The Tunnel Diode as a Linear
Network Element

By I. W. SANDBERG
(Manuseript received April 3, 1962)

Theorems are proved which completely characterize in an explicit manner
the class of immittance matrices realizable with lossless reciprocal elements
and a tunnel diode represented by the three-parameter “LC,— R’ model.
Techniques are presented for the synthesis of any tmmittance matrix within
this class.

Considered first, from a scattering matriz viewpoint, are the so-called
degenerate cases in which the immittance matrices of the lossless network
do not exist. Throughout the remainder of the discussion it is assumed that
the lossless metwork possesses an immittance matrix. Necessary and suf-
ficient conditions, invelving in a complicated manner the exvistence of a
certain striel Hurwitz polynomial, are derived for realization with a wide
class of terminations. A study of the existence of this polynomial for the
particular terminations of interest leads to explicit realizability conditions.

I. INTRODUCTION

The small signal “C, —R” model of the tunnel diode (Fig. 1) provides
a fairly good representation over a wide range of frequencies, and is
much simpler to use in a general study of network properties than the
“LC,—R” model (Fig. 2) which includes, in addition, the series in-
ductor. The simpler model has been used extensively by network theo-
rists.!-10

The primary purpose of this paper is to define in an explicit manner
the class of n X n open-circuit impedance and short-circuit admittance
matrices that are realizable with lossless reciprocal elements and a
tunnel diode characterized by the “LC, — R” model. The results con-
stitute an extension of the theory presented in Ref. 10* for the “C, —
R” model. The main interest in this problem to date relates to the

* Although the present paper is self-contained, some familiarity with the earlier
work would be of assistance to the reader.
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Fig. 1 — “C, —R’” model of the tunnel diode.

special case n = 2. From a practical viewpoint our results anticipate
the development of approximation techniques that lead to the specifica-
tion of lossless-network tunnel-diode substructures which are to operate
between prescribed sources and loads. Indeed an objective of this paper
is to encourage research in this direction by presenting a complete solu-
tion to the realization problem.

The basic structure under consideration is shown in Fig. 3 in which
the (n -+ 1)-port network is assumed to be a lossless reciproecal configura-
tion containing inductors, capacitors, and ideal transformers. While we
shall be particularly concerned with the case in which port (n + 1) is
terminated with the “LC, — R” model of the tunnel diode, many of
the arguments to be presented are applicable to a much wider class of
terminations. The overall network is assumed to possess either a short-
circuit admittance matrix Y(s) or an open-circuit impedance matrix
Z(s) relating currents and voltages at the ports (1,2, --- , n).

The realizability study is initiated in the following section where we
discuss the cases in which the immittance matrices of the lossless net-
work fail to exist. Throughout the remainder of the paper we consider
the realizability of Z(s) and assume that the (n 4 1)-port lossless
network possesses an open-circuit impedance matrix Z(s). This involves
no loss of generality, of course, since results for the short-circuit admit-
tance matrix Y(s) are identical with those for the open-circuit impedance
matrix with the termination replaced with its reciprocal. In Section III
necessary and sufficient conditions are presented, in terms of an unknown
strict Hurwitz polynomial, for the realization of Z(s) with a wide class
of terminations. The following sections utilize these results to obtain
explicit realizability conditions for the particular termination of interest.
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Fig. 2— “LC, —R"” model of the tunnel diode.
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Tig. 3 — Most general structure defining Z(s) and Y(s).

In an interesting recent paper,' Schoeffler considers a problem similar
to that discussed in Section III for the special case » = 1 under an
assumption equivalent to supposing that the unknown polynomial is
unity. In order to obtain explicit conditions, he further assumes that
both Z(s) and the termination are regular at infinity and that Z(s) has
no singularities on the entire jw-axis. Of course, for our purposes, these
assumptions cannot be made. Indeed, for the particular problem con-
sidered here, the most interesting realizability conditions arise from a
possible pole at infinity of the termination and from the influence of
the unknown strict Hurwitz polynomial.

II. REALIZABILITY CONDITIONS WHEN THE IMMITTANCE MATRIX OF THE
LOSSLESS NETWORK DOES NOT EXIST

The (n + 1)-port lossless network in Fig. 3 invariably possesses a
symmetric regular para-unitary scattering matrix'* which we shall denote
by S(s). However, the corresponding short-circuit admittance matrix
Y(s) exists if and only if* det[1,,, + 8(s)| does not vanish identically
in s. Similarly Z(s) exists if and only if det[1,,, — 8(s)] does not vanish
identically in s. In this section the following theorem is proved which
completely characterizes Y or Z in the event that Y or Z fails to exist.

