Timing Errors in a Chain of Regenerative
Repeaters, 1

By B. K. KINARIWALA
(Manuseript received July 16, 1962)

The pulse displacements produced by timing errors in a chain of regen-
erative repeaters (using tuned-circuit timing filters) are represented by a
linear transformation of the pulse displacements at the output of the first
repeater. To facilitate the discussion of the general problem, the simpler
case of periodic pulse trains is considered first. For this case it is shown
that while the mean value tends to infinity, the central moments of the pulse
displacements remain bounded as the number of repeaters approaches
infinity. Further results are obtained which show that all the moments of
the spacing jitter remain bounded for an indefinitely long string of re-
peaters. Finally, the misalignment in the jitter at any given repeater is
represented by a simple expression which shows that the essential com-
ponent in the misalignment is flat delay.

The general problem of random pulse trains, infinite in length, is dis-
cussed in Part 11 in this issue. The results obtained for the general case
are quite different from those oblained for the periodic case. The variance
s unbounded in this case except for pulse trains with certain special re-
strictions. The computational aspects for the evaluation of jitter accumula-
tion will be discussed in a subsequent paper.

I. INTRODUCTION

In regenerative digital transmission systems, one of the important
problems is that of maintaining the proper distance between the signal
pulses. The problem becomes much more serious when the system con-
tains a rather long chain of regenerative repeaters. Several aspects of a
theoretical nature in connection with this problem have been discussed
by Sunde,! Bennett,? Rowe?® and Rice.*

We study here the pulse displacements produced by tuning errors in a
chain of repeaters using tuned-circuit timing filters. For simplicity, we
shall consider the system free of noise, distortion, ete.
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An idealized version of the physical system is a chain of repeaters
with the input supposed to be a train of unit impulses. Each repeater
is a device containing a resonant circuit which is excited by the incoming
train of pulses. The response of the resonant circuit to the incoming
signal will ideally consist of a sum of sinusoids and will pass upwards
through zero at an instant determined by the resonant frequency of the
cireuit. This instant will coincide with the instant of occurrence of the
pulse, if it occurs at all, when the resonant frequency is identical with
the pulse repetition frequency. The repeater does its “‘repeating” by
sending out a unit impulse, at the instant the response of the tuned-
circuit passes upwards through zero, provided the input signal has a
pulse at or near the same instant. If there is no pulse in the input, no
pulse is sent out.

Due to tuning error, the tuned circuit in a practical repeater would
resonate at a frequency somewhat different from the pulse repetition
frequency. Further, the impulse response of the circuit is more truly a
damped sinusoid. These considerations show that the positions of the
pulses sent out by a practical repeater are somewhat displaced from the
true positions of the pulses in the original pulse train.

Actually the system consists of a chain of repeaters. We are thus led
to a consideration of the statistical properties of the pulse displacements
produced in a random pulse train by the combined effect of mistuning
in each successive repeater. Of particular concern is the behavior of
the pulse displacements as the number of repeaters gets larger and larger.
It is to this question that we attend.

We begin our discussion by a mathematical statement of the problem.
We show that the pulse displacements at the output of a chain of
repeaters may be represented by a linear transformation, in a Banach
space, of the pulse displacements at the output of the first repeater.

The linear operator (or, the linear transformation) becomes un-
bounded, in the limit, as the number of repeaters gets indefinitely large.
From this follows the result that the average value* of the pulse dis-
placements increases indefinitely as the number of repeaters approaches
infinity.

The behavior of the variance, as well as the other central moments,
of the pulse displacements is investigated by considering a suitable
projection, when it exists, in the Banach space. When the domain of
the above linear transformation is a linear manifold obtained by the
desired projection, we find that the linear operator is bounded. Conse-

* All averages are taken over the values of the pulse displacements. No averages
over the mistunings should be compared with the results obtained here.
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quently, all the central moments of the pulse displacements are shown
to remain bounded as the number of repeaters approaches infinity.
When the above-mentioned projection does not exist, the central mo-
ments are shown to be unbounded.

