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The purpose of this paper ts to examine the mathematical truth in the
engineering iniwilion that there are approximately 2WT independent
signals ¢; of bandwidth W concentrated in an interval of length T'. Roughly
speaking, the result is true for the best choice of the ¢; (prolate spheroidal
wave functions), but nol for sampling functions (of the form sin t/t).
Some typical conclusions are: Let f(t), of total energy 1, be band-limiled
to bandwidth W, and let

TIQ ) 0
[ irwia=1-é.

T/2
Then
@ [2W TI4N 2
inf ) — 2 .| dt < Cen
laj} J== 0
8

(a) true for all such f with N = 0, C = 12, if the ¢, are the prolate
spheroidal wave funclions;

(b) false for some such [ for any finite constants N and C if the ¢, are
sampling funclions.

1. INTRODUCTION AND SUMMARY OF RESULTS

Intuitive considerations based primarily on the sampling theorem
have for a long time suggested that the space of signals “essentially”
limited in time to the interval | ¢ | < T'/2 and in frequency to (—W, W)
cycles is “‘essentially” 27 T-dimensional. It is the object of the present
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paper to investigate this problem thoroughly. The first step in the proc-
ess is to see how the above statement may be made precise. The two
main difficulties to be overcome in even formulating some mathematical
problems in this area are contained in the two uses of ‘“‘essentially”
above: What shall we mean by “essentially” limited in time and fre-
quency, and what can we mean by “essentially’” 2W T-dimensional?

Suppose that a function f(¢) is actually band-limited. It is then an
analytic function of the complex variable ¢, and cannot vanish in | ¢ >
T/2 without vanishing identically. We will therefore think of f(¢) as
approximately time-limited to |t | < T/2 if a large fraction of its energy
is contained in that interval, that is, if

[ 1w pa
(0.1) L3 =1—er,
IRECIR:

where e will, in much of our thinking, be small; ey shall be used as a
measure of the degree to which f(¢) fails to be concentrated on the
interval | t| < 7T/2. We will denote by £(er) the set of band-limited
functions f(¢) satisfying (0.1) with the further normalization for con-
venience that

[:|f(t)|2dt=1.

We should point out here that, by previous results,' 7' and er are re-
lated: as er becomes small, T must grow indefinitely.

We have now defined our set of functions; how can we speak pre-
cisely about its dimension? E(er) is certainly not finite-dimensional
for any er > 0, for there is no finite set of functions whose linear com-
binations exactly express each f(¢) in E(er). We will, however, say
that E(er) is approximately N-dimensional if there exist N linearly
independent functions ¢q, - - - ¢y—1 whose linear combinations approxi-
mate each f(¢) in E(er) to within a small fraction of its energy, that is,
if
N—1

(0.2) min [ |70 = 3 aw(t) | dt < 8%,

o0
lag} Y-

where we shall usually think of éx as small. Again, dy may be used as
a measure of the degree to which E(er) is N-dimensional.

In the above definition of the approximate dimension of E(er), we
have complete freedom in choosing the “basis” functions o - - - gx_
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with which we will attempt to approximate f(¢). There are two different
objectives we may have in choosing the ¢;. For real understanding of
the dimension of E(er) we must use the ¢; which best approximate
E(er), in the sense of making the error, represented by the left side of
(0.2), as small as it can possibly be over the whole set £(es). Alterna-
tively, for practical purposes, we may wish to use the simplest available
functions, and see how close we can come with them. Thus there is
considerable interest in pursuing two lines of investigation:

(i) Let us first try to identify the best functions ¢; to use, that is
the functions which achieve

> awi®) |

(0.3) min  max min
(pitN ! reE(en Iﬂilar_1

Once we have found these best functions, what is the relation between
the number N of such functions, the measure of concentration e, and
the achievable degree of approximation &y ?

(1) If we pick for the ¢’s sampling functions, i.e., functions of the
form [sin w(2Wt — »)]/[w(2Wt — r)], what is now the relation between
N, er,and 6y ?

It turns out that the answers to (7) and (#) are rather different,
that is, the degree of approximation achievable by sampling functions
is in a very real sense poorer than the degree achievable by the best
basis functions. And yet the solutions of the two problems are, as we
shall see, remarkably intertwined.

In order to give a detailed picture of our results, it is necessary to
summarize some of the previous work on time- and band-limiting which
has appeared in Refs. 1 and 2.

The space £ of square-integrable functions on (—«,%) forms a
Hilbert space in which the inner product (f,g) is defined by

(fg) = [ 1t gty at;
the norm squared of f, || f[|%, is defined by
171*= (.0,

and is just the total energy. Two functions f and g are orthogonal if

(fg) = 0.

To any closed subspace there corresponds a projection operation P,
which assigns to every function its orthogonal projection onto the
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subspace. Projections are characterized completely’ by the properties
P is self-adjoint, and

(0.4)
PP =P,

We single out for consideration two projection operators on the
space of square-integrable functions: time-limiting and band-limiting.
Time-limiting a function f produces a function Df which is f restricted
to [¢] = T/2:

S |t =T/2

Df = ) .

0 if [¢]>T/2
We shall write Dqf if the specific interval is important to the discussion.
Band-limiting a function f produces a function Bf whose Fourier trans-

form agrees with the Fourier transform of f for |w | = 27, and van-
ishes for | w| > 2xW. If

Flw) = L f(s) 6 ds,

1 2rw

Bf = Flw) ™ du,

21 J-oxw

or, in terms of f directly,

B ="1[ 1) ds.

sin 2rW (¢ — s)
t— s

The subspace of functions f in £° which are already time-limited,
i.e. for which Df = f, will be called ®, and similarly band-limited func-
tions, for which Bf = f, the subspace &. The observation made pre-
viously that a band-limited function which vanishes for |¢| > 7/2
must vanish identically may now be phrased as

® N D= {0}

A major result in Ref. 1 was that there is actually a non-zero minimum
angle between the spaces ® and D.

A doubly orthogonal system of band-limited functions ¢, was in-
vestigated in Refs. 1 and 2, and a number of properties were derived.
The following are important to our development:

Given any T > 0 and any W > 0, we can find a countably infinite
set of real functions yo(t), (1), ¥=(t), - -+, and a set of real positive
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numbers
N>AN>NA > -,

with the following properties:

(7) The y.(t) are band-limited, orthonormal on the real line, and
complete in the space of square-integrable band-limited functions of
handwidth W cycles.

Jo, i
(\bi y ‘I/J) = ?::j = 011a23 e
Llr 1=

(#7) In theinterval —7/2 < t £ T/2, the functions Dy.(t) are or-
thogonal and complete in the space of square-integrable functions van-
ishing for | ¢| > T/2.

0,72 #7j
(D, Dyj) = ,j=012 ....
Nyt =7
(#25) TFor all values of ¢, real or complex,
T2 i 7(f —
Ai = BDy; (:f vils) sin 2w Wt — s) d)
12 w(t — s)

We shall write A (7') if the specific interval is important to the dis-
cussion.

We are now in a position to give an account of our results. We repeat
our basic definition:
E(ey) is the set of functions f(t) ¢ £° such that

(Hfe®
@) 7] =1 .
3 IDFP=1— €.

Let us turn to the approximate dimension of E(er). As we pointed
out above, the basis {¢;}§ which we wish to use is the one which mini-
mizes (0.3), that is, which minimizes

N
‘ f - Zﬂ: aip;

2
max min
fEEB(er) lu.'}‘sr

It seems reasonable that the best basis, for any given N, should be the
(N + 1) linearly independent most concentrated band-limited funections,
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and these are known, from previous work, to be ¢y, - -+ , ¥» . Although
this seems to be harder to prove than one might expect, it is in fact
true, and is the subject of

Theorem 1. For any fived N, the functions $o, -+, ¥n achieve the
MIRTMUM TN

min  max min “f— > awi
lealY reECer) (a)h 0
Thus results on the approximation of E(er) by linear combinations of a
finite number of ¢, are in fact best possible results on the approximate
dimension of F(er).
Theorem 3. Let f(t) ¢ E(er). Then*

[2WT] 2

H f - an‘l/n é C{lei' ’
0

where the a, are the Fourier coefficients of [ in ils expansion in the ¢’s,
and C) is independent of f, er , and 2WT, and may be taken as 12.