Theorem 1: If Y [Z]in Fig. 3 exists with port (n + 1) terminaled with an
admittance y [tmpedance 2] but Y [Z] does not exist, Y = yC + Y' [Z =

* The identity matrix of order (n + 1) is denoted by 1., .
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2C + Z'| where C is a nonnegative definite symmetric real matrixz of con-
stants of rank not exceeding unity and Y' [Z'] is the short-circuit admit-
lance matriz [open-cireuit impedance matriz] of a lossless reciprocal net-
work.

The proof is based on the following lemma which is adapted from a
result of Youla et al.”

Lemma 1: Let 8(s) be a regular symmetric para-unitary scatlering matriz
of order (n + 1) such that the normal ranks of [1.41 + S(s)] and [1,1 —
S(s)] are r and r' respectively. Then there exist two orthogonal constant
matrices T and T’ such that*

10, 0
T S(s)'r—[ * } (1)
0 S,
~ [1n+l—r’ 0]
T 8(s) T = 2. (2)
0 &

where S, and S, are symmetric regular para-unitary scatlering matrices
of orders v and 1’ respectively. Moreover del[l, + S, and det]1, — §.]
do not vanish tdentically in s.

Suppose now that Y(s) in Fig. 3 exists but that Y does not exist.
Then the normal rank of [, + S(s)]is r < (n + 1). Equation (1)
can be interpreted as a realization of 8(s) in terms of a (2n + 2)-port
ideal transformer network, n + 1 — r short-circuits, and a reactance
r-port possessing a short-circuit admittance matrix Y. =1+ 8", -
S,), as shown in Fig. 4.

Since E, = T'E., where E,' = [ew, @2, -+, €] and E,' =
[ea1, €az, * * * , €atnen], the number of independent linear relations among
the components of E, is equal to the number of zero components of
E, . However, since Y exists but ¥ does not exist, this number is equal
to unity (r = =), and the resulting single linear constraint is

n41

Z tpnea; = 0, by #Z 0 (3)

i=1

in which the t; are the elements in the first column of T. As a conse-
quence, it is a simple matter to show that we may construct an (n +
1) X m matrix of real constants A such that

E, = AE,
AT, =1,

* The superseript { denotes matrix transposition.

(4)
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Fig. 4 — Realization of é(s) when the normal rank of (1,41 + é(s)] is r.

where

But

which, together with (4), yields

Thus,

0 Y,

[(’-n(n+1) y b2, Cbay "t 0, 3b(n+1)]

['ia(n+1) y Qo lbay 7" ib(n+1)]

[(’ul yCa2y """ 5 ean]

[inl y 1:02 y " Il':un]-
[y 0]

L = . |Es (5)

|0 Y,
(v 07

I.=A' . | AE.. (6)
|10 Y,

(7)
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where B' is the n-vector of elements in the first column of A’ and D is
the matrix of elements in the last n rows and columns of A.

A very similar argument suffices to establish the result for the case
in which Z fails to exist.

IIT. REALIZABILITY OF Z(S) WHEN Z EXISTS

Throughout the remainder of the paper we consider specifically the
realizability of Z(s) under the assumption that Z(s) exists. As men-
tioned earlier, this is equivalent to assuming that ¥ exists and that the
termination is replaced with its reciprocal in order to study the prop-
erties of Y(s).

We shall suppose that the impedance terminating port (n + 1) is the
positive-real function z(s) = ab™', where a and b are Hurwitz poly-
nomials. Of course the impedance of the LC, — R model is not a posi-
tive-real function. However, it is convenient to replace the negative
resistor with a positive one of equal magnitude so that we may state
that Z(s) is a positive-real matrix, with the understanding that Z(s) =
—Z(—s) where Z(s) is the impedance matrix of the n-port with the
resistor negative.' Further, it is sufficient to assume that the LC, + R
termination comprises an inductor of value o Henries in series with a
parallel combination of a unit resistor and unit capacitor, for any other
values can be accommodated by impedance and frequency sealing. Thus,
we shall be particularly interested in the results for z(s) = (as® +
as 4+ 1) (s + 1), (e = 0). However in this section we shall merely
require that*