Practical situations ecall for a determination of the bounds on the
central moments when the number of repeaters is finite. In such cases,
the input pulse trains may be assumed to be periodic pulse trains with
the period much larger than the time constants of the timing filters.
The problem reduces to a linear transformation in a finite dimensional
vector space. The central moments are bounded and they ean be pre-
cisely evaluated. A simple procedure to determine these bounds is
developed.

The same analysis can be directly applied to an investigation of the
so-called “‘spacing jitter,” or variations in the spacings between virtual
pulse positions. Similar results are obtained for both a finite and an
infinite number of repeaters in the chain.

We shall also have oceasion to remark upon the “misalignment noise”
which is the jitter introduced, by the nth repeater, in an already jittered
pulse train coming into the same repeater.

T'inally, in a subsequent paper we shall discuss the computational as-
pects for the evaluation of jitter accumulation in a long string of re-
peaters.

Organization of the paper is as follows. We start with the statement
of the problem in completely general terms and express it as a linear
transformation. Next, to facilitate the discussion of the general prob-
lem, we consider the simpler case of a periodic pulse train, In Part II of
the paper,* we consider the general case of a completely random pulse
tran.

II. STATEMENT OF PROBLEM

The input to the chain of repeaters is supposed to be a train of unit
impulses which occur, if they occur at all, at the instants

{"'l _271 "'710: 7321') ”'}‘

The occurrence or nonoccurrence of a pulse at time ¢ = —nr is deter-
mined by the value of the random variable @, . If @, = 1, which happens
with a given probability, a pulse is present. If @, = 0, no pulse is pres-
ent.

The resonant circuit in the repeater is excited by the incoming train

* Part II of the paper appears in this issue, p. 1781.
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of pulses. The response of the circuit to a unit impulse at time ¢ = 0 is
assumed to be

e °' sin we, t>0 (1)

where wor is almost 27 but, due to tuning error, misses its desired value
by
e = 2 — wgr = 20(fr — fO)/fr . (2)

Here f, = 1/7 is the pulse repetition frequency. The decrement ¢ is
related to the @ of the circuit by o7 = #/Q.

The response of the resonant circuit to the incoming pulse train will
consist of a sum of terms of the form (1) and will pass upwards through
sero at an instant near t = (—nr), say at ¢t = (—nr + t,). The re-
peater sends out a unit impulse at the instant (—nr + t,) if the input
signal has a pulse near (—nr). If there is no pulse in the input, no pulse
is sent out. The response of the resonant cireuit still goes through zero,
and we can say that there is a “‘virtual” pulse displacement of amount
t, seconds (or of 2,/ radians).

IFor a chain of repeaters, we assume that all of the resonant circuits
have the same @ but that their mistunings e , e2, - -+ are distributed
independently and at random. Let g&' be the displacement of the kth
pulse (originally entering the first repeater at ¢ = —k7) as it comes out
of the Ith repeater where [ = 1,2, - - -. The displacement &' is measured
in radians, where 27 radians corresponds to the pulse interval =. The
superscript [ signifies the output of the (th repeater. The mistuning in
the resonant circuit in the lth repeater is represented by ¢ . When we
assume that @ is very large and the mistunings ¢; are much smaller than
or = m/Q radians, we are led to a set of equations which relate the pulse
displacements out of the lth repeater to those out of the (I — 1)th re-
peater. These equations are

Z (€™ +kl3"(fu+kl_1 + ‘N:Et)
Ekl — n=0 - ,
Z ari+kﬁn (3)

n=0

(l = 1’2’3!!}‘ =0s1s2s"'),

where 8 = exp (—o7) & 1 — (x/Q) is a number slightly less than unity.
The initial conditions are that the pulses entering the first repeater
have zero displacement, i.e.,

Ek0=0; k=0;1:2:'°'- (4:)
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These equations are given by Rowe’ and also by Rice.' Here we have
followed their terminology very closely.

The physical problem dealing with a chain of repeaters is now re-
placed by the mathematical problem of studying the behavior of the
variables &' defined by the above equations. The @,’s and ¢,’s are either
given explicitly or are random variables whose distributions are known.

