T"”) (42)

Z p=1

A relation fixing K. may be derived from (40) by noting that as p
approaches infinity along any nonvertical radial line

lim coth (“—'—ﬁ) ~1 (43)

poroe 2

so that
Ko=1— 12 K,. (44)
2 =1
To compute the residues K, the well-known rule
K, = 1i§n (= Np)d(p) = [(p — Ap)d(p)u=a, (45)
p=>hp

is employed. The procedure is simply to multiply every element in the
row of d(p) containing A, — u (in the denominators) by the factor
(u — A,) and to evaluate the resulting determinant. For example, in
the case of n = 2 used above for illustration, the row of d(g) containing
M — u in the denominators is replaced by

+ =l —b2 — —bl 0 0 —a_) —b_l —a_s ’_b72 T (46)

and the resulting determinant evaluated at p = A, . Reasonably accurate
and efficient methods for computing K, from such a determinant ean
be programmed just as for Hill’s determinant in the second-order case.
Such a technique is discussed briefly in Appendix C.

Tt is well known that the solution of Hill’s equation generally requires
the evaluation of only one infinite-order determinant, while the solution
of a second-order problem using (38) and (42) appears to require the
evaluation of two determinants. Actually it will be shown that only
n — 1 determinants need be calculated for an nth-order system of equa-
tions. In addition (42) may be simplified because of the relation among
the residues K, to be demonstrated below.

To examine the poles and zeros of d(u) it is convenient to consider
the complex u plane divided into horizontal strips of width 2x. The
poles of d(u) fall at A\, + j2mq. Although the eigenvalues \, may lie
in any of these strips, values of ¢ always exist to give one pole in the
fundamental strip 0 £ Im g < 27 representative of each A, . Hence
d(u) has exactly n poles in each strip. It will be seen shortly that d(u)
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also has n zeros in each strip so that a pole-zero constellation for d(u)
might be illustrated by Fig. 1.
The desired relation among the residues K, is obtained by noting that

abed

d(p) du = Z K, (47)

where the integral is taken around the rectangular contour abed shown
in Fig. 1 (or a congruent rectangle vertically displaced if a pole happens
to fall at Im g = 0). The periodicity of d(u) insures that the contri-
butions to the integral from the horizontal sides ab and cd will cancel.
The vertical sides be and da are supposed to be displaced from the
origin far enough to include all n poles in the rectangle so that (47) is
valid. As their displacement approaches infinity the value of d(u) ap-
proaches unity and the contributions from the vertical sides tend to
cancel. Thus (47) implies

> K, =0. (48)
p=1
This relation shows that (44) and (42) may be simplified to
K,=1 (49)
and
15~ ) E
dip) =14+ 5 > K, cath — )" (50)
2 =1
It also allows one residue to be computed from the other n — 1, al-
W Imu
/4 PLANE
x »° #=j417'
x o
X
[e] o] o .
d < X L=j2m c
X (e}
X 4
(o] [e] o
o X * # =0
a x o b Reu
X
X POLES
0 ZEROS

TFig. 1 — Pole-zero constellation.
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though all n residues might be computed in practice and (48) used as a
check for numerical accuracy.

Equation (50) expresses the characteristic determinant d(g) in
terms of the eigenvalues A, of the stationary part of the system and the
residue determinants K, . The characteristic exponents u are thus by
(38) and (50) the roots of the trigonometric equation

0= 1+}3an K,,eoth("_"“’). (51)

:
2 p=1 2

&

This trigonometric equation represents an explicit solution of the prob-
lem of finding characteristic exponents for an nth-order periodie system.

It is evident from (50) as well as from Fig. 1 and the periodicity of the
function ¢* that the substitution

z=¢" (52)

reduces (50) to a rational function in z. Zeros and infinities of 2 do not
introduce superfluous poles or other singularities in this function be-
cause of (43). Thus, the poles and zeros of this rational function are
mapped by (52) into the poles and zeros of d(u) shown in Fig. 1. Any
strip of vertical width 27 in the x plane is mapped by (52) into the entire
z plane so that the rational funetion of z has n poles in the z plane. The
number of zeros of the rational function is also necessarily ». Hence,
d(u) has precisely n zeros in any horizontal strip of width 27 in the u
plane.