L= G ®)

the even part of z, have no zeros on the finite jw-axis and that b(s) is a
strict Hurwitz polynomial.
It is well known that
1
=2y — ZpZy' ——

A 11 124419 T + 2 (9)
where the submatrices in (9) are defined by the following partition of
Z(s):

n 1

- Zu Zl2 n

Z(s) :[ ) } : (10)
Zyy Zyp |1

* Throughout the paper we shall denote by the subsecripts o and e respectively
the odd and even parts of polynomials or matrices. Thus, for example, A, =

HA(s) + A(=3)], Ao = 3[A(s) — A(=9)].
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The arguments to be presented center about a study of Z., the even
part of the matrix Z. This matrix is given by

1
o ¥ Aal—5) T 2(-o1
It is convenient to introduce the notation Zm = d 'ns, Zp = d ‘N
where d is an even polynomial, ne is an odd polynomial and Ni; is an
n-vector of odd polynomials, with the understanding that d, ns, and
every element of Nj» may have a common simple zero at the origin.*
In this way it is unnecessary to treat separately the cases in which d is
even or d is odd.
Accordingly,

Z, = _(af'b[‘ - aubu)ngngt

Z, = —%[2(6) + Z(—S)]Zuzmc

1 (12)
[bne + ad]b( —s)ne(—s) + a(—s)d(—s)]’

Note that the assumptions regarding z, nss , and d require that the poly-
nomial [bne + ad) be strictly Hurwitz except possibly for a simple
zero at the origin. Also, as one would expect,”’ the zeros of [bna + ad)
cannot coincide with any of those of {(a.b. — asb,). This follows from
the fact that the existence of a nontrivial solution for @ and b satisfying
bne + ad = 0 and (ab, — ab.) = Llab(— s) 4+ ba(— s)] = 0 at some
point 5 = s requires that s, satisfy b(— s)nw(— &) + a(— s)d(—
s1) = 0, which contradicts the fact that the zeros of bnw + ad are re-
stricted to a half-plane.

It is convenient to state the following

Definition: The matrixz Z, is said to be in standard form if and only if

¢ 1
Z, = —(ab, — a.b,)UU S0 (=8)
where v(s) is a posilive coefficient polynomial which is strictly Hurwilz
except possibly for a simple zero at the origin and U = [w, us, -, U
is a row matriz of odd real polynomials with the property that there is no
factor n(s)n(— s) common to all the u; such that 7 (8) divides v(s) where
n(s) is a strict Hurwitz polynomial. Further, v(s) and (ab. — ab,) are
relatively prime.
In Section 3.1 the following result is proved.

Theorem 2: Denote by z(s) the two-terminal positive-real impedance z(s) =
ab™", with b a strict Hurwitz polynomial and z. having no zeros on the

* With this exception, ns» and d are assumed to be relatively prime.
t We shall use the notation lim [-] = [-], throughout.

5250
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finite jw-axis. Then the rational positive-real open-circuit impedance matrix
Z(s) 1is realizable as shown in Fig. 3, with the understanding that the lossless
reciprocal network possesses an open-circuit impedance matriz Z(s), if
and only if Z, can be expressed in standard form and there exists a strict
Hurwitz polynomial n(s) defining

X = £Un(s)n(—s), w=vn(s)
such that

(1) (weas — woae) (Woby — web.) " is a reactance function, the de-
generate case in which (w.b, — web.) = 0 not permitted.

(1) I:X
a1 alw, — w,) . . .
(721) P Z| —|Z,———————_ | s nonnegative definile when the

“s(aw. — aaw,)
reactance funciion tn (2) has a pole al infinity.

bo1, — bette

:| exists, and
Wely — Wolle_|s

Further, any Z(s) satisfying these condilions can be realized as shown in
Fig. 3 with Z(s) given by

t b(aobo - a’cbe) X (aaba - asbe)

» 24 XX s =B X (haws = baws)
§) =
X.', (aobu - aubn) (aawc - aawn)
(byw, — baw,) (bews — baw,)

