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This paper is concerned with the problem of obtaining minimum-state
sequential circuils for incompletely specified flow tables. Atfention s di-
rected to relay-type flow tables in which the only unspecified eniries are
those whieh occur because of restrictions on the allowed input-variable
changes. For this type of flow table it is shown that a simplified version of
the Unger-Paull procedure s sufficient. In particular, only maximum
compatibles need be considered in forming the minimum-state sequential
circuit.

I. INTRODUCTION

One of the classical problems of sequential ecircuit theory is that of
obtaining a minimum-state sequential circuit satisfying the require-
ments of a given flow table. When the flow table is incompletely speci-
fied, the procedures for obtaining the minimum-state sequential circuit
are lengthy and require such extensive enumeration that they are im-
practical for computer implementation. This paper discusses a restricted
type of incompletely specified flow table for which more efficient pro-
cedures can be devised. In particular, relay-type flow tables in which
the unspecified entries all are present because of a restriction of the
manner in which the inputs can change are considered. It is shown that
for this type of flow table only the maximal compatibles or compatibility
classes need be considered in forming a minimum-state cireuit.

II. BACKGROUND

The problem of finding a minimum-state sequential circuit for an
incompletely specified flow table has been discussed extensively in
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previous papers. The results presented in these papers, particularly
that of Paull and Unger,' are necessary for the results to be presented
here. A brief summary of previous results assumed in this paper will be
presented first.

The usual approach to the study of minimum-state sequential cir-
cuits involves consideration of which flow tables specify the same
external behavior as a given flow table Q. Any flow table which does
specify the same external behavior as @ is said to cover Q. The usual
objective is to formulate a procedure for finding, for any flow table @,
a minimum-state flow table which covers Q. A formal definition of the
covering relation among flow tables is:

Definition. A flow table P is said to cover a flow table @ (written
P D Q) if and only if, for each internal state ¢; of @ there is an internal
state p; of P such that for any input sequence applied to both tables
initially in states ¢; and p; respectively, the output sequences are iden-
tical whenever the output of @ is specified.

The definition is suitable for flow tables in which each next-state
entry is specified but some of the output entries may be unspecified.
There is no loss of generality in considering this class of circuits since it
has been shown by Narasimhan® that all flow tables can be placed in
this form. This definition of a flow table covering another flow table
induces a corresponding relation between the internal states of the two
tables.

Definition. An internal state p; of a flow table P is said to cover an
internal state ¢; of a flow table @ (written p; D ¢;) if and only if, for
any input sequence applied to P and @ initially in states p; and ¢;,
respectively, the outputs are identical whenever the output of @ is
specified.

If flow table P covers flow table @ and P has fewer states than @,
then one state of P must cover more than one state of . Whenever
two states of a flow table can be covered by a single state of another
flow table, the two states must have the following relation:

Definition. Two internal states, ¢; and ¢; of @, are compalible if and
only if, for all input sequences, the output sequence which results when
() is initially in ¢; is the same as the output sequence which results
when Q is initially in ¢; whenever both outpuls are specified.

Theorem 1. If internal state p; of P covers both internal stales q; and
qx of Q, then stales q; and q. must be compatible.

Lemma. If internal state p; of P covers inlernal stales ¢j, , @ " Qi
of Q then stales qj, , ¢j, , =+ ¢ must form a compatibility class; that is,
each pair of the q;, must be compalible.
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It follows from this that if P D @, then each state p; of P must cover
a compatibility class of the states of ). In addition, the compatibility
classes covered by states of P must have the closure property, to be
described next.

Definition. The input states of a sequential eircuit will be represented
by the symbols x', x', - -+ x". The internal states of a sequential circuit
will be represented by the symbols s, , s», -+« s,.

Definition. The next-state entry specified by a flow table for input
state x“ and internal state s; will be represented by the symbol S(x%,s,).

Definition. A collection of compatibility classes is said to be closed
if and only if for each compatibility class {s;, 82, --- s.}, all of the
states S(xs), S(x%s:) --- S(x"s,) are included in a single compati-
bility class in the collection. This must be true for all choices of «.

Theorem 2. A flow table P covers a flow table Q if and only if:

(A) each inlernal state of Q is included in al least one compatibility
class of Q that is covered by an inlernal state of P, and

(B) the compatibility classes of Q which are covered by internal states of
P jorm a closed collection.

There is a procedure whereby for each closed collection of compati-
bility classes of a flow table @ (with every internal state of @ ineluded
in at least one compatibility class) it is possible to obtain a flow table
P which covers @ and which contains the same number of internal
states as there are compatibility classes in the collection. Thus, a mini-
mum-state flow table which covers a given flow table @ can be formed
from a closed collection of compatibility classes of @ containing a mini-
mum number of such classes.

