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In satellite systems tn which the relative positions of satellites are al-
lowed to vary, there will be periods during which no service will be pro-
vided between given ground stations. Such periods are called “outages,” and
the intervals between successive outages are called “innages.” Here the
outage and innage time distributions are studied with the help of an anal-
ogy between a salellite system and a traffic system. The arrival of a cus-
lomer in the traflic system corresponds to a satellite coming into view, and
the service time of the eustomer corresponds to the time the satellite remains
in view. In particular, the methods of analysis developed for traffic systems
are applied to determine an approvimation for the distribution of innage
lengths.

I. INTRODUCTION

Several types of communication systems have been proposed which
would use repeaters orbiting the earth as artificial satellites. The prob-
lem considered in this paper arises in systems employing a number of
satellites at altitudes of several thousand miles. Typically, the orbit
altitude might be of the order of 5000 miles with a period of revolution
of about 5 hours.

The companion paper by Rinehart and Robbins! discusses the condi-
tions under which a particular satellite will be visible to a given pair of
ground stations. For the orbit altitudes considered here, the satellite
will be visible intermittently. Conceivably the relative positions of the
satellites could be maintained so that at least one satellite is mutually
visible from the two ground stations at all times. However, at least for
some of the early systems proposed, it is of interest to consider the case
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in which small differences in orbital period cause the relative positions
of the satellites to vary with time. Attention is therefore directed to the
statistical characteristics of satellite visibility.

We are especially interested in those periods during which no satellite
is available for communication between a given pair of ground stations.
For convenience these events are called outages although, as pointed out
by Rinehart and Robbins, these occurrences need not imply an inter-
ruption of calls in progress. By analogy the intervals between outages
are called innages.

For any particular system the most effective method of obtaining
outage information appears to be that of simulation. The course of the
system for a year or more is computed, with the help of a high-speed
digital computer, and the outages and innages recorded. [A method for
doing this and some sample results are presented in the paper by Rine-
hart and Robbins].

The present paper is concerned with determining the distribution of
outage and innage lengths. The theory of outage length distribution has
been studied by a number of people and some of their results, namely
those which are needed here, are summarized in Section II. The traffic
model is described in Section III. Sections IV and V contain results
predicted by the model. In Section VI the predicted results are com-
pared with those obtained by simulation. The work of Appendix B gives
the basis for a model which is simpler but less accurate than the one
described in Section III. The material in both appendices also appears
to be of interest from the standpoint of traffic theory.

The general conclusion is that, for the cases examined, both the out-
age and innage distributions are approximately exponential. Their aver-
ages are related by the rather simple equation (1).

II. PRELIMINARY RESULTS

First note that the average innage length ; and the average outage
length #, (‘2 for innage and “‘o” for outage) are connected by the re-
lation

- q -

'ti = 1 — q to (1)
where ¢ is the quality of service; i.e., the fraction of time transmission
is possible. This relation is always true and follows almost immediately
from the definition of g. Typical values are ¢ = 0.99 and #, = 0.25 hours;
and it follows that the corresponding average innage length is ; =
24.75 hours.
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Next, let & be the number of satellites in the system. Consider a
particular satellite. Every now and then it will pass over the region of
mutual visibility. Let

T = average length of time between its reappearances. Ior polar
orbits, T is the orbit time if the region of visibility includes
one of the poles.

b~ = average length of time the satellite is visible during one pass.
The quantity b is a rate which occurs frequently in the analysis.

p = fraction of time the satellite is visible. I'rom these definitions
it follows that

b = pT. (2)

The satellite systems considered here are restricted to those for which
T and b~ are almost the same for all k satellites.
With this notation we have

¢g=1—(1-pF, (3)
l, = (1 —p) T/, (4)

Il

where P(t) is the probability that the length of an outage will exceed t.
Also the expected number of satellites visible at a given time is kp.
These formulas are based upon the assumption that the phase angles of
the satellites are independent random variables and are distributed uni-
formly over the interval (0,27). Ilquation (3) is due to J. R. Pierce and
R. Kompfner.” Equations (4) and (5) have been given by R. E. Mosher
and R. I. Wilkinson, respectively, in unpublished memoranda. For
values of ¢ and k of interest, (5) may be approximated by

P(t) = exp (— t/t,). (6)

It will be observed that the constants of the satellite system enter the
right-hand sides of (3) to (5) only through the three parameters k,p,T.
Thus, as far as these formulas are concerned, the satellite system is
specified by k,p,T.