3.1 Proof of Theorem 2

It is evident that a preseribed Z. can be expressed in standard form
if Z is realizable.* Suppose that Z and Z. in standard form are given
and consider the problem of determining d, ng , Ni2 , and Zj; . In partic-
ular, let us consider identifying d, ns , and Ni» by equating the standard
form expression for Z, with the right-hand side of (12). A common
factor may have been cancelled in the expression for Z, and hence an
unknown factor must be reinserted before we can proceed. However, the
unknown factor must be of the form f*(s) = g(s)g(—s) where g(s) iz a
striet Hurwitz polynomial. Therefore f(s) = #(s)n(—s) where 5(s) is a
strict Hurwitz polynomial. It follows that the most general expression
for Z, of the form:

1
w(s)w(—s)

Za = - (ﬂ'sba - aaba)xxt (13)

* The problem of factoring Z, into this form is discussed elsewhere.!?
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in which
1. w(s) is a positive coefficient polynomial which is strictly Hurwitz
except possibly for a simple zero at the origin, and
2. X' is a row matrix of real odd polynomials
is expressible in terms of the standard form expression with

X = =+ Un(s)q(—s) (14)
w = vy'(s) (15)

where 5(s) is an arbitrary real strict Hurwitz polynomial.

Thus if Z is realizable, X = Ny and w = bne + ad for some X and w
generated by (14) and (15) with ns and d respectively odd and even
polynomials that are relatively prime, except possibly for a common
simple zero at the origin, such that nd ™' is a reactance function. Equat-
ing the even and odd parts of w and bix + ad yields:

d = (bo'wu _be'wz) (baafn _bcae)_l (16)
R = (ﬂ'owe _'a-ewo) (boa'a _beae)il- (17)

Suppose now that fimd ' is a reactance function. Then the two func-
tions:

Tas _wlab, — ab,)
4 T b(bao, — bav) (18)
and
fi’ T w(ab, — ab,) (19)
Tios alaw, — aw,)

are required to be positive-real. Since the even polynomial (a,b, —acb.)
is either a constant or has zeros in the right-half plane, it is evident from
(18) and (19) that (16) and (17) are polynomials. Furthermore in
view of the positive-real property of (18) and (19) and the fact (16)
and (17) are respectively even and odd polynomials, it follows that the
zeros of (16) and (17) are restricted to the jw-axis and that these zeros
are simple, except possibly for a double zero of d at the origin which
can occur when » and hence w has a simple zero at the origin. With this
single permissible exception, it is also the case that (16) and (17) are
relatively prime, for the condition that there exists a nontrivial solution
for w, and w, in

bow, —baw, =0

—aw, + aw, = 0
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is (ab, —a.b,) = 0, which, by assumption, is not satisfied for pure
imaginary values of s. Thus, if #»xd ' is a reactance function,
w = bna + ad with ny, = 7 and d = d where, as required, ns and d
are relatively prime polynomials except possibly for a common simple
zero at the origin.

Next consider the determination of the submatrices Z; and Zy; . For
d = d given by (16),

(boan - baao)

— —1 p—
Z, = Xd X b — buws) (20)
Using (9), 2(s) = ab™',d = d, np = #izn , and (20), we find
Z]l — Z _[_ Xxl b(a‘obo - anba) (21)

(bow, — baw)w’

By substituting Z = Z, 4+ Z. in (21) with Z, given by (13), it is easy
to show that (21) is a matrix of odd functions, as it should be. Further-
more, since (bw, —bav.) = d(ab, —a.b.), it is evident from (21) that
Z,, is regular in the entire finite strict left-half plane and consequently
has finite poles only on the jw-axis.

Consider now the realizability of

Z + th b(aabn - a’nbo) x (anbo - acbn) -'
(b,fwo - b('ll’[-)‘w (bowu - bl!wf‘)
2(s) = (22)
t (aobo - anbr!) (Ga'w,. - ﬂ"wﬂ)
( bowo - brwr.) (bou)o _ b,'w,.)

We require the following lemma."

Lemma 2: The symmelric mairiz of real conslants

- All A12
A - M ) 4‘122 > 0
AJ2 A22

partitioned as in (10) is nonnegalive definite if and only if Ay —
ApA'Asn" is nonnegative definite.