Satisfactory techniques for determining the compatibility classes for
a given flow table are known.'! Actually the maximal compatibility
classes can be determined, and all other compatibility classes must be
subclasses of these. Presently known techniques for obtaining minimum-
state flow tables are inadequate because of the necessity for considering
the inclusion of nonmaximal compatibility classes in the closed collec-
tion used in forming the covering flow table P.! Each subclass of the
maximal compatibility classes must be considered, and this number of
subelasses ean be prohibitively large. The necessity for considering non-
maximal compatibility classes results directly from the closure require-
ment. The object of this paper is to show that for a certain type of
incompletely specified flow table it is always possible to use the maximal
compatibility classes in forming a minimum-state flow table. For this
type of flow table, the procedure for obtaining a minimum-state flow
is very much simpler than in the general case. Moreover, the type of
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flow table for which this result holds is the type most often encountered
in actual design problems.

III. TYPE A FLOW TABLES

The following discussion applies specifically to flow tables for funda-
mental mode operation.? For the purposes of this paper, a circuit will
be said to be operating in fundamental mode if no input is changed until
after the circuit has “settled down,” that is, until after all internal signal
changes have stopped. This type of circuit operation is often referred
to as “relay type” or “asynchronous.’

It is customary to begin the design of a fundamental mode sequential
circuit by writing down a primitive flow table — a flow table in which
there is exactly one stable state in each row. For such a table it is pos-
sible to associate one of the input states (columns of the flow table)
with each internal state, since each internal state is stable for exactly
one input state.

Definition. Let P be a primitive, fundamental-mode flow table. Let
8%, 8%, - -+ s, be the internal states of P which are stable for the input
state x°; &, s, -+ - s be the internal states of P which are stable for
input state %’ ete.

It will be assumed that in a flow table each unstable next-state entry
is followed directly by a stable next-state entry — no multiple changes
of internal state are allowed. Whether a flow table is of the type con-
sidered here, to be called Type A, depends on the mechanism whereby
unspecified entries occur in the table. Specifically, a flow table is of Type
A if the only unspecified entries are those which arise because of a re-
striction on which input states can directly follow each given input
state.

Definition. A flow table is of Type A if and only if: (a) it is a flow table
for fundamental mode operation; (b) it is a primitive flow table; (¢)
each unstable next-state entry refers to an internal state which is
stable for the corresponding input state; and (d) the only unspecified
entries are those which oceur because of a restriction on the input states
which can directly follow each possible input state.

For fundamental-mode flow tables it is common practice to assume
that only single changes of input variables are possible. Thus, the input
state for which 2, = 0, a2 = 0, cannot be followed by the input state
with #; = 1, 2» = 1. If this restriction is the only source of unspecified
entries in the table, then the table is of Type A.

Part (d) of the above definition of Type A flow tables can be re-
stated directly in terms of the pattern of unspecified entries in the table
(rather than the mechanism by which they arise). In order to describe
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this, it is convenient to assume that the rows in the table are partitioned
so that all of the rows which are in the same partition are stable for the
same input state and there is one partition for each input state. Ac-
tually, if the outputs associated with the stable states are all specified,
each partition need only include rows which are all stable for the same
input state and have the same outputs associated with the stable next-
state entry. Part (d) of the definition of Type A flow tables can be con-
sidered satisfied if, whenever any row has an unspecified entry for an
input state x°, all other rows in the same partition also have unspecified
entries for input state x”. This condition is actually somewhat more
general than the condition (d) given originally, but the theorems are
all valid for this more general condition.

For Type A flow tables, the compatibility relation has certain prop-
erties which are not generally satisfied for arbitrary flow tables. It is
these special properties which form the basis for the simplified procedure
to be derived here.

Theorem 3. Let s, s;°, sc", be three internal states of a Type A flow
table P which are all stable for input state x*. If 3;" and s;" are compatible,
and s;" and s,“ are compatible, then s;* and s;* are compatible.

Proof. By the definition of compatibility, when any input sequence is
applied to P the output sequence with P initially in s;* will be the same
as the output sequence with P initially in s, whenever both outputs are
specified. However, because P is a Type A flow table, whenever the
output is specified for P initially in s, the output for P initially in
s;" will be specified and vice versa. Similar remarks apply to states s;*
and s;% Thus the output for P initially in s;* must always agree with
the output for P initially in s;%, and the output for P initially in s.*
must always agree with the output for P initially in s,“. Whenever any
one of these outputs is specified, all three must be specified; therefore
the outputs for P initially in s;* and P initially in s,* must always agree.
This shows that states s;* and 5" must be compatible. See also Ref. 4,
pp. 183-185.