Theorem 3 shows that [2WT] 4+ 1 of the best basis functions for
E(er) suffice to approximate a concentrated function to a degree pro-
portional to the “unconcentrated part” er of the energy. We shall see
that this is no longer the case when we use the simpler sampling func-
tions.

In Theorem 3, as we have said, C; may be taken as 12. What does
it take to make (', very close to 1, that is, to make the approximation
almost as good as the concentration? First of all, it is important to see
that roughly 2W 7T funetions are not enough to do this, and this is the
subject of

Theorem §. For any o < 0.915, there exists a function f € FE(er)
such that

'[2W'TI 2 2

mf ‘f — ai| = Caler — R(WT)),

where Cy > 1 and R(WT) — 0 as WT — =. Here C, may be taken as
1/0.915 and R(WT) as 2+/2¢ ™" (If ¢ > 0915, the right side
should be replaced by 1.)

By further analysis, this result may be strengthened so that it in-
cludes approximations by [2WT] + N of the ¢; functions, where N
is any finite integer.

Theorem 8. For any given N and e < 0.916, and for WT sufficiently

* [z] means the largest integer £ =.
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large, there will extst a function f € E(er) such that

[2wW T]+N 2 1 .
1nf f— ZO: a‘-\,[/.-' 20.916 (e — 24/2™"H),

(If ex > 0.9186, the right side should be replaced by 1.)

Since, by Theorem 1, the ¢; are the best approximating functions in
|t| < T/2, Theorems 7 and 8 hold, a fortiori, for any approximate
basis {gi].

What, then, does it take to bring the constant C' of Theorem 3 arbi-
trarily close to 1? We do not know the best possible result, but there
is considerable information in the following theorem, due to C. .
Shannon:

Theorem 4 ( Shannon) : Given any n > 0, there exist constants Cs = C3(n)
and Cy = Cy(n) so that for f € E(er),

[2WT]+C3 logT 2WT+Cy

2
ai || £ (1 4+ gper .*

0

inf
ajg

Thus a number of functions boundedly more than 2IW7T cannot suffice
for approximating f € E(er) to within (1 + #) er, but a logarith-
mically growing extra number of terms does.

Let us now turn to approximating F(ep) by sampling functions,
The first result is that [2W7T] + 1 sample functions will approximate f
in energy roughly to within a constant times er, that is, within a con-
stant times the square root of the unconcentrated energy. The placement
of the sample points depends on 27T, hut of course not on the specifie
function.

Theorem 2. Let f(t) € E(er). Then, if WI' — [WT] < 4,

I\ sin #(2W1t : 5
I L o € e ] e
and if WT — [WT] > 3,
_ k+ %) sin m(2Wt — k& — 1 < 9
(b) |/ |k+%|gn'7'f( W ) aeWi—k =13y | =Tt

An estimale valid for oll WT may be oblained by replacing WT in (a)
by W1 + 1.

We note that the coefficients f(k/2W) and f(k 4+ 3/2W) are well-
known to be the I'ourier coefficients in the sampling series expansion,
and hence the best constants to use.

*logt z = max (log x, 0).
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This theorem is, in one sense, quite satisfactory because mer + s
does go to 0 as the unconcentrated part of the energy er goes to 0.
On the other hand, wer + er approaches 0 more slowly than e itself,
That this estimate of the degree to which sampling functions approxi-
mate E{er) cannot be too much improved is established in

Theorem 10. Let f(t) € E(er). Then an estimale of the form

_ ok sin w(2Wt — k)
”f |k|g§r+w" (2”") T(2Wt — k)

cannot be valid independently of er no matler how large the constants C
and N are chosen.

Thus a sampling series approximation using (2W7T plus a constant)
terms will not approximate every concentrated function to a degree
proportional to the unconcentrated energy. As we have seen, this is
in direct contrast to the theorem previously quoted for approximation
with the best functions ¢;. We also have the following negative result
for approximation by sampling series to within (1 + n)en :

Theorem 11. For every 8 < 1, there exists § > 0, and er such that

> (i) sin 7(2Wt — k)
k| = WTH(WT)R 2W 1r(2PVt —_ ’ﬂ)
for some [ € E(er).
Once again, this is in direct contrast to the situation with the best
functions ¢; as given in Theorem 4.

We supposed near the beginning that f(¢) is actually band-limited.
Suppose that it is only almoest band-limited, that is, that

[ 1F@) P
(05) 153w A

[ 176 [

2
2
é CGT

2

> (1 + 8)er

It is interesting that our approximation theorems are stable in the
sense that they continue to hold approximately for approximately band-
limited functions. A sample is the following

Theorem 12. If () € € with || f || = 1, and satisfies (0.1) and (0.5),
then for some constants a, we have

[2wT]

f - ZD: an’pn

2

= 12(67' + ‘Tn‘W)2 + 77?;’-

An analogous result (Theorem 13) holds for a sampling approximation
to f.
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Before we proceed to the detailed exposition, let us mention one theo-
rem, required for the proof of Theorem 10, which is of interest in its
own right.

Theorem 9: When restricted to t > 0, the sample functions centered at
the negative sample points are dense in £*(0, =), but those centered at the
positive sample points are not dense in £2(0, =), nor even in ® resiricted
to t > 0. Specifically, given any square-integrable f(t) we may find con-
stants N and a'”’ which make

I
as small as desired, but there exists a band-limited g(t) for which

r

cannot be made arbitrarily small regardless of the choice of N or b, .

X sin x(2WE + ) P
J =2 a ~2WT + n)

dt

o(t) — i b sin #(2Wt — n) [°

Z = Gwi—ay |
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111, DETAILED EXTPOSITION

1. Given N functions ¢¢, ¢1, *-, ¢x—1 ID €% let us denote by SJ
the subspace spanned by them. The quantity min || f — >0 aw. ||*
fai)

of (0.2) now represents the square of the distance p(f, S%), measured
in £°, of f from SY. The number éx in (0.2) may therefore be taken to
equal
oy = sup P(,f, ‘S"::)J
FEE(er)
which, following the terminology of Ref. 4, we will call the deflection
of E(er) from Sy .

We will first identify, for given T and N, that subspace of dimension
N which best approximates E(er), in the sense of minimizing this
deflection.

Theorem 1: Let T be given. Then, for every N, the subspace spanned
by the (orthonormal) functions yo, -+ -, ¥n_1 best approvimates IK(er),
in the sense that the deflection of E(eqr) from that subspace is smaller than
from any other subspace of dimension N.
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Proof: We first compute the deflection of E(eT) from Sy. By definition,
f(t) isinE(er) if and onlyif f € ®, with || |* = 1 and || Df IP=1- eﬁ-,
thus, expanding f in the complete orthonormal system {y; 15, if and only
if
=2 ag:, with X |a:;[°=1 and Shilea=1—er.
0 0 o
Now by the orthonormality of the ¢;,
o0 2 o
o'(f, ‘f— adi| =2 |l

o N N

To find the deflection of E(er) from Sy we therefore compute
sup p(f, S¥),

2

JEE(er)

equivalently [sup D> | @: |2]1 subject to the conditions D ¢ |ai|* = 1

and 20 | ail" =1 — er < No. We find
. , 0<1l—er Sy
(1.1) deflection of )
' E(ep) from S,;, )‘ﬂ - (1 —a) | o <l—& =N

)\u — v

Next suppose that ¢, -+, ¢~ are any N given functions in £

By the Pythagorean theorem, the distance of f € ® to any linear com-
bination of the ¢; is no smaller than its distance to the same linear
combination of the functions Be;, hence we may assume ¢; € ®. As
before, let S} be the subspace spanned by ¢y, ---, ¢x—1, and denote
by P, the operation of projecting orthogonally onto Sy; explicitly,
P.f is the element of S}, closest to f. In terms of P, , the quantity of
interest in (0.2) can therefore be written simply as

(1.2) P88 = =PI =IF 1" =1 Pef %
the last equality in (1.2) follows from the orthogonality of P,f and
(f - ow)-

Now assign to every f € @ the point in the + — y plane whose x and
y coordinates are || Df /[ f |*and [|[ 7 [* — || Pof [)/||  |I* respectively;
denote by Ry the set of points so obtained. The significance of this map
is that it sends every fin E(er) into the line x = 1 — & , with y-coordi-
nate equaling p°(f,Sy); hence we see that

z=1—e‘7',,

(1.3) deflection of E(ep) from Sy = [ sup yT .
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By previous results,' the z-coordinates of points in R 7 satisfy 0 < v =
o ;& = Ao is achieved only by the functions kfo(t), with & any constant.
The y-coordinates of points in Ry sah%fy 0=y =£1;y =1 1isachieved
only by funetions orthogonal to S}, equivalently to {g;}o . Therefore,

applying the Weyl-Courant lemma (Ref. 3, p. 238), we find
2

sup x = sup Z Av.