Let K, denote the residue matrix at a pole of Z(s) which arises from
a zero of (bsw, —b.aw.) at say s = jw;, and let the residue matrix of Z at
that pole be K; . Then,*

* When w = su = s[u, + u.), where u is a strict Hurwitz polynomial, it is neces-
sary to replace w, , w, and X respectively with u,, u. and tﬁe n-vector of even
polynomials s71X before this argument is applied to verify the nonnegative defi-
niteness of the matrix of residues associated with the pole at the origin.
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Ki + th b(aobn -_' ﬂ'cbn) X (aobo - a’ubﬂ)

I x! (Gobo - aﬂbﬂ) aQ,W, — AW,

q q s=jug
where ¢ is the derivative of (baw, —bav,) with respect to s. Since

() "(aaw. —amw,) evaluated at s = jw; is positive, K; is nonnegative
definite if and only if

h( ab, — a.b,)

K; + XX’ .
quw s=jw;
(ﬂﬂba - G'ﬂbe)ﬂ t q 9
- XX 24
(q)l XX (aﬂwe - aewo) s=juy; { )
_ ! 1 (aobu - ﬂ‘ebn)a(brzwe - bowu)]
- K1 + XX ?1[ w(auwc - aswo) a=ju;

is nonnegative definite, a condition which is clearly satisfied since
(baw. — bsw,) vanishes at s = jw;.

Finally, we require that Z have at most a simple pole at infinity and
that K, = [(1/5)Z], be nonnegative definite. It is clearly necessary

that the limit

(Zes 'Z),, = [x Lasbe = acbe) ““be)] (25)

(ayw. — a.w,)

exist. When [Zs 'Z1], does exist with Z; a reactance function, it fol-
lows from (9) that Z;; has at most a simple pole at infinity, since Z is
assumed to possess this property, and consequently that Z has at most
a simple pole at infinity.

Suppose now that Z» has a pole at infinity. According to Lemma 2
and (22), K_ is nonnegative definite if and only if the following matrix
of constants is nonnegative definite:

K, + B xx' Db, = abe) ] _ [lx M]

(baw, — bav,)w s (bow, — bow.)
[1 X( (anbu - anbe_}“] [1 (a'awe - aewo) -
8 (bow, — baw.) 1o Ls (baws — bow,) 1o
Some manipulation shows that (26) can be rewritten as simply

K, — |:ze S(“(’“’#wz)__] . (27)

a,w, — apwn)

(26)
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If Zs does not have a pole at infinity, K is nonnegative definite if
and only if Z;» does not have a pole at infinity and [(1/s)Zy], is non-
negative definite. The first of these requirements is contained in the
condition that (23) exist, while the second follows from the assumed
positive-real property of Z, for in this case [(1/s)Z]. = [(1/8)Zu], -

This proves Theorem 2.

3.2 Remarks Concerning Theorem 2

Consider first the conditions under which the degenerate situation
(bows, —baw,) = 0 can arise. Assume that both b, and b, do not vanish
identically in s. Note that a striect Hurwitz w cannot satisfy the equation,
for b is assumed to be strictly Hurwitz and hence if w is also strictly
Hurwitz baw, vanishes at the origin while b,w. does not. The alternative
possibility is that w = su where  is a strict Hurwitz polynomial. In
this event we have (u.b, —u,b,) = 0 and therefore* « = b. This leads
to the following expression for Z, :

1
[S(be + bo)l[_s(bﬂ - bo)]

Since each element in the matrix Z, must approach zero at least
as fast as z, , which is obvious from (11), the degree of each polynomial
in the n-vector of odd polynomials X is at most unity. Thus X contains
no non-jw-axis factors that can be cancelled and consequently (baw, —
bav,) = 0 implies that %° is a constant, say unity, and w = s(b. + b,)
or, equivalently, (b, —be.) = 0. However given (bp, —bw.) =0, it is
not clear that a nonconstant choice of #* could not render d ‘7 real-
izable as a reactance function. To resolve this question assume that w =
n°s(b. +b,) and consider z + d 'i;z which must be a positive-real func-
tion if d 7 is realizable. Some algebra yields

Ze = _(a'ebﬂ - auba)XX!

2
2 4+ d i = 2, 2;’1? . (28)

It is clear that (28) is not a positive real function for any choice of 7
when b, , b, # 0 because of the right-half plane poles of z,. Thus,

Lemma 3: When b, , b, # 0, condition (z) can be replaced with the statement:
(Wete —wotte) (Wobo —webe) ™" 15 a reactance function and (b, —be.) # 0.

