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A class of three-stage connecling networks proven rearrangeable by D.
Slepian is considered. Bounds on the number of calls that must be moved are
obtained by some simple new methods.

1. INTRODUCTION

Most communications systems contain a connecting network as a basic
functional unit. A connecting network is an arrangement of switches and
transmission links through which certain terminals can be connected
together in many combinations.

The calls in progress in a connecting network do not usually arise in a
predetermined time sequence. Requests for connection (new calls) and
terminations of connection (hangups) occur more or less at random. For
this reason the performance of a connecting network when subjected to
random traffic is used as a figure of merit. This performance is measured,
for example, by the fraction of requested connections that cannot be
completed, or the probability of blocking.

The performance of a connecting network for a given level of offered
traffic is determined largely by its configuration or structure. This structure
may be described by stating what terminals have a switch placed be-
tween them, and can be connected together by closing the switch. The
structure of a connecting network determines what combinations of
terminals can be connected together simultaneously. If this structure is
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too simple, only a few calls can be in progress at the same time; if the
structure is extensive and complex, it may indeed provide for many large
groups of simultaneous calls in progress, but the network itself may be
expensive to build and difficult to control.

The structure of a connecting network also gives rise to various purely
combinatory properties that are useful in assessing performance. For
example, C. Clos! has exhibited a whole class of connecting networks that
are nonblocking: no matter in what state the network may be, it is always
possible to connect together an idle pair of terminals without disturbing
calls already in progress. We call such a network nonblocking in the strict
sense, because it has no blocking states whatever.

If a connecting network does have blocking states, it is nevertheless
possible that by suitably choosing routes for new calls one can confine
the trajectory of the operating system to nonblocking states. That is,
there may exist a rule whose use in putting up new calls results in avoid-
ing all the blocking states, so that the system is effectively nonblocking.
The rule only affects new calls that could be put into the network in more
than one way; no call already in progress is to be disturbed. Connecting
networks for which such a rule exists we call nonblocking in the wide sense.

In practice, the procedure of routing the calls through the network is
called “packing” (the calls), and the method used to choose the routes is
called a “packing rule.” The use of the word “packing” in this context
was undoubtedly suggested by a natural analogy with packing objects
in a container. Virtually nothing rigorous is known about the effect of
packing rules on network performance.

Finally, a connecting network may or may not have the property of
being rearrangeable: given any set of calls in progress and any pair of idle
terminals, the existing calls can be reassigned new routes (if necessary)
so as to make it possible to connect the idle pair.

These three combinatory properties of connecting networks have been
given general topological characterizations in a previous paper.? In this
paper we consider the last property described, that of rearrangeability,
and we study the extent to which it applies to a specific class of connect-
ing networks.

Fig. 1 shows a typical member of an interesting and useful class of
connecting networks that has been suggested and studied by C. Clos.!
We refer to this class as that of three-stage Clos networks. Such a network
consists of two symmetrical outside stages of rectangular switches, with
an inner stage of square switches. It is completely determined by the
integer parameters m, n, r that give the switch dimensions. In one of the
few outstanding contributions to the theory of connecting networks,
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Fig. 1 — Three-stage Clos network N(m,n,r).

Clos! showed that for m = 2n — 1 the network is nonblocking in the
strict sense. The network defined by the parameters m, n, r will be de-
noted by N(m, n, r).

II. SUMMARY

The following two known results about rearranging three-stage Clos
connecting networks are discussed:

1. The Slepian-Duguid theorem, which states that the network
N(m, n, r) is rearrangeable if and only if m = n.

72. The theorem of M. C. Paull, which states that if m = n = r, then
at most n — 1 existing calls need be moved in N(n, n, n) in order to con-
nect an idle terminal pair.

The principal new result proven is a generalization (and possible im-
provement) of Paull’s bound in (47) for any m, n, r withm = ntor — 1.