v=1 fL

- [1FE

{Wl}

Since there exist infinitely-dimensional subspaces of ® over which
|| Df |I* /H f|* is arbitrarily small (for example those spanned by ¥,
Yms1, - - - for m sufficiently large), while S% is finite-dimensional, there
are functions in those larger subspaces orthogonal to SY, and conse-
quently inf @ = 0.

y=1
We show next that Ry is convex, equivalently that if P, and P,
are two points in Ry, the line segment joining them is also contained
in R,. Let { be a line whose equation is ax + by = ¢. By definition
of Ry, afunction f € @& will be sent on a point of /if and only if

P40l f1F = 1 PefIT
Ak @

equivalently, if and only if a(Df,Df) — b(Pf,Pef) = (¢ — b)(f.f),
or, using (0.4) and the fact that / = Bf, if and only if

(1.4) (laBDB — bP.|f.[) = (¢ — b) (f.]).

An operator is completely continuous® if it transforms every bounded
sequence (i.c. a sequence of functions {f,} for which [[f. | = k with
some ) into a sequence which possesses a subsequence converging in €°
norm. Since B is a projection, | Bf. | = || f. || = k. Writing Bf,({) in
terms of its Pourier transform F,(w) we obtain

1 2T W ) .
Bf.(1) = Fo(w) e dw,
=T J—27 W
whence Bf,.(t) is an entire function of the ('Ol’llplE\ variable {. Since
a funetion and its Fourier transform have the same £° norm, Schwarz’s
inequality applied to this representation yields

(l-l) |h,f”(” | < Clp‘lwrl'-"llm{!” ‘I P1u H < ('1]\'0.‘!”"”"1“”9

so that the functions Bf,(¢) are uniformly bounded on any compact
set of the t-plane. Consequently (Ref. 5, p. 171), they form a normal
family, and the sequence Bf,(t) possesses a subsequence Bf,,({) con-
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verging uniformly on any compact set of the ¢-plane, in particular on
the interval || £ T/2 of the real t-axis. Therefore, the functions
DBf, . (t) converge in £° norm as well, whence, since B is bounded, so
do the functions BDBY,, . We have established the complete continuity
of BDB. Since Sy is finite-dimensional, the projection P, is completely
continuous. By (0.4), both operators are self-adjoint. Consequently,
the operator A = aBDB — bP,, which takes ® into itself, is also
self-adjoint and completely continuous. Therefore® it has a set of ortho-
normal eigenfunctions 6,(¢f) € @& with corresponding eigenvalues u; ,
and every function f € & has an expansion of the form

(1.6) f=lr;+§akak,

where Ah; = 0 or, equivalently, &, is orthogonal to all the 8, . Using
this representation, condition (1.4) becomes

2ol Pue= (e =Wk [P+ 22 (e |] or

(1.7) Z o [*(e — b — wi

We now argue that this set of functions is connected. or suppose that
J=h+ 2 abhand g = h, + 2 Bibi are cach of the form (1.6)
and satisfy (1.7). For every 0 £ u = 1 define, for & = 0,1,

‘Wsu) _ +‘\/1t J . [2 + ]. — lL EBL J] 1[(xnrﬁaa+(l—|x)ltrgf3k]

ul 1 — wh,
= :r:ji EI - :j); | Vullh P+ = w0l

and set
Ty = lhu + Z 'Yff'u}ok .
0

We see that Ak, = 0, since h, is a linear combination of h; and h, ,
so that r, is of the form (1.6); it is easily seen to satisfy (1.7). But as u
varies between 1 and (), the functions r, trace a connected path in
between f and g. Consequently, those functions in ® which map into
the line [ form a connected set in ®. Since the map from & onto R,
is continuous, it takes this connected set into a connected set, that is
into a single segment of {. Thus, the intersection of Ry with any line {
is a single segment, whenee Ry is convex.

Combined with the information already derived about the points in
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Ry, the convexity of Ry implies that

sup y =1, 0<1—e€r =My
r=1—¢p?
(1.8) :
sup yz MLl g,
z=1—ep2 AD - l.v

Combined with (1.3) and (1.1), (1.8) implies that deflection of E(er)
from S‘;: = deflection of K(er) from .\'f,f. Theorem 1 is established.

We conelude from Theorem 1 that the quantity éx of (0.2), measur-
ing the degree to which E(es) is N-dimensional, may be taken to be
equal to (1.1). Since, for Ay < 1 — €,

M o— (1 — ) €7
Ao — Ay 1 — Ay’

and, for Ay = 1 — &,

| ——
- ] - )\_\'
we find
€r
(1.9 by < —F——.
(1.9) A v

Thus to establish an inequality of the form §; = C'er with ' independent
of T, it is sufficient to show that X, (7') is bounded uniformly away from
1 independently of 7. This will be done for & = [2IWT] + 1 in Lemma 2,
and for k = [2WT] — N, provided T is sufficiently large, in Theorem 8.1.

2. Lemma 1. Let f(s) be differentiable on ( — = ,= ). Then for any inte-
gersmand n, m = n,and any 0 = § = 1,

ut8
flm) + -+ +5n) = [ f(s)yds + (3 — 3) f(n 4+ B)

‘m—a

n+pg

+ (3 —a)f(m —a) + f (s — [s] — 1) J'(s) ds.

m—a

Proof: The standard form of the Euler Summation Formula (Ref. 6, p.
530) gives

flm) +fm+1) + -+ f(n)

= [ Js)ds 4+ Lfin) + 3f(m) —I—f (s = Is] = 1) f'(s) ds.

*m
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Our result then follows if

0=[" s ds+ (4 = @in — @) = 41m)

+ [ - - 0@ ds
and if

n+8
— [Ti) ds + (5 = B fn + B) — 31(n)

n+g ,
+ [ s~ = 05 ds.

Both follow immediately by partial integration on the last integrals,
where [s] = m — 1 and n respectively. Lemma 1 is established.

We are now in a position to prove

Theorem 2. Let g(t) € E(er). Then if WT' — [WT] £ 4,

3 kO sinw(2We — k) |* _ 2
(a) l g |k|=ZWT g(ﬁ) r(2Wt — k) l = mer +er,
and if WT' — [WT] > §,
3 k+ 3\ sina@Wt—k —3) |} _ .
(b Hg HEQWT9(2Wf) PO — k=) | =Tt

An estimate valid for all WT may be oblained by replacing WT in (a)

by WT 4+ 1.
Proof: Without loss of generality, we assume W = 1 for convenience.
We apply Lemma 1 with 8 = 0 and f replaced by |g|*. Thenif @ = 1,

[Gom [+ -+ ¢ | = [ 1) [ds + 3] g |

m—a

F G- |dm—a) |+ [ (5=l — 1) 2Releg) ds
It follows that if § < « < 1,

lg*Gm) | + -+ +|d'(n — 1| £ fﬂ | g*(s) | ds
(2.1) o
+ " o~ 18— ) 2Re(eg) ds.
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. We have

[~

HO=a<iwesetf(s) =g (s+ 1] and o = a +
[ (m + 1) [+ - + g+ 1) |

=_[_ |92(3+%)st+§fg"'(;1+%),
+ G —ad)|dm+ 3 —a) I
+ [ 6= 1 = 1) 2Rells + 'G5 + 1) as

m—
or

g m + D1+ + g+ 1)

4 .
=f !gz(u)[du—k%lgz(n+%)|—a|gﬂ(m-—a)|

n+}
+f (v —1 —[u — 1)) 2Re(g(u)g (u)) du,
and

N n+4
D) 1+ 1= D s [ ¢
(2'2) n}
+ [ (v — 1 — [u — 3]) 2Re(g(u)§ (u)) du.