The discussion relating to the realization of Z when z = (s + 1)
shows that the assumption b, , b, # 0 is necessary.

* We are ignoring a trivial constant multiplicative factor.
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We wish to show now that condition (477) is invariably satisfied when
z is regular at infinity. This occurs because the limit

Z.: a(wz - 'wa) ] (29)
s(awe. — aW,) |
vanishes when z is regular at infinity. To prove this it is sufficient to

consider the limit obtained by evaluating (29) with Z. replaced with
z.. Using w = bl + ad to compute w. and w, , we find

[2 a'(wc'_'wo) _lzl:i‘(e'_ao)__ljl
‘ s(aowr - arwﬂ) S ﬁ?‘! be - bﬂ
from which our assertion is obvious.* Thus,

Lemma 4: Condition (i) is satisfied when z(s) is regular al infinity.

In the following sections we shall use Theorem 2 and Lemmas 3 and
4 to obtain explicit realizability conditions for z(s) or 7N s)=(s+ 1)
(as® + as + 1). We assume throughout that Z(s) is known to be a rational
symmetric n X n positive-real malrix, and that Z, in standard form s
given byt

. 1
—uvu (s)(—s)"

To further avoid repetition, the term “‘realizable with an impedance z(s)”
is to be understood to refer to the realizabilily of the multiport matriv as a
structure shown in Fig. 3 with the provision that Z(s) exists. It is convenient
to treat separately the cases in which « = 0, and a > 0.

Z, = (30)

IV. EXPLICIT REALIZABILITY CONDITIONS WHEN z = (s + 1)7' AND z =

(s + 1)
When z(s) = (s + 1), conditions (7) and (77) reduce to

(i) wo(w, —sw,) " must be a reactance function and v. # sv, (see
Lemma 3).

(#7) [X(1/w,)], must exist.

According to Lemma 4 condition (#7) is satisfied.

* This result can be established in a more direct fashion by observing that the
nonnegative definiteness of X,, is implied by Lemma 2 and expression (9) when
z(s) is regular at infinity in view of the positive-real property of Z(s). Neverthe-
less, it is instruetive to consider this matter from the viewpoint presented above.

t Here (ah, — ad,) = 1.
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Condition (¢) requires that [(1/s)(w./w.)]., = 1. Observe that w
must be of even degree and that [(1/s) (w./w,)], is simply the reciprocal
of the negative of the sum of the zeros of the polynomial w(s). It follows
at once that (7) is satisfied for some #(s) if and only if [(1/8)(ve/v0)].
= 1. Requirement (#¢) is satisfied without additional restrictions on
Z(s), for (7) implies that

]. t _
Z), = [—mxxl =0 (31)

since X is an n-vector of odd polynomials and Z. is bounded at infinity.
This proves

Theorem 3:*

The matriz Z is realizable with an impedance (s + 1)~ if and only if

v,
ve # v, and [*J = 1.

oty

4.1 2(s) = (s + 1)
In this more interesting casef the three conditions become
(i) (w, —sw.) (w,)”" must be a reactance function and w, # 0.

(1) [X (w, —sw.) "], must exist.

(447) 1y —[Ze s+ 1) (we — w°)] must be nonnegative definite
8§ 0 S(su'e - wa) 0

when (w, —sw.) (w.)”" has a pole at infinity.

From (7), &' = [w,/sw.], = 1. Since

1

Ze = - X oS w(=s’

and () requires that w(s) be of odd degree, (77) is satisfied for & > 1.
However if k' = 1, (47) is satisfied if and only if [Z,], = 0. In terms of
k', condition (777) is equivalent to the statement

[1 z] L (32)

s E—1
must be nonnegative definite when &' > 1.

* This result was stated without proof in Ref. 10.

t This case together with the situation in which Z does not exist is treated in
detail from a somewhat different viewpoint in Ref. 10. It is included here pri-
marily to illustrate the application of Theorem 2.



TUNNEL-DIODE NETWORK ELEMENT 1551

Consider now the influence of the strict Hurwitz polynomial 5(s).
Note first that Z, may be a matrix of constants; that is, v(s) may be
equal to ys where v is a positive constant. Let 8 be the reciprocal of the
negative of the sum of the zeros of 7(s). In this case k' = 8 and 8 can
he chosen arbitrarily large to minimize %'(k' — 1)~". Therefore when Z,
is o matrix of constants, (), (42), and (#%) reduce to the requirement

that
Bz] — (1 + 9z,

be nonnegative definite for some* ¢ > 0.