Because of the existence of well-developed techniques for polynomial
manipulation, such as approximate solution methods, interpolation
formulae, and stability criteria, it is practically convenient to utilize
(50) and (51) in rational form. Accordingly let z be defined by (52) and
xp, by

bp = ()‘A'p: P = 1:21 » 1y (53)
50 that d(u) is transformed to
Dz) =1+ % > K, (z + x,,) = d(log z). (54)
255 z— Xy
Further, let
g(z) = ]_FIl (z — x,) (55)
pos

be a characteristic polynomial defining the eigenvalues of the stationary
part of B(¢). (This “characteristic polynomial” differs from the con-
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ventional one in that its roots are ¢'* rather than X, .) Equation (51),
the characteristic equation, then becomes

0= f(z) + glz) (56)
where
1
f(z=5Z= p(+r)II(z—l) (57)
97 p

These equations demonstrate that the characteristic polynomial for
the periodic system is obtained by adding a certain interpolating
polynomial to the characteristic polynomial of the stationary part of
the system. The behavior of the interpolating polynomial is prescribed at
the roots of the stationary part.

The interpolating polynomial f(z) has the n assigned values

f(x,) = h,,z,,H (2, — x,) (58)

q=1

u=p
hecause of the relation (48) among the residues K, the polynomial
(57) is identical with the Lagrangian interpolating polynomial

1(2) Z prlpH (z — ). (59)

g=1

qFp

Evidently the interpolating polynomial f(z) is the unique polynomial
of degree n — 1 having the assigned values (58). Thus f(z) + g(z), the
characteristic polynomial of the periodic system, is the unique monic
polynomial of degree n having the n assigned values given in (58).
This point of view may give some insight into stability questions.
For example, the classical criteria of Routh and Hurwitz, and other
results on bounds of zeros of sums of polynomials may be useful here.

If all the residues K, vanish, as in the stationary case, the limiting
values of the characteristic exponents obtained from (51) and (56)
are u = Ay, p = 1,2, --+, n. In cases of small variations where all
| K, | are small the characteristic exponents differ very little from the
eigenvalues of the stationary part. Asymptotically they may be calcu-
lated from any of the approximate equations

0~ 1+ -K,coth (“')?"’) (60)

a1l — K,) (61)
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or
pN — K, (62)

Although perturbation type solutions such as (62) probably are more
easily calculated by less complicated techniques, characteristic expo-
nents obtained from (61) or (62) may be useful as starting values for
solving (51) or (56) by numerical methods.

VIII, EXAMPLE

The following example illustrates the technique for finding charac-
teristic exponents. A second-order case is chosen for convenience
because some digital computer programs needed for the efficient evalua-
tion of the residue determinants are not yet available. However, higher-
order examples are not different in principle nor will they require in-
ordinately longer computations.

The Mathieu equation

-iz?+(3—-4coq2z)dr-0 (63)
has the solution'
y = & _f:w Caryr 672 (64)
with
B = +0.57943224. - - . (65)

In vector form this equation is equivalent to
0 1
Y ==x Y (66)
—3 +4cos2rxf 0
with the identifications
1
Y = [ﬂ], n=y z=m (67)
Y2
Diagonalization by the transformation PY = F where
1 V3 1
P= —g[ ] (68)
-jiv3 1
yields (1), with
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Bt) m 1 —1 —jﬂr! \/§ 1 0
{_j\/§1—16 +JW'0—1

= e,
V31 -1
The determinant d(u) has the form shown by (35), and the residue at
u = jm\/3 is approximately K = j0.562096, a result obtained from a
42nd-order approximant. From (56) and (57) the characteristic ex-
ponents are solutions of

(69)

cosh p = cos 74/3 — jK sin m/3, (70)
which yields, for K ~ j0.562096
p A 4042050, (71)

Corresponding correct values of p from (64) and (65) are =470.42057.
A somewhat longer computation would be required to produce a re-
sult acecurate enough for certain purposes. Such a computation was not
employed here because a more fundamentally sound computing tech-
nique for band-limited periodic variations as in (69) would exploit
the form of the residue determinant and its large number of zero ele-
ments. Specifically, it is possible to program a determinant evaluation
technique for such ecases so that the computation time is asymptotically
proportional to the order of the truncated determinant rather than to
its cube. This possibility is discussed further in Appendix C.