Ym—a

If 3 <« < 1, wemay apply (2.1) to | ¢°(¢) | and | g*(—1t) |, and add
the results. We obtain

> oldmis [ g as

m= k| <n
m—a=|s|=n

+ f (s—[s]— %) 2Re(gq’) ds.

m—a<|s|=n

Now |2(s — [s] — %) | = 1; hence

= [lallg |as

51/ffg|2d81/flg'J2d8~

U (s — [s] — %) 2Re(gg’) ds
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by the Schwarz inequality. But
f I9'|2d5<f_mlg'|2ds

m—a<|s|<n
<@ [ lofas=x
The last inequality holds because

g(t) = j”: G(z) ™' dx

™

g (1) :f G (x) e d

f; lg'() [ dt = 2m f_ 2| Glx) | de

A

211--11'2[ | G(x) |* dv

a0

T f_m | gCt) |* dt.

Hence

H
> k)| = f | g°(s) | ds + 1r|: f | ¢*(s) |dsi| .

mz|k|=n
m—as|s|Zn

A

m—a<|s|<n
Now let n — = ; the preceding equation becomes
2 2
Z Mg (k) | é €2(m—a) + TE m—a) -
me k|
[Furthermore,

= sinw(t — k)
g(t) = _Zn:g(ﬁ) e

and the functions sin (¢ — k)/=(t — k) are orthonormal. Hence,

sin w(t — k) |

2 k) = H t) — k) —— —
ngL:u g (k) ott) mZ«:mg( ) w(t — k)
If we now set m = [T/2] + 1and m — a = T/2, thena 2 3 if

T/2 = [1/2] £ 3,

and we obtain (a).
Txactly the same argument, based on (2.2) rather than (2.1), gives

the result (b) for the case 7/2 — [T/2] > 3.
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It in (a), we use for [7/2] the integer m + 1, then

g(t) — 2= gk Nn"M ' < €mpy + Temsn
k| Sm+1 (b — k) |

and, since ¢, is monotone decreasing in «, the last statement of Theorem

2 follows,

Corollary 2.1. Let g(t) ¢ E(er), and let W = % for simplicity. If, in

addition, g(k) = 0, || = T/2, when T/2 — [T/2] £ 3,00 if gk + %) =

O,k 4+ 3] = T/2, when T/2 — [T/2] > %, then

I Dg I = wer.

Proof: This follows immediately from substitution into Theorem 2(a)
and (b) of the additional conditions on g(¢).
Notice that the number of points at which g is required to vanish is
[T] + 1, except if T/2 — [T/2] = }, when it is one less.
Lemma 2. With the normalization of W = L for any T > 0
Mra(T) < 0.915.

Proof: Let us consider a function of the form
(7141
(2.3) f= 2 aw.l).

n=>0
The series contains [7'] + 2 cocfficients to be determined; it is therefore
possible to make f vanish at the (at most) [T] 4+ 1 integer or half-
integer points a, of Corollary 2.1 without having f vanish identically.
More precisely, we wish
[T1+1

a . (ar) = 0, =01, ---,[T].

m=10
The rank of the matrix {¢,(ax)}, n = 0,1, - [T] + 1,k = 0, VAR
is at most [T], and hence there exists a soluhon vector {a,} not u,ll of
whose clements vanish. We may then pick the a, so that E la, " = 1.
We have thus found a function of the form (2.3) and of total energy
one, which vanishes at the [7'] + 1 points of the Corollary 2.1.
We know for this function that

a (7141 2
f FFde= 20 an A,
i)

T2
[7]41
[ il’" :l-‘f[! = Z t ﬂ” | “
i-'\->7"’ !

Il

7141 N
2 (=) an®
]



1312 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1962

Since the \, are decreasing in n, we have, remembering > | an =1,

[T14+1

R[T!+1 .g_ Z |an |2An

0

[T141

™ > (1 — \) | a, [P by Corollary 2.1,
0

1A

= W\/l — N7)+t-
Therefore Ajz+1 is bounded from 1, and is, in fact, no larger than the
root of the equation

E = 7r\/] -,
which is

—r VAR AT g5
Y 915.

Lemma 2 is established.
3. Theorem 3. Let f(t) € E(er). Then

a9

[2wT]41

H f— 2 a

0

2
= ]2 €7,

where the a,, are the Fourier coefficients of [ in its expansion in the Sfunetions

Vo .
Proof: The quantity defined in the theorem represents the square of
the distance from f € E(er) to the subspace Sy*" ™™ spanned by the
funetions ¢, , with 0 <= n = 2WT]. Thus, by definition, it does not
exceed 8lawr 41, the square of the deflection of E(er) from S
Combining (1.9) and Lemma 2 now yields

(2w T] 2 2 2

< er er < 12,

= < <
=1 — Aewnsr 1 — 0916 —

f - Z a‘n\bn

Theorem 3 is established.
4. Theorem 4 (Shannon). Given any n > 0, there exist conslants
(' = Cy(n) and Cy = Cy(n) so that for [ € E(er),

(2w T]+C3logt2w 40y 2

f- ; ail £ (1 4+ n)er.

inf
Proof: Using properties (i) and (¢id) of the eigenfunctions ¢, and

known results (Ref. 3, p. 242), we obtain

_SiIl?TrIfV(t—S)_ - ) .
p(t —8) = ——WF-E)—_ = Zu: Yl s)g:(L).
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Therefore

p(0) = 2 ¢ (1), and
0

T/2 w T2 w0
(4.1) f o(0) dt = 20T = > O DY
2 0

—T/ 0 -T2

2

We now proceed to estimate Do A5 The functions ¥, satisfy the
integral equation

Ai(t) = j:”q Yi($)p(t — s) ds.

Then
T2 T2 T/2
bW () dt = f f p(t — siy(s)ygs(t) ds di,
-T2 -T2 J=T/2
and if we sum on 7, we obtain
w R T/2 T/2 .
Z A= f f o (t — s) dsdt.
i=0 —T]2 J—-T/2

We now set
s = 25/7, I = 2/T, ¢ = «WT, and p(u) = sin cu/(7u).
Then

o0 1 1
A= f f pEH' — &) ds" dt’
i=0 —1 v—-1

1 1—s"
=f ris’f p () du.
-1 1—s’

Integration by parts, and the substitution ew = x, give

2¢ - 2 2¢ - 2
.2 de [Tsin’ 2 [*“sin” x
At =2 —dr — = dx.
i=0 0 T Yo 5

e 2 a

Asymptotically for large e, this is easily seen to equal

2
= ]2 log ¢ + 0(1),

™ ™
but we desire an actual lower bound. For ¢ = w/8,

o0 w . 2 dwf4 2 2¢ . 2

, 2c  4de sin” @ 2 sin” 2 sin” x

0 - ” b o - [» o - uf
A== —-= ——dr — = de — = dx.
i=0 T o 37 /4

e 2¢ £ m Yo xr m &r

Therefore,
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«© f o P dr/4 . 2¢
s _ 2¢ e dx 2 2 dx
Sadz - o _ = rde — = (3 — % cos 2x) =
m v NN

im0 w2 Joe m o w lara
2¢ 2 9 1 2
22— Sleg
T = 16 7 3r/4
since
* cos 2udr i
[ L—i >0 1f ez 'S
Jam 4 T
Thus
2. 2 1
(4.2) Satz = Zlogte—1
(1] T i

for all ¢, since the inequality is trivially true for ¢ < w/8.
Let us now introduce the following combinatorial problem. We con-
sider infinite sequences of non-negative numbers u; such that

(a)]éﬂngﬂlz"',
oS

(b) >_ u; = A, agiven positive constant,
0

(¢) for a given integer m = A, u, has a prescribed value,

and we seek to maximize P w; over all such sequences. Clearly the
optimum {;} will have u; = 0if j > m.