Let the fact that two states p and ¢ are compatible be written sym-
bolically as p O ¢. Then for states satisfying the conditions of Theorem 3,
the following properties must hold:

(P1) s O s (reflexive)

(P2) If s, O s, then s;* O s;" (symmetric)

(P3) If s O s, and s, O s then s;* O " (transitive).

A binary relation which satisfies these three properties is an equiva-
lence relation.” The important characteristic of an equivalence relation
is that it divides the set of objects on which it is defined into disjoint
(nonoverlapping) equivalence classes.
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Theorem 4. Let P be a Type A flow table. Let s;% and s;" be two internal
states of P which are both stable for input state X", and let s” be an in-
ternal state of P which s stable for input state . I f 5% and s;" are com-
patible, and ;" and si” are compatible then s;" and s are compatzble

Proof. For any input sequence, the outputs for P initially in 8" and
for P initially in s° must be identical whenever both are specified.
However, the output for P initially in s;% is specified whenever the
output for P initially in s, is specified, and these outputs must always
be the same. Thus, all specified outputs for P initially in s; are the
same as the corresponding outputs for P initially in s, , and the s”
outputs are the same as the outputs for P initially in s’ whenever both
outputs are specified. It follows from this that the outputs for P initially
in ;" and for P mltlally 1n s:® must be the same when both are specified
and hence that s;* and s,° are compatible.

Definition. A set of internal states of a flow table P is a maximum com-
patibility class if and only if (¢) every pair of states which are both in
the set are compatible, and (#i) there is no other state of P not in the
set which is compatible with all of the states in the set.

Theorem 5. Let P be a Type A flow table. Let s," and s,* be two internal
states of P which are both stable for input state x* and which are compatible.
Then any maximum compatibility set which includes s;" must also include
s;" and vice versa.

Proof. Suppose that € is a maximum compatibility class which in-
cludes s;". If there is any other state in €' which is stable for input state

say s, then ;% and s* are compatible and s,” and s;” are compati-
ble By Theorem 3, states s,* and s,” must then be compatible. Thus
s," is compatible with all states m (' which are stable for input x*.
Suppose that there is some state s in C whlch is stable for some input
state B dlfferent from a. Then states s;* and s are compatlble and
states §;” and s;” are compatible. By Theorem 4, states s,° and s;* must
then be compatible. Thus state s, is compatible with all states in €
and therefore must be included in C.

Theorem 6. Let P be a Type A flow table. Then any collection of maximum
compatibility classes of P for which each internal state of P 1s included in
at least one of the maximum compatibility classes s closed.

Proof. Let {s, s2, - Sa} be one of the maximum compatibility
classes. Then if the collection of maximum compatibility classes is
closed, all of the states S(x%s1), S(x%s:) -+ S(x%sm) must be included
in one of the maximum ecompatibility classes of the collection. Since
P isa Type A flow table, all of the states S(x%,s1), S(x%s2), - - S(x%,5,)
must be stable for input state x*. It has been shown that all pairs of
these states must be eompatible since {s1, s, - -+ sn} is a compatibility
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class." By Theorem 5 any maximum compatibility elass which includes
the internal state S(x%s;) must also include S(x%s:) --- S(x%sm).
The conditions of Theorem 6 assume that there is at least one maximum
compatibility class in the collection which includes state S(x“,s,). There-
fore there must be at least one class in the collection which includes
all of the states S(x%s1), S(x%s.), - -+ S(x%s,). From this it follows
that the collection is closed.

Theorem 7. Let P be a type A flow table. Then there is at least one
minimum-state flow table Q which (a) covers P, (b) contains the minimum
number of internal states for any flow table covering P, and (c) for which
each internal state of @ covers a maximum compatibility class of P.

Proof. There is at least one flow table — P itself — which covers P,
and there must be at least one such table containing a minimum number
of states. Suppose that R is a flow table containing a minimum number
of states and covering P. If each state of R covers a maximum com-
patibility class of P, the theorem is satisfied. Therefore suppose that
each state r; of R covers a compatibility class C; of P and that at least
one of these compatibility classes is not maximal. Now form a new
collection of compatibility classes by replacing each C; by one of the
maximal compatibility classes in which it is included. The maximal
compatibility class which replaces ('; will be denoted as M ;. The col-
lection of the M; will (a) contain the same number of classes as the
collection of the C;, (b) include each state of P in at least one M,
and (¢) be closed because of Theorem 6. It is thus possible to form
from the M ; a new flow table () which satisfies all of the conditions of the
theorem.