III. TRAFFIC SYSTEM MODEL

The satellite system will be represented by a traffic system model
which consists of & independent servers, each having an average service
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time b~ and a service time distribution function B(t). Customers are
supplied to the servers by k independent Poisson sources, each producing
customers at an average rate e. When a source produces a customer, that
particular source is removed from the system while the customer is
being served. Thus, when n servers are busy serving n customers, the
average arrival rate is (K — n) . This type of input is a special case of a
more general type (the limited source or “Engset input’) which has
been studied in traffic theory.

The instant a satellite becomes visible from both the receiver and
transmitter corresponds to the arrival of a customer. The length of
time a satellite remains visible corresponds to the time required to serve
a customer. After a customer has been served he leaves the system. This
corresponds to the satellite leaving the region of mutual visibility. The
state in which n satellites are visible simultaneously (state n) corre-
sponds to the state in which n servers are busy serving n customers. An
outage corresponds to an idle period (state 0), i.e., a period during which
all servers are idle. An innage corresponds to a busy period, ie., to a
period when one or more servers are busy.

Note that the constant orbit time of the satellite may introduce a
regularity in the satellite arrivals. The traffic model has the shortcoming
that there is no corresponding regularity in the customer arrivals.

The analogy between the satellite system and the model is established
by taking k and b™' to have the same values in both and setting

a=1/(1 —pT. (7

To justify this choice for a, note that if a particular satellite is not visible
at a time ¢ selected at random, the chance that it will become visible in
t, t + dtis dt/(T — pT). Comparison with the corresponding proba-
bility « dt for the traffic system gives (7). When the three satellite sys-
tem parameters k,p,T are known, the threc model parameters k, b a
follow at once from (7) and b~' = pT.

IV. OUTAGE AND QUALITY OF SERVICE PREDICTED BY MODEL

The values of the quality of service ¢ and average outage length [A
predicted by the model agree exactly with (3) and (4) while the pre-
dicted outage length distribution is the exponential approximation (6)
to Wilkinson’s polynomial expression. A sketch of the proof of these
statements is given in the following paragraphs.

First assume the service distribution B(¢) to be exponential, i.e.,
equal to 1 — ¢ . Then since the sources are Poisson, the behavior of
the system is governed by the k + 1 state equations (Ref. 3, p. 30)
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.Po’ = — kaPn + b.Pl

P! = kaPy = [(k = 1)a 4 b]P, + 2bP,
Py = (k — 1)aP; — [(k — 2)a + 2b]P, + 3bP;

(8)
[J;g’ = (A — Q)QIJQ - [(]\; —_ 3)0{ + Rb]Pa + 4bP4
P, = aPi_, — EbP;
where P, = P,(!) is the probability the system is in state n at time ¢

and primes denote time derivatives. The steady state probability p,
that exactly n customers are present at a time picked at random is

Pu = (ii)(ab[)"f)n, Po = (]- + abﬁl)ﬁk- (9)

This follows upon setting the derivatives in (8) to zero, taking P, ({) =
Pn , and solving the equations step by step. The expected number 7 of
customers present is keb™'/(1 + ab ') and the average arrival rate is

alk — @) = ka/(1 + ab™). (10)

The quality of service is now
g=1=1 (11)
and expression (3) for ¢ may be obtained by using a = 1/(1 — )7,

b=t = pT. Since, (i) an outage corresponds to state 0, (#) state 0 can
end only through an arrival, and (%) the arrivals in state 0 are Poisson
with rate ke, it follows that exp (— kat) is the probability (predicted by
the model) that the length of an outage will exceed (. This agrees with
the exponential approximation (6), and the average value &, = 1/(ka)
agrees with (4).