We claim that, with the possible exception of one ;, all the others
in the optimum solution equal either 1 or u,, . For suppose they do not,
i.e. suppose {u,} takes on two values a and g such that p, < a <8 < 1.
If we now vary a and 8 between the limits g, and 1, keeping & + 8
a constant, and maximize o® + #°, we find an end-point maximum.
In detail, if @ + 8 = s, then &® + " = 2 [(a — s/2)° + /4], which
is maximized at an end-point value of @. Thus, the maximizing sequence
{u,)0 can contain only one value which is neither 1 nor u,, . This odd
value is due to “breakage” in obtaining the exact total A. Let the
maximizing sequence have k& “1’s”, (m — k) “u,’s” and one value
a, pm < @ < 1. Then

4+ (m— k) g +a= 4,
so that

_ :1 — o — Myp

!‘.
I — Hm
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Then

= s A —a — mu, m—A+a - 2
i = i _ 1 _ Hom + @
(_1_.3 ) 0 Ko Hm

= (4 —a)(l + pn) — mun + o~

This is the maximum achievable value of >_7 u;° under the conditions
(a), (b) and (¢) above. But with 4 = 2¢/7, and X, given, m = 2¢/m,
the sequence of eigenvalues A; satisfies the above conditions. It therefore
competes for the maximum, and hence

2 = 2 2¢ .
—:E _ l‘; l()g+ c— 1 é Z )\{- é ‘_C (1- + Am) - anm -
™ ™ 0 T

Thus, for any m = 2¢/m,

log:c 11
An S —
- 2¢
m — —
-
For any given n > 0, if
D 9 +
(44) mz 24 12 (log., ‘4 1)
T 7 =
it follows that X,, = 5/12. Then, by the reasoning of Theorem 3,
L \ ) m . ETE
inf - ay, || & ——.

It n < 11, this implies

inf | f— 2 ad. " = (1 4+ ner;
0

a ||
larger values of 5 are covered by Theorem 3. Theorem 4 is proved.
Note: If only small values of  are of interest, the “12” in (4.4) is of
course unnecessarily large.
Lemma 3: With the normalization of W = %, we have for any T > 1,

Nro (T) = 0.085.

Proof: We begin, again, with Lemma 1. If we consider first the case
T/2 — [T/2] = §, we let f(s) = | ¢°(s) |, and

) 1 T T
(a) m = 1, a=5, rr'—"l:__;]. »3:.5

(b)m=—|:§:]—1, a = —%—[;:‘, n =0, B=%.
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We obtain

T/2

1) [+ -+ ¢ (/) | < [ 1666) | ds

1
3

T/2

+ [ (s =1 = 1) 2Re(gq) s
H
and

(=172 [+ -+ PO |5 [ 166 |ds

-T2

]
+ f (s — [s] — 1) 2Re(g7’) ds.

-T2

Adding and applying the Schwarz inequality, we find, as in Theorem 2,

@5 X ld =gl + i Dellllgll
The Weyl-Courant lemma (Ref. 3, p. 238) asserts that
2
A, = inf sup | De |2| ,
Apn ¢lAp “ @ ”

where A, ranges over all n-dimensional subspaces of @. If B,y is an
(n + 1)-dimensional subspace of ®, the orthogonal complement of
every A,~must have at least one vector in common with B,4: . Thus

2 2
sup || De IJ > inf IIDMJ ’
eldn HGDH“ @ EBny1 H'P“'

and since the right-hand side of the inequality is independent of 4,,
the Weyl-Courant lemma implies

2
(4.6) oz it I12ell
eebnn | @l
Now let Bir be the subspace of ® spanned by the [T (orthonormal)
functions [sin =(t — k)]/x(t — k), | k| = [T/2]. For g € Bin we have

lglF = > g F,

Inl=17/2)

since g(n) = 0 when |n | > [T/2], so that (4.5) yields
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| < | DPall +FHD0H
= lgl® gl
Letting g vary in Bz, and using (4.6), we now find
2 | 2
verir |l gl gl veniry || gl VER[T)] Al
< M+ TV N
whence

Arr—1 = 0.085,

Similarly, it 7/2 — [T/2] < 1,
~ lgn+ D= Dglf+lDgl gl

In+4T=(7/2)
and letting Bir be the subspace of ®& spanned by the [T] functions
[sin w(t — k — 3)]/[x(t — k — 3)] with [k + % | < [T/2] we may
apply the identical argument to find A;7j_; = 0.085, as before. Lemma 3
is established.
Lemma 4: For any WT > 0,

AN>1—2 \/ﬁ(_’ *wW'r,"_:-

Proof: For convenience, let @ = 271, and normalize so that T = 2.
Consider the function f(¢) whose Fourier Transform F(x) is given by

( 1 —r2/2Q .

—— if || =Q
F(x) = {(Qm)* @]

0 if|a] >

Then
0 Q /0
f | f(0) P dt = Q?rf F¥x) de = 4 /7 [‘ ™ du.
—0 -0 o

On the other hand,

Y

f) = F(x) cos at dr

-0

Y
—~
e
[
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It is easy to check that the expression in brackets is non-negative for
t = 1, and hence for | {| = 1. In fact,

® —r2/2Q “ —u2/2
€ dr = Q f € du
fn \VQ /5 )

_ El'umn_ ” —u?/2
6@ = g/Te = [ e

is non-negative since it equals 0 at both @ = 0 and @ = =, and

is positive for @ < 2/7 and negative for @ > 2/m. Thus

! 2 ’_Si s _ o _ \/ﬁ N
- v V2 0

Hence, from (4.7),

1 Ve,
f At dt 5 = ‘ [f g du—l
m™ 2
f (1) dt ve l_ f e duJ
L 0

f C—uzﬂ du < 1/‘1_1’ e—_m2 because G() = 0:
Vi 2

and

But

and the expression in parentheses is bounded by +/2. Thus
1

[ rawa
1

f f(1) dt

But f € ® by definition, and hence competes in the maximum problem®
which defines A, . Hence

> 1 — 2426

1
[ s pa
Ao = max % >1—242 e,
N FON

Lemma 4 is established,
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. Theorem 5. For any er < 0.915, there exvists a function f € E(er)
such that

2

I _ 2 \/ —TW ?‘#2

[2w T]—
nfll o — ‘ Ry
o “ ! ; il Z Gops ¢
(If €2 = 0.915, the r‘z'ghf-imnr! side of the inequality should be replaced
by 1.)
Proof: Theorem 5 asserts the existence of i lower bound for the deflec-
tion of E(er) from the subspace SY" ™' spanned by the functions
Y, with0 = k 2 [2WT] — 2. This dvﬂection has already been calculated
in (1.1) and is easily seen to be assumed by a function in E(er). Thus
there exists f ¢ H( eT) such that

IWT]—2 9 o
“'t ' I = Z ay; || = min [1, M:’ )
0 Mo — Newri—1

By Lemma 3, Aawr—; = 0.085; this ensures that when & = 0.915

the smaller of the terms is 1. For other values of €5 , since
L _)_\/:3 TR

by Lemma 4, and Xy < 1, we find

. AN — 1 + e‘i) > o l: (& 9 T2
min (l’m 2 min| 1, oooe (e V2e ),

and now the second of the bracketed terms is the smaller. Theorem 5
is established.

6. In €(—=,x) let D’ denote the operation of projecting onto
[0,], that is

f(ty  t=zo0

Df(t) = B
0 t<0.
Arguing as with DBD in the proof of Theorem 1 we see that D’BD’,
which takes £°(0,=) into itself, is self-adjoint, positive, and bounded
by 1 (though no longer completely continuous). It therefore has a
spectrum’ contained in the unit interval; we will show that its spectrum
consists of all 0 = A = 1.

Theorem 6. The €% spectrum of the operator

D'BD'f = - f sin (x J) ) dy, @20,

conststs of all 0 = X £ 1.
Proof: Theorem 6 follows immediately as a special ease of much more
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general results of H. Widom’ and M. Rosenblum (unpublished), which
determine the spectra in £° of Wiener-Hopf equations with kernels
whose Fourier transforms are bounded. We include a separate proof
only because it is constructive.

By definition, A is in the spectrum of an operator A if and only if
for every e > 0 there exists ¢, such that

| Ape — Mo |
Il e |l

We will prove the theorem by constructing functions which satisty
(6.1) for any given 0 < A < 1. The spectrum being a closed set, it
must then include all 0 £ A £ 1, but by the introductory remarks it is
also contained in the closed unit interval, hence it consists of precisely
the points 0 = A = L.