IX. CONCLUSIONS

A method has been developed for analysis and calculation of solutions
of nth-order linear periodic differential systems. The system description
employed is a set of n simultaneous first-order linear differential equa-
tions. The method allows the determination of characteristic exponents
from polynomial equations the coefficients of which are linear combina-
tions of n—1 convergent infinite-order determinants. Approximate
computation of the determinants is feasible for problems of finite order.
In addition to characteristic exponents the complete solutions may also
be computed if desired.

APPENDIX A

Convergence

The validity of the analysis presented here depends upon the con-
vergence of the infinite processes employed. It must be shown that the
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determinant d(r) and the IFourier series for Q(t) are convergent if the
coefficient matrix B(t) is suitably restricted. For this purpose (32) may
be written as the infinite set of scalar equations

i+ 2 ayr; =0 (72)
j=—00
where a;; and z; are scalars, and the equations hold for all integral 2.
The coefficients a.; actually are elements of the submatrices M., and a;
elements of submatrices @, in (32). The determinant of coefficients of the
scalar equations is
d(p) = |8 + aij|. (73)

According to a theorem of St. Bobr' this determinant is absolutely
convergent if

Z ] @i | (7—1)

i=

and

i i e
S| E tal } 5
converge for some value of p in the interval 1 < p = 2. (For p = 2,
the case used here, the theorem was given by von Koch.) The expression
in (74) obviously converges to zero since all a;; in (72) are zero. Let the
elements of the given matrix B(t) be square integrable functions. Then
Parseval’s relation applies and the Fourier series coefficients for the
matrix elements are surely square summable. Hence, the inside sum
in (75) converges for p = 2. The outside sum also converges for
p = 2, since its general term is asymptotically proportional to it
for large | 7| (as (33) and (34) indicate by their dependence on k).
Of course, an exception occurs for values of u given by Equation (39).
The determinant d(x) is singular at these points, but the convergence
of the residue determinants K, for simple poles is assured by St. Bobr’s
theorem. Thus, d(p) converges absolutely and uniformly except for u
arbitrarily near A, + j2mq and has poles at these values of u.

Since the determinant d(gx) has zeros at any of the n characteristic
values of p within the strip 0 £ I'mp < 2, the deletion of the zeroth
equation (¢ = 0) from (72) and the transposition of @i, in each equa-
tion produces a nonzero determinant of coefficients in the equations

“ :1‘.,-+ Z aijt; = —aoln = Yi, 7 # 0. (76)

=0
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These equations with a;; evaluated at a characteristic value of p have
as solutions the scalar quantities x; needed to produce the matrices
@, and thus the matrix Q(¢). That meaningful solutions to (76) exist
for an arbitrary constant o is shown by a theorem of L. W. Cohen."
This theorem (paraphrased) states that if (75) converges for the
coefficients in (76), if the (convergent) determinant of (76) does not
vanish, and if

L

2wl
converges, then the solutions exist, may be obtained by Cramer’s
rule (with infinite-order minor determinants), and have the property
that

«w

2

1=—20

converges. Thus, if the elements of the given matrix B({) are square
integrable functions, the coefficients a. are surely square summable,
and the resulting trigonometric series for elements of Q(t) have square
summable coefficients. The Riesz-Fischer theorem' then states that the
elements of Q(t) are square integrable functions with Fourier coefficients
given by the elements of @, and that the Fourier series for (t) con-
verges to @(¢) in the mean. (Consequently there exists a sequence of
partial sums of the Fourier series converging to Q(¢) “almost every-
where.””)

In a more restricted case which might have more practical importance,
it may be shown that if B(i) is continuous so that the elements of B,
are 0(1/p%), the solution matrix Q(¢) has the same property. Of course,
the TFourier series for Q(¢) converges absolutely and uniformly in this
case. This convergence condition and the more general one above demon-
strate that the analysis technique is valid for a wide class of problems.

