Stimulated Emission of Bremsstrahlung

By D. MARCUSE
(Manuseript received May 31, 1962)

A formula for the probability of stimulated emission of Bremsstrahlung
is derived. It is shown that stimulated emission occurs if the ineident elec-
trons travel in a direction roughly parallel to the electric field vector of the
wave stimulating the emission.

Emission from free electrons is used in electron tube devices. The purpose
of this paper is to show that stimulated emission occurs already in the
elementary process of the encounter of one eleciron and one nucleus or ion.
There is no need for a slow-wave structure or elaborate electron bunching
and no need to consider phase relationships. This elementary effect of
stimulated emission should lead to a type of oscillator and broadband am-
plifier working without slow-wave structures or need for the close mechanical
tolerances of high-frequency klystrons. A device of this kind may be noisier
than a conventional maser.

It may be that the effect discussed in this paper is responsible for some
of the hitherto unexplained semiconductor diode oscillations which have
been reported in the literature.

I. INTRODUCTION

Stimulated emission of radiation from atoms or molecules is the
process by which a maser operates, All masers use the transitions between
bound states for their operation.

However, it is also well known that radiation can be emitted from a
free electron in the presence of a static electric or magnetic field. The
presence of this static field—for example the field of a nucleus—is
necessary to simultaneously conserve energy and momentum during the
emission or absorption process. Free electrons far from any other field
can neither emit nor absorb photons of an infinitely extending radiation
field because if they did, conservation of energy and momentum would
be violated, as can easily be shown. Free electrons can only scatter
photons, a phenomenon known as the Compton effect.

The emission of radiation from an electron passing by a nucleus is
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known as Bremsstrahlung. It will be shown in this paper that stimulated
emission of Bremsstrahlung is possible if the incident electron travels
more or less parallel to the electric field vector of the stimulating radia-
tion field. The electron absorbs radiation if it travels more or less per-
pendicular to the electric field vector of the stimulating field.

Since stimulated emission of Bremsstrahlung exists, amplifiers and
oscillators may be constructed using this effect. Stimulated emission
of Bremsstrahlung does not require any bunched electron beams or
observation of phase relationships. Moreover, it works better with slow
than with fast electrons, and no traveling-wave structure is required
since the fields for the stimulation process can be confined in a cavity.

II. STIMULATED EMISSION OF BREMSSTRAHLUNG

The theoretical principles required to derive the probabilities for
stimulated emission or absorption from free electrons in the presence of
a Coulomb field can be found in the textbook by Heitler." We limit
ourselves to nonrelativistic electron velocities and derive the probability
for transitions between the following two states. The initial state consists
of a free electron represented by a plane wave existing in the presence
of a Coulomb and a radiation field with a certain number n of photons
in a particular mode, while all other modes are empty. The final state
consists of the same electron with different energy and momentum and
with a number of n + 1 photons in the case of stimulated emission, or
n — 1 photons in the case of absorption.

The transition probability per unit time is given by*

2
w =" Krol pr (1)*
with 7 = 1.05 X 107" erg-sec
V.PIHJ'(I HPII:VIIU
Kpp = Z{F I F} (2)

E, is the initial energy of the whole system, while E’ and E” are the
energies of the system in the intermediate virtual states. In the transi-
tions to the intermediate states, energy need not be conserved. However,
energy conservation is certainly required between the initial and final
states of the whole system.

B =P 4 i (3)
2m

* A list of symbols is given below in Seetion VII.
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7

E =§ + (n = 1) (4)
zZm

K = ?)J - + nhiw. (5)
zm

The (4 ) or (—) signs in (4) refer to emission and absorption respec-
tively. p = mwv is the momentum of the electron and w is the angular
frequency of the electromagnetic field.