Lemma 5: Let u > 0 be given. Then corresponding to any & > 0 there
exists a function H;(z) satisfying

(6.1) < e

a. Hj(2)is analytic in | z| < 1, continuous in | z| = 1,
b. Hs(0) = 0,
[ uttite® + Hy(e™) [*sin 0 do
0
c. , < é.
f | Hs(e™) |* sin 6 do
1]

Proof: Suppose 0 < a < w/2. Denote in the z-plane by Py ,P: Py Py,
P ,Ps the points 1, —e ", —1,0, and 7 respectively, and let vi,v2
represent respectively the arcs Pif ,P3P; of the unit circle. Let w =
Po(z) be a conformal map of the upper half of the unit disc onto the
region in the w-plane defined by 1 < [w| < ¢ < =, Im{w} > 0, which
takes the points P, P ,Ps,Ps,ontow = 1, w = ¢ w = —¢w = —1
respectively. The required map exists as soon as ¢ is chosen appropriately
(for example, so as to make the extremal length of the family of curves
joining 1 to vz in the upper semicircle equal to the extremal length of
the family of curves joining the two segments of the real axis in the
image domain), and it defines ¢ uniquely. Now by reflection, Po(z) is
extendable across the diameter of the unit circle to a map of [z| <1
onto the domain 1/¢ < |w | < ¢, Im{w} > 0, and satisfies

Po(e®) /¢ = Pu(e™") a< < T —a
[Pn(c".a)|=g a<b<T—0
1/q < | Po(e™) |, | P | < q e’ €mymee
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Choose r so that u = ¢, and let P(z2) = [¢Py(2)]". Since Py(z) is
bounded away from zero and infinity in |z| = 1, the function P(z)
is also analytic in [ z| < 1, continuous in | z| < 1 (though no longer
necessarily univalent) and satisfies

pP(e’) = P(e™™), a<fl<rT—a
[ P(e®) | = 1/u, a<fl<rm—a
my = min (1/,1) < [P(e”) ], | P(e ™) | < max (1/g,1) = M,,
e’ €n,ye.

Next let w = Q(z) map the region defined by | z| < 1, Im{z} > 0,
Refz} > 0 onto itself, taking the points Ps ,P, ,Pyontow = 0, w = 1,
and w = 7 respectively. Q(z) may be constructed from elementary maps
and is given explicitly by

\ /'/cos:*a (} fzi)o sinfa — 1
Q(z) = .
Veosﬂa + (1 + 22) sinfa 4+ 1

1 — 2z

It may be extended by reflection to yield a map of |z| < 1 onto the
domain in the w-plane formed by cutting the unit circle along the
imaginary axis from #[sin «/(1 + cos «)] to 7 and from —¢[sin a/(1 4+
cos a)] to —i. It satisfies

Q(0) =0,
Q) = —Q(e™™), a<l<7m—a
Q™) | = 1Q(e™) [ =1, " €m .

Now form H(z) = P(2)Q(z). We see that H(z) satisfies conditions
(a) and (b) of Lemma 5. Furthermore, by definition of H,

pH (") + H(e7™®) = 0, a<l<rTr-—a
|H(c="’)|=£m(e“’)q, a<l<m—a

m, < |H(e®) |, |H(e™™) | < M,, e’ €y

Thus
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f | pH(e™) + H(e™) * sin 6 df
0

(6.2) = f — f | pH(e®) + H(e ™) |* sin 6 df
0 T—a
< 2(p + 1)°M; f sin 6 do = 2(u + 1)°Ma(1 — cos a).
0
[" 11 sin o do > [ 1) [ sin 0 do
0 a
(6.3)

T—a . 9 /2 .
= l_ﬂ f | Q(e”) |* sin 6 d6 = :? f | Q(e”) |* sin 6 db.
B Y a a

Using the expression for Q(z) we find, fore < § < 7 — o,

L T ) A a—
N cos? 6 sin® « sin? o
cosfa — ———— — 1 1 —=——-—1
l Q(e™) le _ sin® @ _ sin” 6
/ 2 5 2 T
cos® 0 sIin® « / sin® a
cosla — ———5— 1 1 —-—5"— +1
1/ sin® 8 + 1/ sin® 6
.2 2 . 9
sin” @ - 1sin” a

sin? a
B /‘/1 T sin? 8
Introducing this into (6.3) yields
f [H(cl'ﬁ)
0

whence, by (6.2),

sin? o = 4&n? 0’

1 4+ cos a)

. 1 .
2smﬁdf)>‘;,—q.=51|12-:xlog( .
22 sin a

[T 1utice®y + B Feingds
0 B

log csc e’

f | H(e®) |* sin 6 df
0

where K, depends only on u. Thus, if « is chosen sufficiently small,
H (z) satisfies the remaining condition (¢). Lemma 5 is established.

We now pass to the construction of the functions ¢, of (6.1). Given
0<h<lande>0,set0 < u= (1 —\)/\, choose § so small that
that +v/6/(1 — +8) < e, and let Hy(z) = H(z) be the function of
Lemma 5 corresponding to 8.

Introduce the map u + i = w = (z + 1/2z), taking [z | < I onto
the w-plane slit along the real axis from w = —1tow = 1, and in
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that region define F(w) = H(z). The function F(w) is then analytic
except on the slit. If (w) denotes F(w) in the upper half-plane,
Fy(w) is continuous in the closed half plane » = 0. If » > 0,

(6.4) f | Fy(u + av) |* du = %f |H(z) *|1 — 1—2} | dz |,

e 2 Jr, P
where I', is the curve in the upper half of the unit circle defined in
polar coordinates by (r — 1/r) sin 8 = 2». Since H(0) = 0, the func-
tion [H(z)/z]v/1 — z* is analytic in | 2| < 1, continuous in | z| < 1,
and by the maximum prineiple

H(z) ViT

1 — 2z
2

U

2

= sup
lz]=1

< sup | H(z) .
[2]=1

By property (a) of Lemma 5, H(z) is bounded in |z| = 1, hence so
is the integrand on the right-hand side of (6.4). Since the curves T,
have lengths bounded independently of v, it follows that

f | Fy(u 4+ ) [Pdu < e, v > 0,

Consequently, by a theorem of Paley-Wiener,® Fi(w) coincides in
» = 0 with the Fourier transform of a function ¢, (¢) € £* which van-
ishes for t = 0. Letting Fa(w) denote F(w) in the lower half plane,
the identical argument establishes that Fo(w) coincides in » < 0 with
the Iourier transform of a function ¢.(t) € £ which vanishes for
t = 0. Lete(t) = (1/N) u(8), e2(t) = — (1/AWa(t), and o(t) = ¢i(t) +
@a(t). Then with x(u) the characteristic function of the interval —1 =
# = 1, using the norm-preserving property of the Fourier transform, we
have

1 BD'e =X |' = || (B = Moz = A |

L] T 2
= [ xtwy = nt 2)(\”) + Fy(u) | du
(6.5) = | Fi(u) — Fo(u) |* du
Jul>1

1
+[men+mwwma

= f | kH(e®) + H(e ™) |* sin 6 db,
1]
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while
Lol 2 Henl = 5 12 1°
(6.6) _ %2 :|F2(u) P du > )1-\—2[11|F2(u) I du
= L[ e P einoa

Thus, combining (6.5) and (6.6),

c e [ IRHE®) + HE®) P sin o do
” BDy Ap ” < \2 0 < }\26.

(6.7) 3 -
el fn | H(e”) |” sin 6 do
From (6.7),
(6.8) | D¢l = [ BD'e| = M1 = /3) llell,
and
(6.9) | D'BD'e — A D'e|l = || D'(BD'e — Ne) | £ MV | ¢

Setting ¢. = D' and combining (6.8) and (6.9) we obtain
| D'BD'gc — e [/ |l £ V6/(1 — V/6) <

which is the required inequality (6.1). Theorem 6 is established.

7. Theorem 7. Given any subinlerval 0 < a = x = 8 < 1 of the unat
interval, there exists Ty such that for all T > Ty, the operator BD B
has arceigenvalue contained in [a,B].

Proof: Let A = 3(a + B) and choose e so small that 3¢/(A — 3¢) <
(8 — a)/2. Since 0 < A < 1, by Theorem 6 there exists a function
¢ € £ such that

| D'BD'e — e |

< e
[ el

Since ¢ and D'BD’e are fixed functions in £, there exists T such that
foreach T > T,

|0 =Dt = [ le[Fa<&el
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and
1 4 ! 2 _ * ’ 2 2 2
| (D' = Dr)BDe||" = | |BDe(t)["dt < €| ¢]
T

Using the inequality || D+B(D’' — D1)g|| < || (D' — Dy)g || we then
find

” D’PBDT‘P — Ap H
el
_ID'BD'e — Ae — (D' — Dz)BD'¢ — DsB(D’ — Dy)g |
el

(71)  _ I D'BD'e — e | || (D' = Dr)BDY |

- el el

+ | DrB(D" — Dz)e ||
el

< 3e
Now from (7.1) we see
(7.2) [Drellz | DBDre| 2 (N =36 [el
and
(73) || DeBDz ¢ —NDr || = [[De(DsBDr o — Np) || < 3¢l ¢ |
so that, combining (7.2) and (7.3),
(74) | DeBDr ¢ — ADr ¢ ||/ Dr ¢ || £ 3e/(N — 3e).