When Z, is not a matrix of constants, the most favorable choice of
n(s) is simply a constant, for then &’ is maximized and F'(k" — 1) tis
minimized. Thus,

Theorem 4: The matriz Z is realizable with an impedance z = (s + 1) f
and only if

1. When Z, is a matrixz of constants, [(1/s)Z], — (1 + €)[Z.] is non-
negative definite for some ¢ > 0.

2. If Z,is not a matrix of constants, k = [vo/sv], Z 1;if k=1, [Z]= =
0;if k> 1, [(1/8)Z], — [k/(E — 1)]|Z.), is nonnegative definite.
V. EXPLICIT REALIZABILITY CONDITIONS WHEN z(s) Or z7! (s) = (as® +

as + 1) (s+ 1)HLa>0

In these cases, as will become clear, the polynomial n(s) plays a
central role in determining the realizability conditions. We shall con-
sider first the case: z(s) = (as’ + as + 1)(s + 1)7". Here condition ()
requires that

(i) asw, — wolas + 1) _

w
— as + °
SWe — W, w,

e — SWo
must be a reactance function and, using Lemma 3, sv, # v, .
It is clearly necessary that [w./sw.]~ = 1. Thus we may assume that v
and w are of even degree. Let

Im
p(s) = 2 s (33)
=0

* If the lossless network is not required to possess an open-cireuit impedance
matrix, e can be taken to he zero.!



w(s) = n'(s)u(s) = wis” (34)
where p = m 4+ (degree of n). Then, since the reactance function must
have a nonnegative “residue’ at infinity,

w?pfl(wﬂ;nﬁ2 - pr—i])_l Za
or since wap | = Wiy ,
1 — alwyy s — why 3) =0 (35)

where wy' = wi(wsp)
Condition (77) reads:

) a8’ — (a8 +1) | _ —1
(47) I:X asw, — (as® + 1)Wnr:|m N |:X as(w, — sw,) — w”:|°°

must exist.

Assume first that (35) holds with strict inequality in which case (4%)
becomes

—1
X 6
I: a(?.ng_z — 'w:;;,_g) ol - Way, Sﬂp—l]w (3])

must exist. But [X(1/5*")]= = 0, since w is of even degree, and therefore
the limit (36) does indeed exist. Suppose now that (35) holds with the
equal sign. Then (é7) requires that

—1
X 37
[ a(wapy — Wap—s) 8770 — wayy Sgp_alu (87)

exist.* Hence the degree of X must be (2p — 3) at most. Since the degree
of wis 2p, (37) will exist if and only if

[5°Z]., = 0 (38)
Consider now condition (#47) which requires that
[1 z} ¥ 2., e (39)
S - 1 — CE('UJ 2p—2 — W gpfg)

be nonnegative definite when (35) is satisfied with striet inequality.
From the form of conditions (35) and (39), it is clear that the most
favorable realizability conditions for a given Z(s) are obtained when

* It can easily be shown that the reactance funetion property of the expression
in (z) implies that the denominator in (37) does not vanish identically in s when
(35) is satisfied with equality.
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n(s) is chosen to satisfy [w./(sw,)]= = 1 and to simultancously mini-
mize* (W o — Waps).

This obviously requires that [v./(sv.)], = 1. We wish to establish

Lemma 6: The minimum value of (w'sps — wayp_y) 18

1 v?m—l):s Uop—3 ['UErnfl][vEm—E:l 1 Ugn—1 ’
WI 3 |: ( Vam Vom + Vam Vom ]2 Vom

: 5
and is attained when n(s) = A I:s + %(1 — 1_2’"_‘)] where\ 1s a posilive

constant and

Vam—1

Uam

Uom—1
3 =0, m1 =1,
Vam

5.1 Proof of Lemma 5

Denote by s; 82, ..., s the zeros of w(s). Using a result due to
Newton, we find that