The summation in (2) extends over all possible intermediate states.
The matrix elements of the interaction Hamiltonian are given by™
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The &’s are the Kronecker -symbols. The k’s and #’s can assume only
values of the form 2xr’/L with integer n’ as a result of box normaliza-
tion. e and m are the charge and mass of the electron, n is the number of
photons in a large box of volume L* (box normalization). The upper
values v/n + 1 and (—) signs belong to the emission case, while the
lower values v/n and (+) signs belong to the case of absorption, B is
the propagation vector of the plane electromagnetic wave with § =
|B| = w/e, k is the propagation vector of the plane electron wave with
i | k| = mo, and p, is the component of the momentum operator of the
electron in the direction of the electric field vector of the radiation field.
We choose as z-direction the direction of propagation of the stimulating
light wave

B = (0,08). (8)

The direction of polarization (direction of electrie field vector) is taken
to be the z-direction so that

* Electrostatic c.g.s. units will be used throughout this paper.
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. 0
Po = —-zﬁa. (9)

In comparing the matrix elements (6) and (7) with Heitler’s formulas,
it has to be remembered that Heitler writes all momenta multiplied by
the velocity of light ¢. He also drops the normalization factor L’ taking
his box as being of unit volume. The integration extends over the box of
volume L.

The matrix elements of the Coulomb potential are given by

—ik"r _ik®'r 2
. 3 _ZG 47r
Vio= 75 2¢ f_——r_rcJ dr= e (0
—:kr"r 1k’ 2
Ze 47
V=2 [ ST e T Twoep Y

The result of the integration holds in the limit L — = and can be found

in Ref. 4. Z is the number of charges of the nucleus, and r — r. is the

distance between the point of integration and the nucleus. The factor

prin (1) is the number of final states per unit energy range of the electron
after scattering. It is

mL'k"

pPr = W’"’)a (12)

with #k" = mopr the momentum of the electron after scattering and
dQ = siny dy da (13)

the element of solid angle of the electron scattered in the direction ¢ and
«. The relative orientations of ¥ and « and the angles 6 and ¢ of the
incident electron are shown in Fig. 1.

The form of the matrix elements (6) and (7) contains a physical
approximation. We have limited ourselves to an expansion of the electron
wave function in terms of plane electron waves, as is apparent from the
factors e='*'T appearing under the integrals. Using plane waves to de-
seribe the electron corresponds to the Born approximation, which holds if

owz—e«l

Our probability function w, of (1), describes the differential probability
per unit time that an electron incident with angles § and ¢ emits (or
absorbs) a photon into the existing plane wave carrying n photons, and
that the electron is found with energy

g = Imw,” F fiw (14)
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Fig. 1 — Relative orientation of the incident and scattered electron with
respect to the direction of propagation and the electric vector of the radiation
field.

traveling within the solid angle d2 in the direction ¢,e. To obtain the
total probability T per unit time regardless of the direction of the scat-
tered electron, we have to integrate w over all directions of scattering.

Before proceeding further, we have to discuss the influence of the box
normalization. The size of the box is arbitrary. The results become
independent of the box if its sides L become infinitely long. It is ap-
parent that as L — = we get w — 0. To avoid this difficulty we consider
that for a box of finite size we get as the number of emitted (or absorbed)
photons per second

AN = WN.”

if N.” electrons are present in the box. Introducing the number N,
of electrons per unit volume we get

AN = WIN,.

Calling N. the number of incident electrons which per second fly through
the unit area at speed v, , we obtain
L3

AN =WP—N.,= a N.. (15)

The quantity ¢ defined by (15) is the scattering or interaction cross
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section. This name is justified by the observation that o has the dimen-
sion of an area.

The scattering cross section is, according to (15), defined by ¢ =
W(L*/v,). If we use the differential probability w of (1) instead of W,
we obtain the differential scattering cross section

3
dd:w£. (16)

Using all the equations from (1) to (15), we obtain from (16) the dif-
ferential cross section

8re"Z* Nk dQ [
do = — r 72

) z__ 72 2
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Pug_p”:! [ " ” ¥
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The summation over all energy states reduces to one term because of the
5 symbols in (6) and (7). We have taken

(17)