The Slepian-Duguid theorem is proved in Section IIT by an inductive
method due to Duguid® depending on the combinatory theorem of P.
Hall on distinet representatives of subsets. We discuss Paull’s theorem
in Section IV, but defer our simple proof of it to Section VI, which
presents simple induective proofs of various bounds on the number of calls
that must be moved. All the proofs to be given depend on a *“canonical
reduction” procedure that consists in removing a middle switch from the
network and reducing the parameters m and n by unity.

III. THE SLEPIAN-DUGUID THEOREM

The present paper is devoted to studying the property of rearrangea-
bility for three-stage Clos networks. We shall particularly be concerned
first with the possibility of rearranging calls, and later with the number
of calls that must be moved. Strictly nonblocking Clos networks will not
be considered except incidentally, in view of Clos’s own definitive study
of them.!
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Our first result is due essentially to D. Slepian,! and is

Theorem 1 (Slepian-Duguid): Every three-stage Clos network with m = n
18 rearrangeable.

Proof: The proof to be given is due to A. M. Duguid.** Slepian’s proof
was stated for the case m = n = r, but actually gave an explicit procedure
for rearranging the existing calls so that the additional desired call could
be put up. He showed for this case that at most 2n — 2 calls must be dis-
turbed. This bound was subsequently improved to n — 1 by M. C.
Paull.’ (See Section IV.)

Duguid’s proof depends on a combinatorial theorem of P. Hall, which
has recently come into prominence in studies of maximal flows in net-
works. (See D. Gale.?)

Hall’s Theorem: Let A be any set, and let Ay, Az, - -+ , A, be any r sub-
sels of A. A necessary and sufficient condition that there exist a set of distinct
representatives @y, -+ , @y Of Ay, -+ , Ay, e, elemenisay, -+, a.0f A
such that

a; e A; t=1,--,7
a; # a; for j#1,
is that for each k in the range 1 = k = r, the union of any k of the sels
Ay, -+, A, have at least k elements.

The condition given is obviously necessary. The interest of the
theorem, and our application of it, concern the sufficiency.

We proceed now to the proof of Theorem 1. It is obviously sufficient
to consider only the case m = n. Let the inlets to the network be denoted
by w, -, Uy, where N = nr, and let the outlets be denoted by
u, -+, vy . It is sufficient to prove that every maximal assignment of
inlets to outlets can be realized by a state of the network. Here “maxi-
mal” means that each inlet is to be connected to exactly one outlet, and
vice versa. Such a maximal assignment is obviously equivalent to a per-
mutation on N objects. We let {7 — =(¢), 7 = 1,---, N} be such a
permutation; also we denote the jth inlet switeh by I; and the jth outlet
switch by O; . It is convenient to think of 7; as the set of 7 for which wu;
is on the jth inlet switch, and of O; as the set of 7 for which v; is on the
jth outlet switch.

Let K be the set of integers {1, 2, ---, n}. We define the subsets
{K;,i=1,---,n} of K by the condition

K; = {j|x(m) eO; forsome m e I4).

* In a private communication from J. H. Déjean, the author has learned that
Theorem 1 was also proved by J. LeCorre in an unpublished memorandum dated
1959.
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Now let I;qy, +++ , Tiwy be any k of the inlet switches, and set

k
T = U K,'(j) .
j=1
Suppose that there are ¢ distinct elements in 7'. Then all the kr inlets in
the set

.
U I
j=1

are assigned by x(-) to outlets from ¢ of the outlet switches, that is, to
outlets from a set of ir outlets. But two distinct inlets are not assigned
to one outlet, so ¢ = k. Thus any union of k sets among the K; contains
at least & elements.

Hence by Hall’s Theorem there is a set of distinct representatives
{k(i),7 =1, ---,n} with

k() ¢ K, i=1,,n
k(i) # k(j) for @ s j.

Since K contains n elements, it follows that {¢ — k(@),7 =1, --- ,n} is
a permutation. However, the interpretation of the fact that k(7) e K is
that

w(m) € Opy forsome mel;.