III. LINEAR TRANSFORMATIONS

We note that the set of equations in (3) is a linear set, and we can
express it as a linear transformation of the set of variables {£&'™"} into
the set {&']. We are, however, primarily interested in the behavior of
{&'1 when [ is large and when no knowledge of {£"'} is available. A
more useful expression is obtained by rewriting (3) as

. Zﬁ arl+kB,l£n+k.,_I P .
b= —"—F—+ o &, (5)
Z an{»k.@n

n=0

where

Z_: @B ne
Ek] — n=0 . (ﬁ)

Z Qnsi
n=0
In our formulation, zero mistuning does not introduce any jitter in a
jitter-free pulse train. We will therefore understand the chain to start
with a repeater having non-zero mistuning.
Equation (5) can be used to express {£'} as a linear transformation
of {&"}. To do this, define a matrix (infinite)

(@ @8 @ |
8o So So
0 & @8 @s
T = 81 S 81 , (7)
Q@ Q
0o o ® &P
So Sa

where
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S = Z:o Ctn-l—ﬂB"; (8)
and define a vector
X! = [Eﬂla Elts E?fl te ']' (9)

Then (5) becomes

X, =TX\,+9X; (Xo=0), (1=1,23,---). (10

€1

From (10) it follows that

=
Il
1
|
™M
o
L
~3
L
=
=
Il

I). (11)

One can, if need be, discuss the behavior of (11) in the above form.
However, the ¢'s are usually of the same order of magnitude, and the
equation is considerably simplified by assuming that the €'s are iden-
tical.* Then

v=0

X = [i T”] X, (12)

We are interested in the problem when [ becomes indefinitely large, or,
dropping superfluous subscripts,

i
Y=]Iim|: C"1"":|X. (13)
Here X and Y represent the pulse deviations out of the first repeater
and out of the (I + 1)th repeater, respectively.

The original problem is now represented as a linear transformation of
X into Y. The linear transformation, when it exists, is a function of
another linear transformation T. The domain, as well as the range,
of the transformation T is a Banach space, as will be shown in Part II.
Here, we pursue the simpler case of a periodic pattern.

Whether the variance is bounded or not is not a particularly impor-
tant question for the periodic case. Such a question can be answered
by a very simple argument. However, we give here instead a complete
analysis of the periodic case. Our purpose in doing so is twofold. First,
the analysis shows how certain basic properties of the operator T' in-
fluence the questions of boundedness of the jitter; it also gives a simple

* We shall discuss elsewhere the difference, if any, in the results when we do
not make this assumption.
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computational procedure for evaluating the accumulated jitter. Second,
the analysis serves as a simple introduction to the more complex argu-
ment pursued in Part II.

IV. PERIODIC PULSE TRAINS

We assume here that the @,’s form a pattern which repeats itself
with a period m. The pattern is otherwise arbitrary. In such cases, the
pulse displacements are also periodic with the same period m. Then,

G~n-ﬁ-m = @,

Ek-}-m’ = Ek

for all values of indices n and F.

The domain of the operator 7 is thus an m-dimensional space. Since
@nym = @, the range of T is also of dimension m. The problem reduces
to the study of a linear transformation in a finite dimensional space.
The operator T is now represented by a finite matrix A.

“(au + Q8" + @un™ + ) (alﬁ + @™ + ) .

So So

(14)

t

A = ((imBm_l + @gmﬁa"'—l + .. ) (&1 + &rmHBm + ___)

S1 S1

G @ @nad"]
8o’ so’ 8o’
" @ QB
— S]’ S]’ -51, y (15)
&Uﬁ Cim—l
L Sm_]’ srn—]' -
where
s = (1-— an)Sk- (16)

I"or the periodic case, (13) becomes

Y = lim [i A”] X, (17)

I+
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where we continue to use the same symbols X and Y to represent the
finite dimensional vectors.

In order to investigate the limit of (17), one must determine the
behavior of the infinite series and its convergence properties. Moreover,
if the limit does not exist, the question to be answered is whether or not
the variance of ¥ has any limit. Other central moments may also be of
interest.