N = f‘ (18)
with N being the number of photons per unit volume. The normalization
factor L has been eliminated from (17) and we can safely let L — .
We see that the two factors (n + 1)/L" for the emission case and n/L}
for the absorption case become identical as I — «. The term 1 in
n + 1 is related to the spontaneous emission of radiation. Since we
caleulate the transition probability (or scattering cross section) for
emission of radiation into one well defined mode, without allowing for
a spread in frequency or into several closely spaced modes traveling
within a certain element of solid angle, the probability for spontaneous
emission must be zero as L — = .*

Only those terms give a contribution to the summation (2) for which

K=K Fp or p=p Fip (19)
and
k" =k"+8 or p” =p =+ 7B (20)

* If the radiation is confined to a cavity, L? is the volume of the cavity and the
factor 1/L? does not go to zero. The 1 in (r + 1)/L3 gives rise to spontaneous
emission of noise,
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These relations, which follow from the é-symbols in (6) and (7), mean
that conservation of momentum is required even for the virtual states.
We obtain with (19) and (20)

K —k'=kK —k" =k’ — k" F§. (21)
With the help of Fig. 1 the following relation can be derived
k — k" F 8 = K + k™ + 8° F 2k8 cos 8 + 2k"B cos ¥

. (22)
— 2k°k"(cos 6 cos ¢ + sin 8 sin ¢ cos ).
Using (14) and (19) through (22) we obtain by integrating (20)
2eme"ZN [T f * , ——— | sinfcose
= ————— ) 2 —_—
o0 = g |, dy | desiny vV 1F2ae a—cos L 1e
V17 2ae sin ¢ cos (¢ + a)]"" .
vV 1F2ae-cos ¥ —atie (23)

Al F ae + 1€ F ecos 0 & € v/ 1F2ae cos ¢
— v/ 15 2ae (cos 8 cos ¢ 4+ sin 0 sin ¢ cos a)]

The upper subscript e of ¢ indicates emission and corresponds to the
upper (+) or (—) signs in the equation. Conversely, the lower subscript
a relates to absorption and corresponds to the lower signs.

We have used the abbreviations

A
=5 24
> (24)
with A, = 2x/k° being the wavelength of the electron wave and A =

27 /8 the wavelength of the electromagnetic radiation.

¢ 1 he
a=— and ae=31+—.
, M,

(25)

In going from emission to absorption, all we have to change is the sign
of e

In order to decide if emission or absorption of radiation will actually
occur, we have to take the difference

or = 0, — Oq (26)

between the cross sections for emission and absorption.
We do not have to evaluate the integral (23) exactly. In the range
of physical interest we will always have e < 1 and also ae < 1 but a > 1
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for nonrelativistic velocities. We limit ourselves to the case a = ¢/v > 1
and obtain approximately*

. = 2rme’N Z' "2"
e wBke

f’rd‘bsill\l?\/l:l:%e (sin @ cos ¢ (27)
o — +/1F2ae sin ¢ cos (a + ¢)]*
[1=Fae — v/172ae (cos 6 cos ¢ -+ sin 0 sin Y cos o)

The double integral can be solved. The solutions have been expanded in
terms of ae, and the difference between ¢, and ¢, has been taken.
We obtain to the lowest nonvanishing order of ae = hf/mv’

6 2 ¢ 2
o = % [(3 cos® psin® 8 — 1) 1n2hﬂ; — 2 cos® o sin’ 9]. (28)
If ¢ = 0 or = and if 8 = 7/2, the cross section or assumes its largest
positive value
8"NZ* 2mp’

The direction of the incident electron defined by ¢ = 0, 7, and § = =/2
is parallel to the electric vector of the radiation field (Fig. 1). Electron
incidence parallel to the electric vector of the radiation field gives rise
to stimulated emission of radiation.

Equation (28) shows that or < 0if ¢ = /2. The electron is incident
perpendicular to the radiation field and absorbs power from the field.

Let us take another look at (28) and determine the directions of
incidence for which stimulated emission rather than absorption results.

Since an exact solution is hard to give, we will assume that the log-
arithmic factor in (28) is considerably larger than the remaining factor
in the bracket consistent with the assumption mv®/hf >> 1.

We can then give approximate angles for which o7 = 0.