In other words, to every inlet switch I, there corresponds a unique outlet
switch Og; such that «(-) maps some inlet on I; into some outlet on
Owciy - That is, there is a subassignment of «(+) that involves exactly one
terminal on every inlet and outlet switch.

It is evident that such a subassignment can always be satisfied on a
single middle switeh (IFig. 1), say that numbered 1. If this subassignment
is completed, that one switch is filled to capacity, and the rest of the
network is essentially Nim — 1, n — 1, r), i.e., that of Fig. 1 with the
parameters m, n reduced by unity.

The theorem is clearly true for m = n = 1. As an hypothesis of indue-
tion assume that it is true for a given value of m — 1 (= n — 1). The
argument given above proves that it is then also true for m (= n), for
the induction hypothesis implies that the remainder of the assignment
w(+) that was not put up on the first switch is satisfiable in the subnet-
work, i.e., essentially in N(m — 1, n — 1, r). Hence =(-) is realizable,
and the theorem follows by induction on n.
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IV. THE NUMBER OF CALLS THAT MUST BE MOVED: PAULL’S THEOREM

In view of the result of Slepian and Duguid that every three-stage
Clos network with m = n is rearrangeable, it is natural to ask, for a given
state z of such a network, how many calls of z need actually be changed
to new routes in order to put in a given call between idle terminals.
Slepian’s original procedure was for the case m = n = r, and gave the
upper bound 2n — 2 (uniformly for all states) to the number of calls
that must be disturbed. That is, he showed that if m = n = r, then at
most 2n — 2 calls need be rearranged. By a similar but more complicated
method, M. C. Paull® halved this bound, proving

Theorem 2: Let N(n, n, n) be a three-stage Clos network with m = n = r.
Let x be an arbitrary state of this network. The largest number of calls in
progress in & that must be rerouted in order to connect an idle pair of terminals
isn — 1; there exist slates which achicve this bound.

Since Paull’s proof was involved, we have looked for and found simpler
ways of proving and extending his result. In Section VI we give a simple
inductive proof; the argument to be given, of course, also provides a
proof of the Slepian-Duguid theorem not depending on the Hall com-
binatorial result used in Section III.

V. SOME FORMAL PRELIMINARIES

In order to state and prove the rest of our results, it is useful, and in-
deed necessary, to introduce a systematic notation. Such a notation has
been described and used in a previous paper? by the author; the notation
to be used is a consistent extension of this.

The set of inlets of a network is denoted by 7, and that of outlets by
Q. The set of possible states of a connecting network is denoted by S.
For a three-stage Clos network, S consists of all the ways of connecting
a set of inlets to as many outlets by disjoint chains (paths) through an
inlet switch, a middle switch, and an outlet switch. (See Fig. 1.) States
of the network may then be thought of as sets of such chains. Variables
x,1, % -+, at the end of the alphabet, range over states from S.

A terminal pair (u, v) e I X @ (with z aninlet and » an outlet) is called
idle in state z if neither « nor » is an endpoint of a chain belonging to z.
A call ¢ is a unit subset ¢ = {(u, v)} € I X @; ¢ is new in a state x if
(u, v) is idle in x. The assignment v(z) realized by x is the union of all
calls ¢ = {(u, v)} such that z contains a chain from u to ». If @ is an
assignment, y~'(a) is the set of all states realizing a. The cardinality of
a set X is denoted by | X | . The states = ¢ S are partially ordered by
inclusion < in a natural way.
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A distance between states can be defined as

oz, y) = |aay |,

the number of calls that would have to be added, removed,
or rerouted to change v into y,

where A is symmetric difference. The distance of a state » from a set X
of states is defined in the usual way as

§(x, X) = min é(x, y).
veX

A call ¢ new in a state x is blocked in z if there is no state y > x such
that y(y) = y(x) U e. A state 2 is nonblocking if no call new in z is blocked
in 2. The set of nonblocking states is denoted by B’. For any call ¢, the
set of states 2 in which ¢ is both new and not blocked is designated B.”.