Now by property 4z of the functions ¢, , we may expand D, ¢ in a series
Dro = D a.p., where ¢, = D7 ¢,/A/X\,(T). Inserting this into (7.4),

and using the fact (#77) that the ¢,.(¢) (which depend also on T') are
eigenfunetions of BD,B, we find
( Je )2 > H I)TB‘DT@ - RD'I“P 1‘2 — ‘! Z an(xn(T) - A)wﬂ H2
N— 3¢/ T | Dr o [I? | Z AnPn H2
_ 2 lanf () =)
> lanf
= inf | M (T) — A %

We conclude that for every T > T there exists an eigenvalue A, (7T)
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of the operator BD»B with | A.(T) — M| = 3¢/(A — 3¢) < (8 — a)/2,
or equivalently, since the A,(7) are all real, that « < M(T) < B
Theorem 7 is established.

Corollary 7.1 The number of eigenvalues of the operator BD B contained
in any subinterval J of the unil interval cannot remain bounded as T— =,
Proof: Given any integer N, subdivide .J into N disjoint intervals J, .
By Theorem 7, for all 7" sufficiently large each J, will contain an eigen-
value of BD B, hence J will contain at least N such eigenvalues. Since
N was arbitrary, Corollary 7.1 is established.

8. Theorem 8. Lel any integer N and er < 0.916 be given. Then as
soon as WT is sufficiently large, there will exist a function [ € E(er)
such that

. [2w§+N ) > 1 2 —rWT/2

lzlif f- A ay; =m(er—-2\/§e ).
(If € = 0.916, the right-hand side of the inequality should be replaced
by 1.)
Proof: By Lemma 3, we have

Aawr—1 (2WT) = 0.085.

By Corollary 7.1, there exists a constant ko, depending only on N,
such that for all WT > ko the interval 0.084 < x < 0.085 will contain
at least N + 2 eigenvalues of BD B. Hence

)\[2l|'T]+N+1 (2IVT) % 0084: for WT > I\'o.

Now the proof of Theorem 5, applied without change to Apwriv+1,
establishes Theorem 8.

Theorem 8.1 Let e and any integer N be given. Then as soon as T 1is
sufficiently large

[2W T]—N

= X ai

0

inf

a

for all f € E(er).
Proof: According to Lemma 2,

Mewna (2WT) = 0.915.

By Corollary 7.1, there exists a constant ki, depending only on N,
such that for all WT > k, the interval 0.915 < 2 < 0.916 will contain
at least N + 1 eigenvalues of BD »B. Hence,

2
2
\ é 12&1',

Newr_y (2WT) <0916 for WT > k.
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Applying now the proof of Theorem 3 to Agwrn—~ (2W7T) establishes
Theorem 8.1.
9. Theorem 9. A. The restrictions to t > 0 of the functions

[sin #(2Wt — n)]/(2Wt — n),

forn £ —1, are dense in £40,%).

B. Their restrictions to t < 0 are not dense in £'(— = 0), nor even
i ® restricted to & < 0.
Proof: Without loss of generality we may take W = %, to simplify
notation. We begin with part A. Let

1, t=0
e(t) =
0, t <0.
The functions

e(4) sinw (t — n)

enlt) = —

all lie in £°(0,2 ), so that their being dense in £°(0,%) is equivalent
to the statement that k() = 0 is the only function in £°(0,% ) which
is orthogonal to ¢,(t), n = —1 (Ref. 3, p. 72). We will prove 4 in
this form.

Accordingly, suppose that (A(¢),e.(t)) = 0,n = —1. Using the Parse-
val theorem, and letting x(u) be the characteristic function of the in-
terval | uw| £ 7, we find

0 = (o)) = [etonen, rE =]

(9.1) = (H(w)x(w)e™)
= (x(w)H(u),e™), n < —1,

where H(w) is the inverse Fourier transform of ¢({)h(t). The function
x(w)H(u) is in £'(—m,r) and may therefore be expanded there in a
Fourier series x(u)H(u) = izj'f:_m ae™. By (9.1) the coefficients a;
vanish for k < —1, so that

(9.2) x(WH(u) = 2 ae™;
k=0

(9.3) S lal = o= [ 1HGO Pdu < o,
k=0 & J—7
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The funetion H(u) may be continued analytically into the upper half
of the w = u + v plane by its defining formula

Hw) = [ ha) e de,
0
from which, by Parseval’s theorem,

0.

v

(94) f |Hu+ i) Pdu <4 < o,

Set G(w) = Y imo axe™; the function G(w) is then also analytic in the
upper half-plane » > 0, and is periodic there, with period 2x. We will
now show that (9.2) implies H(w) = G(w) for » > 0, consequently
that H(w) is also periodic in v > 0 with period 2. It then follows from
(9.4) that H(w) = 0, hence that h(z) = 0, which was to be proved.
We model our argument on one given by A. Beurling (unpublished).

Applying the Schwarz inequality to the defining expressions for H(w)
and G(w) we find

(95) |Hu + @) |, |Gu+ )| = k/V0, 0<v <2

Next set F(w) = H(w) — G(w) inv > 0.

Let 0 < € < %, and in the w-plane denote by Pi,P.,Ps,Q:,Q.,Gh
the points m,r + ier + 4,—7 + i, —7 + Te,—7 respectively, Let I',T,
be the ares made up of the line segments PiPy + PuQ: + QuGh and
P.P. + P.P. + Q.Q, respectively. Let R, , R, be the rectangles 2] <
72,1 < v < }and |u| < 7/2, =% < v < —} respectively, and R a
region which contains R, and R, and whose closure does not intersect I'.

TFForm the function
[ F(¢) d¢
J(w) _L_f—w'

By (9.5), F({) is integrable on T, so that J/(w) is an analytic function of
w for w off T, in particular for w € K. Now we rewrite

F(y) df + F(¢) dg

F—I‘eg-_w I‘(g'_w

(9.6) J(w) =
and estimate the second integral of (9.6). If w € Ry U Ry and ¢ € T.
we see that 1/ | ¢ — w| < B < =. Consequently
F(¢) dy _ f F(o) ds | [7 Flu+ ie) M

P

r { —w

1Pt § — W —ru + e — W

(9.7)

IIA

B[ F@ar|+ B[ | Futio ldu.
P1P+Q¢Q) L
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By virtue of (9.5),
(9.8) ﬁmf |F($) di| = 0.
0 VP P +Q.Q

Applying the Schwarz inequality to the remaining integral of (9.7), and
using the definition of F' and the triangle inequality in £? we find

\/Iﬂf_' | Fu+ ie) | du < {f_ | Fu + i) lzdu}%

T E]
{f | H(u + ie) — H(u) |* du}

1A

(9.9)

+ {f_ | H(u) — G(u) |2du}’
+ {fr LG (w) — G(u+ i) |° du}i,
By definition of H(w),
H(u + d¢) — H(u) = jw R(t)[e " — 1lem dt,

whence by Parseval’s theorem

f’r | H(u + de) — H(u) |*du = fm | H(u + 1e) — H(u) |*du
(9.10) -

on [ 1RO Pl =1 a.
0

For each ¢, lim [A(t) |*|1 — ¢ |* = 0,and | h(t) [*|1 — | <
>0

4 | h(t) | *, which by assumption is an integrable function. Consequently
by the theorem on dominated convergence (Ref. 3, p. 37) applied to
the last integral of (9.10),

(9.11) linl)rf | H(u + ie) — H(u) |*du = 0.
0 -7
Similarly from the definition of G{w)
Glu) — G(u 4+ de) = 2 a(1 — e *)e™,
k=0

whence

f |G(u) — Glu+de) Pdu = 20 2 |ac [P |1 — e,
- k=0
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so that using (9.3) and arguing as above
(9.12) hlIgrf | G(u) — G(u+ te) [*du = 0.

] —T

Combining (9.12), (9.11), (9.2), (9.9), (9.8) and (9.7) we find that
uniformly for w € R, UR, ,

F(¢) dt

re { —w

(9.13) lim = 0.