If we let ¢ = 0, we obtain

0.236
In 2m* .
hf

The angle 0.954 in radians corresponds to 54.6°.

5 — 0 =095 - (30)

* Terms with e (not ae) and terms of order 1/a are neglected. Terms with ae
have to be kept because the difference o, — o4 is proportional to ae.
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If we let 8 = =/2 we obtain

—_ (31)

All electrons incident on the ion within a cone with a cone angle of
approximately 108°, whose axis is parallel to the electric vector of the
stimulating radiation field, contribute to stimulated emission.

The number AN of emitted photons per second is obtained if we mul-
tiply o7 by the number N, of electrons which per second penetrate the
unit area containing the nucleus with the charge Ze. If there is more than
one nucleus interacting with the electron stream, we obtain the total
number of emitted photons per second by multiplying the total number
of nuclei N, with the electron flux density N, which per second interacts
with them, provided the density of nuclei is low. For electrons incident
parallel to the electric field vector ¢ = 0 or 7, and # = 7/2 we obtain
from (29)

(32)

AN _ 8¢Z*N.N, n 2m? :
N mivif? hf .

III. DISCUSSION

Equation (32) shows that the ratio of emitted photons per second to
the stimulating photon density decreases rapidly as the electron velocity
v increases. Within the limits set by (mv*/kf) >> 1 and by 2x(Ze*/fv) < 1
we obtain more emission with slower electrons. The number of emitted
photons increases also with decreasing frequency.

It may be useful to remark on the coherence of the process. We have
to keep in mind that (32) gives the number of photons added precisely
to the radiation mode which stimulates the emission. Let us assume that
all other possible radiation modes are empty, N = 0. If we ask for the
number of photons emitted into one of the empty modes, our results
would be proportional to 1/L% but it is proportional to (hf/mv*)- (n/L")
in case of emission into the radiation mode filled with n photons. (Re-
member the remark about (n + 1)/L" following (18). The factor Af/mv*
arises by taking the difference 0. — . . The zero-order term drops out
and the result is proportional to ae = hf/mv’.) The radiation from the
electron occurs preferentially into the occupied mode with a probability
ratio equal to [(hf)/(mv*)In (nis a big number even for moderate power).
The power added to the occupied radiation mode is coherent with the
radiation present in that mode because each photon adds precisely the
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energy hf. We have here the same situation which exists for stimulated
emission from bound states, with the difference that the spontaneous
emission of bound electrons has a well defined frequency while the free
electron radiates into a very wide frequency band. Because of the ratio
of spontaneous to stimulated emission, we would assume that the process
discussed here is inherently noisier than stimulated emission from bound
states. For the latter, the ratio of stimulated to spontaneous emission
into the occupied mode is n while it is only [(Af)/ (me*)]n in our case.
Apparently we get better results for slow electrons.

We want to state the oscillating condition for achieving self-sustained
oscillation if the radiation is confined in a eavity. The cavity has a

loaded @ defined by

NVhf NV
w'hf  n
with cavity volume V, photon density N, and n’ dissipated photons
per second. The cavity oscillates if n* = AN. With the help of (32), this
leads to an expression for the minimum product necessary to achieve
oscillation if we assume again that the electrons are incident parallel to
the E-vector.

QL =w (33)

am o' f' vV

487:Q, [(m 21:.],1’) _ 1}- (34)

The oscillating frequency is determined only by the cavity. If many
cavity modes can exist, oscillation will start in the mode with the smallest
value of f*/Q. .

For use as an amplifier the bandwidth could be much larger than the
bandwidth of conventional masers because there is no built-in resonance
in this process to limit the frequency.

To build an amplifier or oscillator using stimulated emission from free
electrons, we want to shoot dense electron beams of low energy through
as dense an ensemble of ions as possible. This can be done by using ion
beams rather than ions in a plasma because in a plasma scattering of the
thermal plasma electrons by the plasma ions would have an adverse
effect.