For a three-stage Clos network N(m, n, r) with m = n we define

e:(m, n, 1) = max 8z, y (y(@)Uc)) — 1
cnewin zr
= max 8§z, v !(y(x)) N B.)
= max min é(x, y)
¢cnew in z yey "1y (z)NB.'

the maximum number of ecalls that must be re-
routed in order to put up a call ¢ new in x.
We also set

e(m, n, r) = max g.(m, n, r).
TeS

In this last definition, it is assumed that S is the set of states determined
by the parameters m, n, r in Fig. 1.

In the notation introduced above, the Slepian-Duguid Theorem guar-
antees that for m = n and ¢ new in z

vy y(x) Ue) =0,
v (y(x)) N B # 0,
and Paull’s Theorem may be cast as stating that

en,n,n) =n — 1.

VI. THE NUMBER OF CALLS THAT MUST BE MOVED: NEW RESULTS

We now present some new methods for studying the number of calls
that must be moved; these yield extensions of results of D. Slepiant and
M. C. Paull.®
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Theorem 3: (2,2, 1) = 2r — 2.

Proof: Suppose that a blocked new call between input switch 71, and
output switch Oy is to be put in when the network is in a state z. Con-
sider any sequence ¢; , - - - , ¢ of existing calls of x with the properties

i. Either ¢, is on I, , ¢; and c; are the same outlet switch, - - -,

¢; and ¢;41 are on the same outlet switch, 4 odd, 1 <k
¢; and ¢;4; are on the same inlet switch, 7 even, @ <k,

or ¢; is on O, , ¢; and ¢; are on the same inlet switch, -- -,

¢; and ¢;41 are on the same inlet switch, dodd, <k
¢; and c;41 are on the same outlet switch, ¢ even, @ <#k.

ii. ¢ is the only call on some outer switch. Since neither 7, nor O, is
full, the largest k for which such a sequence exists is 2r — 2. The reader
can verify that a possible strategy for rearranging existing calls of x so
as to put in an ;-0 call is to take each call of the sequence ¢;, -+ -, ¢
and reverse its route, i.e., make it go through the other middle switch
than the one it presently uses. Thus for all z

e:(2,2,7r) =2 = 2

Let = be a state of N(m, n, 7), and let M be a particular middle switch.

A canonical reduction of z with respect to M will consist of
1. removing M,

ii. on each outer switch that has a call routed via M, removing the
link, crosspoints, and terminals associated with that call,

iii. on each outer switch that has an idle link to M, removing the
link, the crosspoints associated therewith, and one arbitrarily chosen idle
terminal.

It is easily seen that a canonical reduction of a state x of N(m, n, )
leads to a state of N(m — 1,n — 1, 7).

Theorem 4: ¢(n, n,r) < 2r — 2.

Proof: By Theorem 3, the result holds for n = 2, so assume it for a
given value of » — 1 = 2, and try to rearrange a given state x of
N(n, n, ) so as to put in a new blocked call from I to Oy .

Case 1: There is a middle switech M with both an I; and an O, call on it.
Perform a canonical reduction of the state 2 with respect to M. This
yields a state of N(n — 1,n — 1, r), for which the result holds.

Case 2: No middle switch has both an I; and an 0, call on it. Since the
call to be put in is blocked, it must be true that

# (idle links out of I;) + # (idle links out of 0;) = n
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and hence

max|# (idle out of Iy), # (idle out of 0y)} > 1.

Suppose that # (idle out of I;) > 1. There is a middle switch M with an
idle link to 7, , and a busy link to O, . Perform a canonical reduction of
x with respect to M, yielding a state of N(n — 1, n — 1, r) in which
each of I, O, still has an idle terminal.

A refinement of this method suggested by M. C. Paull will halve the
last two bounds. We prove

Theorem 5: ¢(2,2,7) =r — 1. (r = 2)

Proof: The result is true for r = 2, since in that case the network has
only one blocking state (see Fig. 2), and both blocked calls can be un-
blocked by changing the route of one (= r — 1) existing call.