It is known that expression (9) for the steady state probability
p. holds not only for exponential service but also for the general service
distribution B(t) (Ref. 3., p. 90). Hence the model predicts that expres-
sions (3), (4) and (6) still hold when the length of time a particular
satellite stays in view has an arbitrary distribution B(?).

V. INNAGE DISTRIBUTION PREDICTED BY MODEL

The average innage length (i.e., average busy period) predicted by
the model when the service distribution B(t) is arbitrary follows from
= 1/kaand g = 1 — py:
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= LT P [+ ab ) — 1/ke
o
This much is easy. It is much more difficult to get the complete distribu-
tion, as the following work shows.

When the service lengths are exponentially distributed, the busy
period distribution may be obtained by solving a “first passage’’ prob-
lem. State 0 is made absorbing and the system is started with an arrival
at time 0. Thus the system starts in state 1 at time 0 and jumps from
state to state in accordance with the arrivals and departures of custom-
ers. The system eventually lands in state 0 and stays there. This cor-
responds to the end of the busy period or innage.

When state 0 is made absorbing, the first two of the & + 1 state equa-
tions (8) are replaced by

.Pu' = bPl
(12)
Py = — [(k— 1)a + b]Py + 2bP:.
The modified equations (8) are to be solved subject to P, =1 and
Py, Py, -+, Pr = 0 at time 0. The probability that the length of an
innage will exceed the length # is
G(t) =1— Po. (13)

Step-by-step computation of the derivatives of Py at ¢ = 0 from the
differential equations gives the power series

bt [(k— 1) a+ blbf’
GOy =1 -q+ 21

k= 1) e’ + 4k — 1) ab + ] 0"
31 (14)

+ (k=10 + (k—1)(9% —11) &' b

2 :iblf'I
+ 1Lk = 1) &b + 8] 5

which is useful for small values of ¢.

Since P; is determined by the last & differential equations of the
modified set, and since the coefficients in these equations are constants,
we may expect P; [and hence G(f)] to be expressible as the sum of k
exponential terms. Indeed, when ¢.(s) is used to represent the Laplace
transform of P,({), the k differential equations for Pi(f), -« -, Pi(t) go
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into k linear equations for ¢;(s) , - - -, @x(s). By introducing the genera-
ting function

k
®(x,s) = xe(s) + -+ + 2'gi(s)
in the usual way, the linear equations may be combined into

ab(x, s)

bei(s) — o= (1 —a)(b + ax) — (s + ak — akax)®(2,s).

To obtain ¢(s), rewrite this equation as

[bﬁol(s) — (1 — _-1-)2—1(1, + a‘l.)—z—k—l

i] (15)

= a (1 —@)*(b + aka:)“z_kq:(n:, 8)

where z = s/(a 4+ b). Assume Re (2) > 0 and integrate (15) from x = 0
tox = 1. The right-hand side vanishes because ®(0, s) is zero. Changing
the variable of integration on the left-hand side from x to y = (1 — 2)/
(b + ax) gives

1/b 1/b
bei(s) [U v+ ay)idy = [U (1= yb)y ™ (1 4 ay)dy. (16)

Expanding (1 4 ay)* and integrating termwise shows that the coefficient
of bei(s) is b=7F(z) where

Fuz) = 3 (’) (ab” )" (17)

n=0 \N K4 + n
When the integrand on the right-hand side of (16) is replaced by its
equivalent

| 4 et b b)] T 4 ag)t = C 0D e
ko ka dy

(which is suggested by an integration by parts and adding and sub-
tracting various terms) we obtain

bqal(s)ﬂ-(z) = (1 -|- ,Ts;) Fﬁ-(z) - % (1 + a'b_!)k-H.