In what follows, we show that the limit of (17) does not exist. This
implies that the mean of Y is infinite. However, we shall show that the
central moments always exist for any arbitrary m. We assume through-
out this paper that averages over the sample values* are statistically
identical to the averages over the ensembles.

A discussion of the properties of the linear transformation defined by
(17) involves the study of a function of the matrix A. In order to discuss
such a function, one must have a knowledge of the spectrum of the
matrix. We study the spectrum of A in the next section.

V. SPECTRUM OF A

In this section, we prove the following theorem.

Theorem: The spectrum of A consists of two parts:

1. The mazimum eigenvalue is located at X = 1, and it is stmple;

2. All other eigenvalues are such that their modulus is less than unalty.
te, | M| < 1.

Proof: Observe that A is a stochastic matrix since the sum of each
row is equal to one and all the elements of the matrix are nonnegative.
Thus, A = 1 is indeed an eigenvalue with eigenvector {1, 1, ---, 1}. It
also follows that the entire spectrum of A is contained in the unit disk
| x| = 1. This can be observed in a simple manner by considering powers
of matrix A and noting that the trace of A" does not exceed m, the
order of the matrix A. If there were any eigenvalue for [ A | > 1, one
could find a large enough n such that the trace of A" would exceed m.
(We do not worry about cancellation because we can always choose
the proper n to prevent this.) Hence, there are no eigenvalues outside
the unit disk.

Next, we wish to show that there are no other eigenvalues (A # 1)
with modulus equal to one. We obtain a matrix equivalent to A by
means of elementary transformations of interchanging rows as well as
the corresponding columns. The eigenvalues of the matrix are invariant

* The values of the pulse displacements are referred to as the sample values,

and the ensemble is the set of admissible sequences of pulse displacements. For
justification of the above nssumption in the general case, see Bennett, op. cit.
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under such operations, We obtain a matrix of the form

B—[Af OJ (18)
“le bl

where A’ is a square matrix all of whose elements are positive and D
is a square null matrix. Only the eigenvalues of A’ need be considered.
To A" we apply Perron’s theorem which, for a stochastic matrix with
all elements positive, states that: the extremum eigenvalue is located
at A = 1; it is simple; and its modulus exceeds the moduli of all other
eigenvalues. Q.15.D.

VI. MEAN, VARIANCE, ETC.

The solution to (17) can now be expressed in terms of the basis vectors
of A in the form

! m
=lim 2 2 N e, X", (19)
ls% p=0 p=1
where, X" is the eigenvector of A corresponding to the eigenvalue
M of A, The coefficients «, are the expansion coeflicients in

X = > aX™. (20)
B

We have assumed, for the present, that A is of simple structure. There
are no significant changes in the development when such an assumption
is not made. We shall discuss this matter a little later.

In the previous section it has been proved that the extremum eigen-
value, say A;, is simple and is located at A, = 1. The rest of the eigen-
values are strictly inside the unit circle. The mean value of Y is seen to
approach infinity by considering only those terms that involve A\, = 1,

aX® Z)\ + Z

.H_"l - ,u

X, (21)

where, X = {1,1, -+, 1}.

The first term in (21) is a divergent series and ¥ approaches infinity
as the number of repeaters increases indefinitely.* The behavior of the
central moments is investigated by considering

v — 7 = Z( )[\'W X0, (22)

p=2

l—)\

* The statement is valid, in general, provided a, = 0. We need only show that
there exists at least one X such that «, # 0. Consider a pulse train with all pulses
present; then X = an X with oy # 0.
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The value of [V — ¥ is finite since | A, | < 1. All powers of [¥ — ¥]
are finite and (Y — ¥7]* will also be finite. We thus see that all the cen-
tral moments, including the variance, are finite.