It is also possible to use electron scattering due to ionized impurities
in a crystal to obtain stimulated emission. To apply our theory to
electrons moving in conduction bands of crystals, we have to replace
the electron mass m by the effective mass merr of the electron in the
crystal. Furthermore, we have to multiply the scattering cross section
o by 1/€ with e being the dielectric constant of the crystal.

NN, =




STIMULATED EMISSION OF BREMSSTRAHLUNG 1567

Experimentally, one has to take care that the conduction electrons
move predominantly in the direction of the electric vector of the radia-
tion field. This is achieved, for example, by lifting electrons into the
conduction band with the help of the photoelectric effect using a erystal
which in the dark is an insulator. The electrons will move predominantly
in the direction of the electric vector of the pump light provided that
this is polarized.

Another way of generating electrons moving in preferred directions
is by the use of de electric fields which exceed the breakdown voltage
of an insulating or poorly conducting crystal.

The crystal will have to be cooled to increase the collision time for
electron collisions with the vibrating lattice which have an adverse
effect on the ordered electron motion and may not give rise to stimulated
emission.*

Another way to achieve stimulated emission of Bremsstrahlung is the
use of crossed electron and ion beams. These two beams can be made to
cross in a capacitor which is part of an LC resonant circuit. The use of
beams in vacuum will limit the application of our effect to low-frequency
amplifiers and oscillators because of the limitation in available ion densi-
ties.

Equation (34) can be applied to the case of an LC circuit. In this
case, V is the volume of the capacitor and @, the loaded @ of the LC
circuit. An independent calculation has shown that (34) can be obtained
if the voltage and current in the LC cireuit rather than the electric and
magnetic field in the eapacitor are quantized. The photons in this case
are the units of energy Af which are stored in the resonant circuit.

IV. NUMERICAL EXAMPLES

7. We assume an LC ecircuit with @, = 30 tuned to 70 me, a capacitor
volume V = 12.5 em”. The electrons are assumed to be accelerated by a
potential of 10 volts, corresponding to a velocity of 2 X 10° em/sec and
to drift through the capacitor plates, which are made out of a wire mesh.
To obtain oscillations, we obtain from (34) (Z = 1 is assumed)

N.N, = 4.6 X 10” sec”' em™.
If we assume that an electron beam with 10 ma/em® current density,

corresponding to N, = 6.3 X 10" se¢ ' em ™, is employed, N, = 7.3 X
10" ions are needed in the interaction region to make the circuit oscillate.

* So far we have studied stimulated emission in the presence of Coulomb
potentials. Whether other scattering potentials ean be used will have to be de-
termined by another study,
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Assuming that the capacitor is made of a mesh of 5 X 5 em® with a
spacing of 0.5 em, and assuming further that the ions are accelerated by
a 10-volt potential, we find that the ion current of 54 ma has to pass
through the capacitor (Cs ions assumed) in order to provide N, =
7.3 X 10" ions in the capacitor at any instant of time.

7. We consider a solid with a dielectric constant e = 10, an effective
electron mass myr = 0.1 m and assume that the material is contained in
a cavity with volume V = 20 em® which is resonant at 10 kme with a
Q. = 10,000. The electron velocity is assumed to be v = 10" em/sec.
We obtain, taking Z = 1,

N.N, = 28 X 10® sec” em™

If we take the electron current density equal to the one used in the
first example, N. = 6.3 X 10" sec™ em ™, we obtain as the number of
ions in the interaction region necessary to sustain oscillations, N, =
4.45 X 10" or a density of 2.2 X 10" ions/em”.

The frequency could be increased further if it were possible to increase
the ion and electron densities. Inereasing the frequency to 100 kme
increases the product N.N, by a factor of 1000. It may be possible to
increase N, as well as N, by a factor of 30 and push the operating
frequency to 100 kme. Increasing the @ of the cavity would also help.