TFrom P’y = bP, it follows that segi(s) = bei(s) and hence

L _ b(l + abﬁl)ki»l
e FasF (2)

As s — =, Fi(z) tends to (1 + ab™)"/z and @,(s) is O(1/s). Writing

Sﬂu(é‘) = l +
S
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@o(s) as the sum of partial fractions, inverting to obtain Py(t), and using
(13) gives the expression we seek:

2 p(1 4+ ab ) exp [(a + bzl

= 18

G(1) mznu kazmFr' (2m) (18)

where F/(z) = dFi(2)/dz and 2o, 21, -+, 21 are the zeros of Fi(z).
These zeros lie between the poles at 0, —1, —2, -+, —k. When ¢ is

large Gi() is given, effectively, by the term corresponding to m = 0 in
(18). Usually z, is close to z = 0 and may be obtained by successive
approximations from Fi(z) = 0, i.e., from

1 Sk (ab™)”
z ;(n)zﬂ—n'

The foregoing method is the one originally used to obtain G(t) as the
sum of exponential terms. Subsequently, a more elegant method of ob-
taining (18) for G(f) was suggested by L. Takdes. His method removes
the restriction that the service time distribution be exponential.

Takdcs' result is the following: Let 8(s), ¥(s) be the Laplace trans-
forms of B'(t), —G'(1), the service time and busy period probability
densities, respectively. The equation to determine y(s), given B(s), is

1 T .
5§ + ke — kay(s) —fu ¢ " [Pa(O)) dt (19)

where P..(t) has the Laplace transform 1/[s + a — af(s)]. It will appear
later that the subseript a refers to the idle state (state 0). The expres-
sion (18) for G/(t) may be obtained from (19) by starting with 3(s) =
b/(s 4+ b). It turns out that P..(¢) is given by [b + « N (b + @)
so that the Laplace transform of [Paa()]* is not difficult to compute.

One way to establish (19) is to regard the model as composed of k
independent simple systems, each consisting of a source connected to a
server. Consider a simple system. The lengths of the idle and busy
periods have the respective probability densities a ¢ ™, B'(1) with
Laplace transforms o/ (a + 5), B(s).

From (26) of Appendix A, the probability P..(t) that an idle period
will be in progress at time ¢, given that one is in progress at time 0, may
be determined by inverting its Laplace transform 1/[s + o — af(s)].
The probability that all k servers are idle at time ¢, given that they are
idle at time 0, is [Pu(t)]". Equation (19) now follows upon using (26)
again. This time the type (a) intervals correspond to the periods (out-
ages) during which all k servers are idle. The arrival rate is ak and p.(t)
is ak ¢ . The type (b) intervals correspond to the innages with
probability density —(@'(t) and Laplace transform v(s).
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VI. COMPARISON WITH SIMULATION

It is interesting to compare the results predicted by the model with
those obtained by simulation. As an example, we shall take results ob-
tained by Rinehart and Robbins for a Maine-Western Europe link. This
link was assumed to have 18 satellites in random polar orbits at a
neight of 6,000 nautical miles.

The positions of the orbits, the locations of the receiver and trans-
mitter, and some computations involving a number of representative
passages over the region of mutual visibility lead to

1. the value T = 6.35 hours for the average interval between reap-
pearances of a particular satellite,
2. the distribution function B(t) for I, the length of time it is visible,
3. an average value of [ equal to b~ = 1.46 hours,
4. the value p = b~ '/T = 0.230 for the fraction of time the satellite
is visible.
It turns out that the probability density B'({) can be approximated by
the rectangle
0 t < 0.86 hours

B'(t) = 1{0.833, 0.86 < t < 2.06 (20)
L0, 206<t

The system was required to furnish a quality of service close to 0.99.
This requirement together with the expression ¢ = 1 — (1 — p)* and
the value p = 0.230 gives &k = 18 and ¢ = 0.99094. The model param-
eters are therefore taken to be

k= 18, b~ = 1.46 hours, a = ;,,
(1 —p)T ,
. (21)
- = 5
(0.770) (635) — 209

with the understanding that p = 0.230.

The values of ¢, {, : obtained by simulation are compared with those
predicted by the formulas of Section IT (and also by the model) in
Table T.