Let us assume as an hypothesis of induction that the theorem holds
for some value of » — 1 = 2, and in N(2, 2, r) attempt to put up a
blocked new call ¢ between input switeh 7, and output switch Oy . Since
¢ is new and blocked, there must be an idle and a busy link on both of I,
and Oy , and each of the busy links must pass through a different middle
switch. Let ¢; be the call on 7, , and ¢: be the call on 0, . We may suppose
without loss of generality that ¢, is a call from /; to O, , while ¢; is a call
from I, to 0, .

Case 1: I'; has only one call on it, viz., ¢ . Move e to the other middle
switch (see Fig. 3).

Case 2: I, has two calls on it. Remove both ¢, and ¢2, so that [, and O,
become empty. Consider now the state x of the subnetwork of parameter
r — 1 obtained by removing I, and 0, and reducing the dimension of the
two square middle switches by unity to r — 1. Each of I, and 0, has at
least one idle terminal in x, since ¢; and ¢; were removed. Hence by the
hypothesis of induction the subnetwork can be rearranged so as to put in
a call from 7. to Os while disturbing at most » — 2 existing calls. If the
I.,-0, path thus provided is via M, then ¢; and ¢, can be replaced as in

Fig. 2 — Network with only one blocking state (r = 2).
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INPUT IDLE M Ca OUTPUT
I T T 1 1 0
’
/
€ C2 ,/
’
,/IDLE
’
’
’
I

2 2 2
| IDLE ¢ ,

Fig. 3 — I. with one call, ¢s .

Fig. 4. This leaves a path for the new 7,-O; call ¢ via M, , and shows that
it was never necessary to move ¢, and that hence at most » — 1 calls
were disturbed. If the 7:-O, path provided by rearranging the subnetwork
is via M., then ¢, and ¢ can be replaced as in I'ig. 5. This leaves a path
for ¢ via M, , and shows that ¢, did not really have to be moved, so that
at most r — 1 calls were disturbed.

Theorem 6: ¢(n, n,r) = r — 1.

Proof: The result is true for n = 2. Assume that the theorem is true
for a given value of n — 1 = 2, and seek to rearrange a state x of
N (n,n, r) so as to put in a new call blocked in x between [, and O, . The
theorem follows by induction on n by distinguishing two cases as in
Theorem 4, and using a canonical reduction of x.

Theorem 7: Form — 1 = n,

‘p(mi n, T) = @(m - 1: n, 'f‘).

Proof: This is almost obvious. Remove any middle switch M of
N(m, n, r) and make all terminals on which there were calls routed via
M idle. This gives a state of N(m — 1, n, r); in this state the desired call

INPUT G Ca OUTPUT
I 1 1 1 o]

Fig. 4 — Calls ¢, and ¢z over path via M, .
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OUTPUT
o]

INPUT

i
I i
I

Fig. 5 — Calls ¢; and c2 over path via M. .

can be put in by rearranging at most ¢(m — 1, n, r) existing calls. Now
replace M and the calls that were routed through it.
M. C. Paull® has conjectured that if » = n, then

em,n,n) £2n—1— m.

This bound agrees with Theorem 2 if m = n, and with Clos’ results on
nonblocking networks if m = 2n — 1. Paull has proved the result for
m = 2n — 2. However, no proof of the full conjecture has been found.
It is tempting to try the stronger conjecture that

elm,n,r)=2n—1—m

for any m, n, and r. This can be disproved by the counterexample shown
in I'ig. 6. There is no way of connecting 7/, to Oy without moving a call

INPUT OUTPUT
I O

w333
nn
-0 W p

2n-1—-

Fig. 6 — Network showing that I, and O; cannot be connected without moving
a call on one of I, O; .
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on one of I, , Oy . However, all possible alternative routes for these calls
are pre-empted, so at least two calls must be moved.
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