1V. EXAMPLE

In order to illustrate the significance of the theorems, an example of
a Type A flow table will be discussed. Table I shows a Type A flow table
and the corresponding maximal compatibility classes. States 5 and 10
are the only pair of compatible states which are both stable for the
same input state. By Theorem 5, any maximal compatibility class
which includes either of these two states (5 or 10) must include both of
them. Inspection of Table I(c) shows this to be true. It follows from
Theorem 6 that any closure requirements must involve only these two
states, and Table I(b) shows this to be true. The formation of a mini-
mum-row flow table which covers Table I(b) requires only that a
sufficient number of maximum compatibility classes be chosen so that
each internal state of Table I(a) is included in at least one maximal
compatibility elass. This problem is formally identical to the problem of
choosing which prime implicants should be included in a minimal sum
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TaBrLeE I —A TypE A FLow TABLE
(a) Flow Table

8 x° x! x? x3 xi
1 ,0 2,0 — 5,0 —
2 4,1 ®),0 3,0 — —
3 - 2,0 ®.0 5,0 6,0
4 , 1 8,1 — 10 ,0 —
5 — — 3,0 , 0 7,1
6 1,0 — 3,0 5,0 ®.0
7 4.1 — 9,0 10,0 @.1
8 4,1 (8),1 9,0 — -
9 - 8,1 ®.0 10,0 6,0
10 — - 3,0 @ .o 7,1
S, 2
(b) Implication Table for Determining Compatibity

2 T

3_ v

4 T 3 z

5 +/ v x v

6| 4/ T £/ T x

7 T T T iV x r |

8 T T x V4 z T { v |

9 = T T AV T r |z | A

10| 5, 10 v T + Vi T i T i T T

1 2 3 4 5 6 7 8 9

(¢) Maximal Compatibility Classes

A: 4,8,9
B: 4.7.8
C: 4 510
D: 1.3 6

— 13 b0
o e oo

P
[=R =]

for a Boolean function.® Therefore, the same techniques can be used.
Table II shows a “prime implicant table”” for the maximal compatibility
classes of Table I. Each row of Table II corresponds to one of the
maximal compatibility classes. Each column of Table II represents
one of the internal states of Table I. An X is placed in a cell of Table II
if the maximal compatibility class corresponding to the row includes
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TABLE II —PRIME IMPLICANT TABLE FOR THE MAXIMAL
CoMPATIBILITY CLASSES OF TABLE I

Internal States
1 2 3 4 5 6 7 B 9 10

X |®

b
*B b'¢ @ x
X

Maximal Compati-
bility Classes *D| X X @

F X X X

G| X X X

the internal state corresponding to the column. A sufficient number of
rows must be chosen so that each column has an X in at least one of the
chosen rows. It follows from this that rows A, B, and D must be chosen,
since columns 9, 7, and 6 each contain only a single X. After A, B, and
D have been chosen, only columns 2 and 5 do not contain an X in
any of the chosen rows. This may be remedied by also choosing row I.
Thus the collection of maximal compatibility classes A, B, D and F
corresponds to a minimum-row flow table which covers Table I(a).
Such a table is shown in Table IIL.

Inspection of Table IT shows that columns 5 and 10 are identical.
Any states which are compatible and are stable for the same input
state will always have identical columns in the ‘ prime implicant table”
for maximal compatibility classes. It is therefore unnecessary to carry
these states along explicitly. Each set of such states can immediately
be replaced by a single state (this corresponds to Huffman’s merging) *
The sets of states which are “merged’” in this step are exactly the sets of
states which must be covered by single states of the new table in order

TaABLE III—A MinimoM Row Frow TABLE wHICH
Covers TABLE I(a)

8 x? x! b b x!
4,8,9 A @, 1 @ ,1 @, o0 F,o0 D,0
47,8 B| ®,1 ®.1 A,0 F,o0 ®,1
(1,3,6) D| @©,0 F,o0 ®,o0 F,o0 ®,o0
(25,10 F B,1 ®,0 D,0 ®. o0 B ,1

S, Z
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to insure that closure is satisfied. Thus, closure will always be satisfied
as long as these sets of states are identified; i.e., either all members of
the set are included in a compatibility class or all members are excluded.

After the collection of maximal compatibility classes which correspond
to a minimum-row flow table has been determined, states can some-
times be removed from some of the classes. The advantage of removing
states and thereby obtaining nonmaximal compatibility classes is the
corresponding introduction of unspecified entries in the minimum-row
flow table. Closure will still be satisfied as long as (z) only sets of states
which were identified previously, or single states which cannot be
identified with any other state, are removed; and (i) each state is
still contained in one of the remaining compatibility classes. This pro-
cedure can be carried out until each state is included in only one of the
compatibility classes. In Table III, this could mean the removal of
states 4 and 8 from class B.

CONCLUSIONS

It has been shown that for incompletely specified flow tables which
satisfy certain very common conditions, greatly simplified procedures
for obtaining minimum-state flow tables exist. For this class of tables
it should now be possible to develop computer programs which are
guaranteed to work for tables with sufficiently large numbers of internal
states so that hand techniques are not feasible.
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