V. A COMPARISON WITH CLASSICAL THEORY

It is interesting to assume that electrons are incident from all possible
directions with a uniform distribution over all angles of incidence.
We obtain from (28)
, . o 32we’NZ* .
affo sdeGfD d¢ar—-w. (35)
Electrons incident with a random distribution over all directions lead
to a net absorption of radiation. This absorption process gives rise to
attenuation of waves traveling through plasmas or semiconductors.
However, in a semiconductor our process gives only the contribution
of impurity scattering but not of lattice scattering. Equation (35) does
not contain h any more and must be equivalent to classical theories.
Equation (35) could be used to derive an expression for the attenua-
tion constant a in an ionized gas. However, the approximations implied
in this work do not allow the electron velocity to become arbitrarily
small. We will, nevertheless, use (35) to derive the attenuation constant
per centimeter of a plane wave in a plasma with electron density n. and
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ion density n; with the assumption that the electrons obey the Maxwell-
Boltzmann velocity distribution.

3/2 )
—4m?| " _m
fv) = 4m [21rkT:| exp( 2kT) . (36)
It is
AN

where AN is the number of photons created per centimeter per second,
¢ is the velocity of light, and N is the photon density.
We obtain with

Nile °°| )
AN = o fo of (v) & dv (3%8)

from (37) with the help of (35), (36) and (38)
4 B 1 mne’Z 443 [T 1
- {5} 1/7 (kT m:”?f?c} o o 2¢O (39)

The integral in (39) cannot be evaluated since it requires an integration
over

o /m
JI_U’VZTT

starting from zero. The integral is logarithmically divergent. However,
our theory does not allow us to apply (35) for arbitrarily small electron
velocities. Nevertheless, it is interesting to note that the part of (39)
inside the brackets equals exactly equation (5-48) of Ref. 5 if we follow
Spitzer’s indication and multiply his formula with

hf
1 — T~ —f-
;
to take stimulated emission into account. The divergent factor outside
the brackets should be one. We cannot derive its value because of the
limitations of our approximation.

VI. SUMMARY

We have presented an approximate theory of stimulated emission of
Bremsstrahlung. The theory considers the process of stimulated emission
which occurs if a stream of electrons is scattered by one individual ion
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or nucleus in the presence of a radiation field. The approximations require
that

7.3
o1, M« and 2028«
v mv? fw

We have found that stimulated emission occurs if the directions of the
incident electrons lie within a cone whose axis is parallel to the electric
vector of the stimulating radiation and whose cone angle is approximately
108°.

The effect is fairly weak, so that rather high ion and electron densities
are required to achieve substantial amplification or oscillation.

It is predicted that the effect will work best in a solid when the condue-
tion electrons are scattered by ionized impurities.

It may be that this effect is responsible for the recently reported
oseillations which were obtained with the use of semiconductor diodes
and which seem presently to be unexplained.®7#

It is possible that other scattering potentials may lead to stimulated
emission. We have restricted ourselves to Coulomb scattering. It may
be worthwhile to study other scattering potentials, for example electron
seattering by the vibrating lattice in semiconductors.

VII. LIST OF SYMBOLS

@ used as azimuth of the secattered electron
relative to the incident electron; also at-
tenuation constant

B = w/e propagation constant of electromagnetic
wave

¢ phase velocity of electromagnetic wave

e = 4.803 X 10" e.su.  charge of the electron

f frequency of the electromagnetic wave

@ azimuth of the incident electron

h = 6.624 X 107" erg-sec. Planck’s constant

fi = h/2r = 1.054 X 107" erg- sec.

Hyo matrix element of radiation field

k propagation constant of electron wave; also
Boltzmann’s constant = 1.38 X 107*°
erg-degree ' (appears only in the combin-
ation kT')

L length of fictitious box used for box nor-

malization
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m = 9.107 X 107* gram  mass of the electron
n; ion density
Ne electron density
N. number of electrons penetrating the unit
area per unit time
N, number of ions or nuclei
N photon density
Q solid angle
w = 2xf angular frequency of the electromagnetic
wave
p = ik momentum of the electron
¥ polar angle of the scattered electron
QL loaded @ of the resonant cavity
PF density of physical states per unit energy
o interaction cross section
T absolute temperature
] polar angle of the incident electron
v electron velocity
Vo maftrix element of the Coulomb potential
w differential transition probability per unit
time
14 transition probability per unit time
Z number of elementary charges of the ion.
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