The second column gives values obtained by Rinehart and Robbins
by a simulation which followed the system for 18 months. The third
column gives values computed from the model parameters (21). It is
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TaBLE I
Quantity Simulation Model, p = 0.230 Model, p = 0.234
q 0.9918 0.99094 0.9918
to 0.291 hours 1/ka = 0.271 0.270
t: 35.1 hours q(1—¢q)'t, = 29.6 32.6
bt — 1.46 hours 1.48

seen that the values of the average outage length i, agree fairly well.
The discrepancy in #; reflects the shortcomings of the model. The last
column shows what happens when we hold k and 7" at their former values
of 18 and 6.35, and fudge the value of p so as to make ¢ have the simula-
tion value 0.9918. This changes p from 0.230 to 0.234 and #; from 29.6
to 32.6. It is seen that the value of #; is very sensitive to such changes.

Fig. 1 shows three curves for the innage length distribution. The ordi-
nate is G(t), the probability that an innage length will exceed . Curve A
is the curve predicted by the model assuming exponential service, and
is obtained by substituting the parameter values (21) in expressions ( 14)
and (18) for /(¢). Curve B is the exponential approximation

G(1) = e "'t (22)

with % equal to the simulation value 35.1 hours. Curve C is the result
obtained by simulation. During the 18 months simulated there were 122
innages, the longest lying between 250 and 260 hours, the next longest
between 190 and 200 hours, and so on. The average innage lengths cor-
responding to curves A and C are #; = 29.6 and t: = 35.1, respectively,
in agreement with the table above.

The curves shown in Fig. 1 agree moderately well. The agreement
would be improved if curve A could be shifted so as to give an average
value of 35.1 instead of 29.6. Some of the discrepancy between curves A
and C around ¢ = 0 can be aseribed to the assumption of exponential
service. Better agreement in this region could be obtained by taking the
model to have the (almost) true service distribution (20). The proce-
dure for doing this is indicated by (19) but the task of carrying through the
work seems to be difficult. Again, it should be possible to use the “Erlang
service” approximation 4b° exp (—2bt) for B’(¢) in (19) and also to
solve the corresponding first passage problem l[i.e., solve the equations
corresponding to (8) and (12)]. However, this was not attempted.

Some idea of the change produced in G(¢) when exponential service is
replaced by other kinds of service may be obtained from Fig. 2. The
curves of Iig. 2 show G(¢) for the simplified model based upon the re-
sults of Appendix B. Exponential service (curve D) and constant service
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time (curve E) are assumed, and Poisson arrivals are taken for both
cases. The average arrival rate is @ = k/T = 18/6.35 = 2.84 per hour
and the average service time is b~ = 1.46 hours. Substitution of these
values in the expressions for (({) given in examples (a) and (b) of
Appendix B give curves D and E, respectively.

The expanded scale at the top of Fig. 2 shows the behavior of G(t)
around { = 0. Both distributions predict the same average innage
length, namely

i =[¢""" — 1la”" = 22.0 hours (23)

which is (43) in Appendix B. The discrepancy between 22.0 and the
value £; = 29.6 given by the model of Section ITI shows the shortcomings

1.0
0.8 ,‘_{ A-PREDICTED BY MODEL OF SECTION 3
06 tiL=29.6 HRS
B-APPROXIMATION: G(t)= e-t/Ei
0.4 WITH ti{= 351 HRS
C-SIMULATION - 18 MONTHS
ti=351HRs
0.2
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Fig. 1 — Innage length distribution for 18-satellite system with random polar
orbits (Maine-Western Europe).
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Tig. 2 — Innage length distributions.

of the simplified model. Nevertheless, it appears that the difference in
shape between curves D and E illustrates the change in (7(¢) produced
by the different kinds of service. Support for this belief comes from the
fact that curves A and D, both of which correspond to exponential
service, have the same shape.

In view of the inaccuracies of the models and of the relatively good
agreement shown by the curves B and C of Fig. 1, it seems that the
simple exponential approximation for G/(t) is quite good.
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APPENDIX A

Probabilities Associated with Alternating Sequences

Expressions are recorded here for the Laplace transforms of two con-
ditional probabilities. These transforms are of use in establishing Takdes’
result (19).