Now we consider the case when the structure of A is not simple. The
only difference in this case concerns the vectors corresponding to eigen-
values other than A, . Let us, for simplicity, consider the basis vectors
that correspond to an eigenvalue A, of multiplicity two. Similar develop-
ments can be carried out when the multiplicity is greater than two.
The normal form of A would have a Jordan block

Mo
g (23)
0 A
It is well known that there exist two linearly independent vectors
X;* and X,* such that
AX;[("] = Aleti‘)
(24)
AX!(F) — AHXZ(”) + Xl(.u).

The vector X,* is an eigenvector of A and is transformed in the same
manner as the vectors X* are, and it yields for ¥ a term of the form

Oy ) ¢
— . 25
Q—Q& (25)
On the other hand, when A’ operates on X;* it yields

ALY = MY + o (26)

Thus X.* contributes to ¥ a term of the form

) Z=ju A" = [go XY+ 2 vx;‘xl‘“],

w=0

! ( 1 ) J:’ (u) I ( ]' )2 X’ (p)
1 — M\ ! 1 — M\ ! ’
since | A, | < 1.

The terms due to the basis vectors of A corresponding to \, are shown
to be bounded, and our results on the boundedness of the central mo-
ments remain valid regardless of the structure of A.

(27)

VII. SPACING AND MISALIGNMENT

Sometimes a more useful measure of jitter is the spacing jitter, which
is defined as the deviations in the spacing between adjacent pulses or
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pulse positions. This is obtained by taking the difference of the ad-
jacent pulse position deviations. To do this operationally, let us define
an operator S which shifts the elements in the vector ¥ such that the
kth element appears as the (k' — 1)th element and the first element
appears as the mth element.

0 1.0 0 -~ 0
0010 --- 0
S=|: , (28)
0000 0 1
(1000 0 o0

The spacing jitter ¥, can then be represented in terms of the timing
jitter ¥ by

Y. = 1[I — S|Y. (29)
By using (19) and (29), we have

] m

Y, =lm 2 2 Nall — SIX%. (30)
[»% p=0 p=1
The operator [I — S] annihilates X and we obtain

Y, = f( i ) I — S|Ix™. (31)

p=2 1 — AJ.«

The spacing jitter is finite for all sample values, and so the mean and
all other moments of this jitter are finite.*

Next, we briefly consider the misalignment which is defined as the
difference between the timing errors at the output and at the input of
a given repeater. The representation of the misalignment in the (I + 1)th
repeater is given, in the periodic case, by modifying (12) to a finite
dimensional one and obtaining

X1 — X)) = A'X,, (32)

where, X represents the jitter at the output of the kth repeater.

Equation (32) implies that the misalignment essentially amounts to a
flat delay as [ gets larger. Indeed, there is virtually no difference in the
misalignment for different repeaters when the values of I are reasonably
large.

* For periodic pulse patterns, this is intuitively obvious,



1780 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1962

VIII. CONCLUSION

The general problem of timing errors in a string of repeaters has been
expressed in terms of certain linear operators and functions of these
operators. The simpler case of periodic pulse patterns is then studied in
detail. We have shown, for the periodic case, that the mean value of
jitter accumulation in a string of repeaters increases indefinitely but
that the central moments of the jitter remain bounded. In fact, the
divergence of the mean value for the infinitely long string stems from
the accumulation of the flat delay occurring in each repeater. Once this
flat delay is eliminated, the remaining part of the jitter is bounded.
Consequently, all the central moments are bounded. All the moments
of the spacing jitter are bounded for identical reasons. The misalign-
ment behavior is also explained by the dominance and the invariance
of the flat delay.

The question of evaluating the jitter accumulation will be discussed
in a subsequent paper. We will show there that the spectrum of the
operator A can be determined fairly simply even for very large periodic-
ity. No polynomials of high degrees need be solved to determine the
eigenvalues. We shall also discuss the computation errors involved in
periodic approximation versus those involved in truncation of the
infinite pulse train.

The general case of random pulse trains with no periodic structure
will be examined in Part II. We shall have occasion to thoroughly
examine the operator T. Since we shall be concerned with infinite
dimensional space, the spectral properties of T are not so easy to de-
termine. We shall compare the spectral properties of T with those of 4
in order to delineate the difference between the two cases.
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