2p

Z s o= — (_wrml—l):; + 3(wap1) (Wap2) — 3(w'apa) (40)

k=1

Recalling that here w's,, = 1,

2p
3
Wopo — Waps = 5§+ F 2. Sk
k=1 (41)
3 3
e DO or
v n

v

where D and ) denote respectively sums taken only over those in-
n

dices corresponding to zeros of the polynomials » and ». Hence our
problem reduces to determining the strict Hurwitz n(s) such that >os
n

is minimized subject to

3 s = ;I:rﬁ“_*_ljléo.
n
Of course when . s, = 0, 7 is simply a constant. Assume then that
n

* Note that [s2Z,.] is nonpositive definite.
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2. s < 0. First observe that the real-part of (— g + jh)° (g, h real

constants; g positive), exceeds — g¢" for all A # 0. Hence the optimum
7 has only real zeros. Next note that E s = | Z si]* when each

s is a negative constant. Thus the optlmum nisa smgle linear factor

?\I:S _|_ % (1 _ ?}Zm—l)]
Vaom

in which X is a positive-real constant and the corresponding minimum

value of (w'spo — w'sp_3) 18 1, Where
1 )’
12 (l B v; l) ’ (42)

1 1 3
gTgds —

Expression (42) can be written in the more convenient form given in

Lemma 5 by using (40).
The results of this seetion can be summarized as follows.

Theorem &: The matrixz Z(s) is realizable with an impedance z(s) = (as’ +
as + 1) (s + 1), where « > 0, if and only if

1 [U_G] _ U-ml > 1 v, ?_é sv,

SV Vam—1

L

1 —apg 20

[**]

1 — ap =0,[5Z], =
4. I —aey > 0,1(1/8)Z], + [5°Z.) [/ (1 — agr)]

must be nonnegative definite, where

1 Vom—1 :!:l Vop—3 I:U2m—li||:l'2m—2:| 1 Vam—1 ’
= _ — | == — -1 =
é 3 [1 ( Vam ) Uam + Vom Vam 12 Vam

and. the v are defined by v(s) = D iy vps”.

Further, if Z satisfies these conditions, Z(s) given by (22) is realizable
with 7 = 1 when (vay) (tam_)”" = 1 and with

nw)=s+;(l—““ﬁ
u’lm

when (vam) (Vem—1)” > 1.
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5.2 Realizability with z(s) = (s + 1) (as® + as + 1)7!

Here condition (7) requires that

SWw, — Wo

-1
wﬁ
asw, — (as® + 1) w, [— as + w, — sw:|

. . 9
must be a reactance function and asv, — (as” 4+ 1)v. # 0. Thus
1

w, ’ ’
ol =1, and | — a (wapy — Wapa) = 0 (43)
sw, |,
bl ok -
where w = 2 il wis® and w' = wi(wapin)

Condition (72) requires that

S Y S
W — SWe_|» (wﬁkl - wﬂp—?) st 2

exist, which is valid if and only if [s'Z.],, exists. According to Lemma 4,
condition (427) is satisfied.

A moments reflection, in view of the two expressions in (43), will
show that the determination of the polynomial #(s) which leads to the
weakest realizability conditions on Z(s) is essentially the same problem
considered in the lagt section. The final result reads

Theorem 6:
The matrixz Z is realizable with an tmpedance z(s) = (s + 1)(as’ +
as + 1), where a > 0, if and only if

v, Vayn. "
L] =22 =1, ast, — (as + Lo, # 0
Sle_low Uam

2. [s'Z.], erists

3.1 —ap: =2 0

where
3 3
P 1 [l ( V'am ) ] Voy—2 + [ [ }[”2»1—1] 1 [l Vo
2 = 5 - \— - — —_ T - —
3 f";m-H_ l'2m+1 f'g,,,+1 p‘lm-}-l 1—) l".!m+l
2m+1 k
and v(s) = D imy s

Further, if Z satisfies these conditions, the corresponding 2 is realizable
with 7(s) = 1 when (Vapyr) (12n) ' = 1 and with

TJ(S) = g —l—%l:] _ l’?m]
Vom41

when (vamqr) (ven) ' > 1.
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VI. CONCLUDING OBSERVATION

It is of interest to note that the conditions presented in Theorem 5
[z = (as + as + 1)(s + 1)7'] reduce to those of Theorem
3 [z = (s 4+ 1)7'] as o approaches zero. However, a similar situation
does not occur with respeet to Theorems 4 and 6, for here the behavior of
the matrix of even-parts at infinity is eritically dependent upon whether
a=0ora>0.
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