0T

Since I' — T, forms the boundary of the rectangle |u| = 7, e S v = 1,
in whose interior F is an analytic function, the first integral on the right-
hand side of (9.6) is equal to F(w) for w € R, and to 0 for w € R,.
From (9.13) it follows that J(w), which is independent of ¢, must itself
coincide with F(w) for w € R, and with 0 for w € R, . But if J(w) = 0
in R, , it must be identically 0 in its whole domain of analyticity, in par-
ticular in R, hence also in R, . We conclude that F(w) = 0 in R, , hence
in its whole domain of analyticity » > 0. Thus H(w) = G(w) inv > 0,
whence, as we have already argued, part A of Theorem 9 follows.

We now pass to a proof of part B. We remark first that the restric-
tions of @ to ¢ < 0 include the functions [sin #(2Wt — n)])/(2Wt — n),
n = 1, restricted to ¢ < 0. Replacing ¢ by —t, we see that, by part A,
these are already dense in £°( — =,0). Consequently to prove part B it is
enough to establish its first assertion.

We argue by contradiction. Accordingly, suppose that the restrictions
to ¢ < 0 of the functions [sin #(2Wt — n))/(2Wt — n),forn = —1, are
dense in £°(— ,0). Then defining the function g(t) el (— =,0) by

» , —-1=2t=0
b =
g 0, t < —1,

we could find a sequence of functions f,(), each some linear combination
of the [sin =(2Wt — n)]/(2Wt — n), n £ —1, such that {f.(¢)} ap-
proaches g(f) in £'(— = ,0), ie. such that

0
(9.14) f_w lg(t) — fu(1) [dt = e, — 0.
The triangle inequality in £°(— =,0) applied to (9.14) yields
0 0 } 2 B
019 [1noras{{[lora] +va) - a+ var

Now the functions f, () are all band-limited and f, (k) = 0 for k = 0.
Thus by Ref. 9 there exists a constant 'y such that
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(9.16) [rorasc| ot

From (9.15) and (9.16) it follows that, as elements of £°(— w0, ), the
funections f,(¢) have uniformly bounded norms as soon as ¢, < 1. Ap-
plying (1.5), we conclude that the f.(¢) are a uniformly bounded family
of analytic functions in the strip | Im{#} | < 1 of the complex t-plane,
thus a normal family there (Ref. 5, p. 171). We may therefore extract
from the sequence {f.(t)} a subsequence f,,(t) converging (pointwise)
in the whole strip, uniformly on any compact subset of the strip, to an
analytic function f(t); from (9.14),
I =g, <0

But g(¢) vanishes on an interval without vanishing identically, and so
cannot coincide with an analytic function. We have reached a contradic-

tion, and part B follows. Theorem 9 is established.
10. Theorem 10: Let f(t) € FE(er). Then an estimate of the form

{ag) k| S WTH+N * T(?IVt — k)

cannol be valid independently of er, no maller how large the constants C
and N are chosen.
Proof: Without loss of generality we may take W = 3, to simplify no-
tation.

Any function f €

2
2
S Cer

-~ ® has the (sampling series) expansion f(t) =
Efmf(l.:)[sin w(t — k)])/[=(t — k)]. Since the functions

o (t) = Sm(ﬂ;(%;\) are orthonormal,
a(t — k
(10.1) \
min MG || = > | f(k) I
(k) kI (T/2)4N k1> (T/2)+N

Now consider the funetion [sin (¢t — N — 1)]/[x(t — N — 1)] which
is in @. By Theorem 9, we may approximate its restriction to { > 0 ar-
bitrarily closely in £°(0,%) by finite linear combinations of the funec-
tions [sin w(¢ — n)]/[wr(t — n)], n £ —1. That is, given 5 > 0, there
exists constants a_;,....a_, (depending on 7) such that

sinw(t — N — 1) & sina(t—k) [
(]0‘)) f (f— _1) _'k;].ﬂkm dt('q
Let
(103) () =S0T =N —1) %  sina(t—k)

(1 — —1) e g iy 5 S
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the function ¢, € &, and || ¢, |* = 14+ 2_i™:|a | = 1. Since in par-
ticular g, is in £°(— «,% ) we may choose an integer 7'/2 so large that

(104) [ e i<y

Now set

f(t) ‘Pq(t” T/2) .
el

We see that f € ® and || f|| = 1. Furthermore, by (10.2) and (10.4),

[ o [ewrat [Ce@ra
t) |°dt =
imrra 7O Torl? “Te P’

s0 that f € E(er), with ez = (4/2n/|| ¢4 | ); we observe that e can be
made arbitrarily small by choosing 5 small, since || ¢, | = 1. By defini-
tion

| () [

1kl >(T{2)+N

[ZI%(’»)E + Z |¢=q(f’ﬂ)!]

“ ©n ”2
whence by (10.1)

: 1
min || f — = er .
la} 2n

ArPk
k1= (724N

Since 5 may be arbitrarily small, Theorem 10 follows.
11. Theorem 11. For any 8 < 1, there exists § > 0 and ey such that

k O\ sin #(2Wt — k) |
Hf \klsn’;-(wr)ﬁ'r (W) r(2Wt — k)

for some f € E(er).
Proof: We again take W = 3 without loss of generality. We follow a
line of reasoning used in Ref. 9.

> (1 + 8)er,

1

-
Let g(f) = sinmt Y o ——.
et (1) = sin wt X

Then

1 wdt -] 1 . uo2 mdt 22!
Z:»/; E'T?‘<Zl:nl+2==7r[w9'(t)dﬁ< , = o

Now if P, N > 0, with P > N + 1, then
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Proof: The decomposition

(12.1) f=Bf+ (/- B

expresses [ as the sum of its components in & and orthogonal to ® re-
spectively. The Pythagorean theorem then yields 1 = || f =1 BfI*+
| f — BfI*, whence || f — Bf || = nw. Similarly, [|f — Df|| = er.

Let ¢ = Bf/+/1 — n% ,so0 that ¢ € ®and || g| = 1. We will apply
Theorem 3 to g; to do so, we must estimate its degree of concentration.
We first expand :

| Df — DBf || = (Df — DBf,Df — DBf)
= | Df | + | DBf |* — 2Re(Df,DBY).

Moreover, since | Df — Bf|| = |f — Dfl| + |f — Bf || = ex + 9w,
we find

(12.3) (er+nw)’ 2 | Df — Bf |° = || Df |[* + || Bf || — 2Re(Dyf,Bf).

Since D is a projection, (Df,DBf) = (Df,Bf); hence subtracting (12.3)
from (12.2),

| DBf|* = | Bf |I' = | Df — DBf|* — (er + nw)’,

i

or
2 2 2
” Dg Hz — H ‘DszH > H Bf H2 _ (ET -+ WQW)
(124) 1 — 7w 1 — 9w 1 — 9w

_p o (et )’
L=y
Consequently, by Theorem 3, there exist constants by such that

(2w T] 2
(12.5) lg — 2 bege | < 12 (E—Ti’ﬂ

0 1 —nw
Now from (12.1)

f [2wrT] ( [2wT] ) ( f _ Bf )
—_— b — _ ——
Vi—a o w el o)t it g)

and the bracketed terms remain orthogonal. Thus, with

ay = \/1 - ’?‘f’vbks

[2wT]

If— Z aw |P £ 12(er + nw)® + 7.
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Theorem 12 is established.

We should point out that by letting ¢ = Df/4/1 — ¢ and working
with the functions Dy , the roles of e and n may be interchanged, to
yield the inequality

[2w 7]

If = 22 el |® < 12(er + nw)* + er.
13. Theorem 13: If f(1) € & with || f| = 1, | Df|' = 1 — &,
”Bf”2= 1 _7]?7!
then for some constants ¢, = c.(f),
. sin T(2W¢t — k) 0 < 2
”f 1kl = WT+1 G r(2Wt — k) N ” =< (er + nw)
+ 7w + 7(er + nw) \/1 — .
Proof: We proceed as in Theorem 12, up to (12.4) but now apply The-
orem 2 instead of Theorem 3. Thus, for some constants by ,

g — sin w#(2Wt — k) &
g k| = WPl k w(2Wt — k)

(13.1)
Ep + Nw (E-r + "J'w)2

=T —_—
V1 - N 1 — 7w
Replacing (12.5) by (13.1) and applying without change the rest of
the proof of Theorem 12 establishes Theorem 13.
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