Consider a sequence comprised of two kinds of intervals which alter-
nate with each other (for example, innages and outages). Let p,(1),
ps(t) be the probability densities for the lengths of the two types of
intervals, and let their respective Laplace transforms be a(s), B(s).
Suppose that the interval lengths are independent, let an interval of
type (a) start at time 0, and let Pu.(t) be the probability that an interval
of type (a) is in progress at time t. Then the Laplace transform of
P..(t) is

1 — als)
s[1 — a(s)B(s)]”
Similarly, if an interval of type (b) starts at time 0, the Laplace

transform of the probability Pu.(f) that an interval of type (a) is in
progress at time ¢ is

f ¢ M P dl = (24)
0

s[1 — a($)8(s)]”
These results are reminiscent of the relations between generating fune-
tions in the theory of recurrent events (Ref. 4, ch. 12).
The expression (24) may be obtained by noting that
Pu(t) = Pr(ta > t) + Prta + by + te >t
and ty + b < t) + -
= Prity > t) + [Prta =+ tn + b2 > t)

— Prtay 4+ tw > )] + ---

where fy1, ly, fe, -+ are the lengths of the successive (a) and (b)
type intervals. The Laplace transforms of Pr(ty > ), Pr(ty + tm >
£), ooare [1 — a(s)]/s, [1 — a(s) 8(s)]/s, - -+, and summation gives
(24) when | a(s) B(s) | < 1 (as it certainly is when Re(s) > 0). Expres-
sion (25) may be obtained in a similar fashion or by convoluting p(¢)
and P,.(1).

When p,(t) = a exp (— at), the condition that a type (a) interval
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start at time 0 may be replaced by the condition that a type (a) interval
be in progress at time 0. In this case P (t) is also the probability that
a type (a) interval is in progress at time ¢, given that one was in progress
at time 0. From (24) and a(s) = a/(a + s), the Laplace transform of
this probability is

1

s+ a— ap(s)’ (26)

APPENDIX B

Systems with an Infinite Number of Servers and Recurrent Inputs

This appendix will be concerned with systems containing an infinite
number of servers and a “recurrent” input, i.e., an input in which the
lengths of the intervals between successive arrivals are independent of
each other and of the state of the servers. In many respects these sys-
tems are simpler than the limited source input introduced in Section
I1I. Although they do not represent the satellite system as well, their
greater simplicity enables us to estimate the shape of the innage dis-
tribution for cases which are difficult to handle by Takaes’ result (19).

In the following list of results, A(t) is the distribution function for
the distances between the arrivals of the recurrent input and B(t) is
the service time distribution for each one of the infinite number of
servers. The expected distance between arrivals is a " and the expected
service time is b™".

B.1 The Conditional Probability Py (f)

Let all of the servers be idle at time —0 and let the first customer
arrive at time 0 making one server busy at +0. Denote by Pi.({) the
conditional probability that n servers are busy at time #. Consideration
of the first arrival following time 40 leads to an integral equation
which (in theory) may, be solved for Pyo(t), namely

Pyu(t) = [t = AD]B(t) + B(1) fﬂ A'(t — v)Py(v) dv, (27)

where A’(u) = dA(w)/du. A corresponding equation for the generating
function for Py,(t) is given by (44).

Example (a). For Poisson input 1 — A(f) is exp (— at). This cor-
responds to an unlimited source input. Substituting in (27), multiplying
through by [exp (at)]/B(t), and differentiating with respect to ¢ gives a
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differential equation for Pyo(t). Using the fact that Py (f) — B(f) as
t — 0 to fix the constant of integration leads to

Pu(t) = B(t) exp |:—a‘/; 1 - B(T)]d'r], (28)

a result given by Refs. 5 and 6. The work may be simplified by starting
with the assumption that Pyo(f) is of the form B(t)P(t).