APPENDIX B

Multiple Poles of the Characteristic Determinant

If the matrix By, the stationary part of the coefficient matrix B({),
has repeated eigenvalues, or if any of its eigenvalues differ by integral
multiples of j27, some denominators of rows of d(u) are identical. In
this case d(x) has multiple poles, and the necessary analytical and
computational procedures become more complicated. It is possible to
treat the case of a single second-order pole of d(p) by evaluation of n — 1
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determinants as before, but greater multiplicities require considerably
more extensive calculations.

When d(x) has an m-fold pole at g = A, the partial fractions expan-
sion of d(u) must contain the corresponding principal part of d(u).
The coefficients in the principal part involve derivatives of (u — \)™
d(p) evaluated at u = \,. These derivatives are more difficult to
compute than the residue determinants of the simple case because they
are linear combinations of most of the first minors of d(g). The com-
putation of such minors (not necessarily by direct methods) is also
required if Q(¢) is to be determined (even when d(x) has only simple
poles). Appendix A shows this computation to be theoretically possible;
it is equivalent to the inversion of a set of equations like (76). Never-
theless, the computation effort would be considerably greater than that
required for computation of characteristic exponents when d(u) has
only simple poles.

When d(p) has a single second-order pole, (48) may be utilized to
make possible the calculation of characteristic exponents. It is conven-
ient here to use the rational form of (54) for the infinite-order determi-
nant d(u). Let the repeated roots of By be identified with A;, X2 and
1) , ¥ respectively. Define «; and an by

oy = 1(1(331 - ﬂ:g)

(77)
ay = Ka(zy — 1)
and allow z; to approach x, . Substitution of (77) in (54) yields
D(z) =1+ % (T : :2) (z _z;—) (3;1-’51 2)
L1 L2 1 2 (78)

(43} + [22] ].
2z — 21) (2 — 1) T3 =

_|_

Equation (48) may be written as

a—® ZK (79)

ﬂil—xz p=

so that
L+Zn:31im K, =0 (80)
p=3 z|—>zs
where
L = lim (“‘1 — ”‘2) = lim (K; + K.) (81)
z~ze \T1 — D2 P
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is a finite limit. Evidently, as x; approaches s ,

lim D(z) =1+‘g(z+$ﬂ’-)+(z o +liKp(z+“”). (82)

T ->To Z2 — Xg — 132)2 2 p=3 2 — Iy

The zeros of this limiting form of D(z) correspond to the characteristic
exponents in this case. The parameter a. may be determined by factor-
ing 1/(Az — A;) from the appropriate row of K, and computing the
resulting determinant A, since

a = A-lim ("”" - “"1) = A (83)

Z|*Tp >\1 - -A2

The parameter L required in (82) may be computed from (80). Cases
where two poles of d{u) are almost coincident may be treated in a
similar fashion, except that no limits are involved.

APPENDIX C

Approximate Computation of Residue Determinants

In practical cases where the number of terms in the FFourier series for
B(t) is limited, truncated approximants to the residue determinants may
be evaluated by techniques that exploit the special form of these de-
terminants, The form of a truncated residue determinant is illustrated
by the scheme in Fig. 2, in which all elements outside of the shaded
region are zero, Except for one submatrix near the center of the array
the principal diagonal blocks represent nonsingular triangular sub-

.
77
sy 0
a
9%
7 %
0 IR

Fig. 2 — Form of truncated residue determinant.
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matrices. To demonstrate the feasibility of computing truncated residue
determinants of large order it will be shown that the computation time
required for a reduction to triangular form is much smaller than for a
general determinant of the same order. (The computation time required
for a general determinant is asymptotically proportional to the cube of
its order. )

To evaluate the determinant in Fig. 2 let zeros be produced below
submatrix 1 by elementary operations with the rows passing through 1.
Similar operations to produce zeros below 2 do not disturb the zeros
already produced. Such operations may be continued in the usual manner
to produce zeros below 3, 4, etc., until a triangular array of submatrices
is realized. The number of arithmetic operations necessary in each step
of zero production is essentially dependent only upon the order of the
original system of equations and the number of terms in B(¢). Observa-
tion of Fig. 2 shows that the number of zero-producing steps for a
truncated determinant of large order is asymptotically proportional to
the order of the determinant. Thus, the computation time required for a
reduction to triangular form is also asymptotically proportional to the
order of the truncated determinant to be evaluated.
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