Example (b). For regularly spaced arrivals, A’(u) = 8(u — a~') where
8(t) is the unit impulse. Equation (27) then gives

Py(t) = B(t), 0<t<a’
I)lu(t) = B(t)Pm(t - G_l) t > I.’]._:l

1 i o (29)
Pu(t) = B(t)B(t — a ') a <1< 2

Pu(t) = B()B(t — a HB(t — 2a") 2a' <t < 3a”"

and so on.

Ezample (c). The case when A(t) is arbitrary and 1 — B(t) =
exp (— ¢) has been studied by Takécs” (see also Ref. 3, p. 33 et seq.).
Multiplying (27) by exp (— st), integrating ¢ from 0 to «, and intro-
ducing the Laplace transforms «(s), 8(s) of A’(t), Pi(t) leads to a re-
currence relation between 6(s) and (s 4+ 1) which in turn gives
1 1 Qg1

M) = T G F D0 a G+ = — )

(30)

Q10542

TEFNI—a)(l - an)d e T

where a4, is written for a(s 4+ n). When 6(s) is known Py,(¢) may be
obtained by inversion.

B.2 The Busy Period Distribution G(t) for Poisson Arrivals

Let —@’(¢) be the probability density for the lengths of the busy
periods (corresponding to innages) and consider the case of Poisson
input and arbitrary service. The Laplace transform v(s) of —G'(t) is
given by

(s 4+ a)o(s)

TF at(s) (31)

v(s) =

where 8(s) is the Laplace transform of Pi(t).



1686 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1962

My original derivation of (31) was based on taking the Laplace trans-
form of

—G'(t) = f(t) —a f: ds Py(t — s)f(s)
(32)

t 8
+ azj; ds Py(t — 5) j; dr Py(s — »r)f(r) — --7-,

J(t) = Pu'(t) + aP(l), (33)

where P(t) is given by (28) and f(¢) dt is the probability that the
system will jump from state 1 to state 0 in (¢, § + di), given an arrival
at time 0 which ends an idle period. The series (32) was obtained by
an application of the method of inclusion and exclusion. Subsequently,
Takécs obtained a formula equivalent to (31) by an elegant method based
upon results of the type stated in Appendix A. When this method is
applied to obtain (31) the type (a) intervals are taken to be idle periods
(outages) with pa(t) = aexp (— at), a(s) = a/(a + s). The type (b)
intervals become the busy periods so that py(t), 8(s) become —G'(?),
v(s), respectively; and Pu(t) goes into Pu(t). Expression (25) of
Appendix A then says that the Laplace transform of Py(t) is

o(s) = — 1) (34)

from which (31) follows.
Ezample (a). For Poisson arrivals and exponential service with

B =1 — ¢, (28) becomes (Ref. 3, p. 26)
Pu(t) = (1 —e™)exp[—p+pe

M e =ab

The change of variable y = ¢ " carries the integral for the Laplace
transform of Py(t) into

bo(s) = F(z) — F(z+ 1), z= sh!

where

1
F(z) = B—”f ¥ e dy

0

1 p ¥

_1_ P _
Tz z(z+l)+z(z+1)(z-}—2)

n,—r

=2l — pF(z + 1)] = f: pe

=nl(z+n)’
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The Laplace transform of (t) may be shown to be

1 —yl(s)  Flz+1) 1 1 o
s © sk(z) azF(z) a (36)
and inversion gives
o (]z,,.,bl
G(t) = 2. p=ab” (37)

m=10 szF’(zm) ’

where I'(z) = dF(z)/dz. The zeros of F(z) are real and (a) occur at
20,21,2, ,(b)aresuchthat — 1 <2 <0,—-2<z < -1, -,
ete. and hence lie between the poles of F(z) at 0, —1, —2, - -+, (¢) may
be computed by successive approximations with the help of the last
series for I'(z) in (35).

A power series for G(¢) may be obtained by expanding [I — ~v(s)]/s
in powers of 1/s and then replacing s~ "' by ¢"/n!. The same series may
be obtained from the corresponding series (5.3) for the limited source
case by letting £ — =, « — 0 in such a way as to keep ke equal to a.
Replacing a by pb then gives

_b G+ D0+ 4+ DO’
1! 21 3!
(0" + 9" + 1o+ () _
4! ’

Git) =1

(38)
+

Example (b). For Poisson arrivals and constant service time, B(t)
jumps from 0 to 1 at time ¢ = b~'. Equation (28) shows that P(t)
jumps from 0 to exp (— ab™') at ¢ = b ". The Laplace transforms are
readily computed and the one for ((¢) gives

1 f«'«Hw [1 . ('_(E+Mb_1l€“

T —(a+s)b—1
e—ie 5 4 aqe "

qt) = ds, c > 0. (39)

2
Taking ¢ large enough, say ¢ = b, to make |z | < 1 where x is as™’
exp [— (a + s)b'] and expanding the denominator in powers of z leads
to

G = 1 + Z (,_pf,,),,[(bt — )" v (bt — n)n]. (40)

n=1 (?l —_ l)lp n!

Here, as in example (a), p = ab ' and the upper limit of summation is
determined from N < bt < N + 1. In particular,
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@) = 1, Gb"' —0) =1, Gh'4+0)=1—¢"
G2b)=1—(04+pe”’ (41)

G(3v7Y)

Il

1= (1+20)e" +p (1 + g) e
For large values of ¢

(g0 4 p) appe .

where ¢y is the rightmost root of

c+pe” " =0.

When p is large o, is approximately — p e ”.

The innages corresponding to examples (a) and (b) have the same
average length, namely

=" = 1)/a. (43)

To see this, note that from traffic theory, or by letting { — o in (28),
the fraction of idle time is po = 1 — ¢ = exp (— ab™"). The average
outage time is & = 1/a, and (43) follows upon using the relation (1)
between I, , 1, , and q.

B.3 Miscellancous Results for Recurrent Input

Except for the case in which arrivals occur at multiples of some fixed
spacing, Py(t) approaches the steady state probability po as { — =,
and the Laplace transform 6(s) of Py(t) has a simple pole at s =
with residue ps .

If Pi(t) tends to a periodic function the residue gives its average
value. Application of this result to the case of regularly spaced arrivals
and exponential service with B(f) = 1 — ¢ ' leads to the rather curious
expansion

flﬁ (1 —x " ")dr

0 n=0

1 1 1
=1 ‘m[l T2z —1) +3(a:— Dz —1) ]

Both sides represent the average value of the periodic function to which
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P(t) tends as ¢ — w. The integral on the left (withz = expa™, 2 > 1)
is the average value as computed from (29), while the series on the right
is the residue of 6(s) at s = 0 obtained by setting a(s) = exp (— sa™")
in (30) and letting s — 0.

The generating function

P, t) = 2-1:"131'1(6)

for the conditional probability P, (¢) that state n exists at time ¢, given
that an arrival at time 0 ends an idle period, [see (27)] satisfies the
integral equation

Pi(a,t) =[x + (1 — 2)B(1)]
¢ 44
4[1 — A1) +fn A'(t = v)Py(z,0) dy:l_ (44)

A formal step-by-step solution may be obtained by introducing the
binomial moments M ,(¢t) defined by

Ma

Pi(x, t) = (x— 1)"M.(8),

0

/.Z:: (i) Py(t).

The value of M(t) is one and the higher-order moments satisfy integral
equations obtainable from (44). When the Laplace transforms of
A'(t), B'(t), M,(t) are denoted by a(s), 8(s), ua(s) it is found that
the integral equations lead to

Il

M.(t)

_ ol _ 1 — g(s)
#0(8) =8 , Fl(s) = m

N B(s — 2)] alz)pu(2) "

=
a(s) = 5= n>1. (45
m) =50) e o7 12 a(s) @ > L (45)

The singularities of a(z)u,_1(2) are supposed to lie to the left and those
of [I — B(s — 2)]/(s — 2) to the right of the path of integration, s
being chosen so as to make this possible. In theory, the successive values
of u.(s) may be obtained step by step and thus ultimately lead to an
expression for Py(x, ¢). For exponential service the integrals in (45)
may be evaluated and lead to results given by Takdcs’ (see also Ref. 3,
p. 33).
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