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The behavior of the timing jitler in a long chain of repeaters is shown to
depend on the spectral properties of a linear operator which maps the space
of bounded sequences into itself. As the number of repeaters increases indefi-
nitely, so does the mean value of the jitter. The variation about this mean
value remains bounded only for certain highly constrained pulse lrains
(e.g., periodic, finile, ete.), but it is otherwise unbounded.

1. INTRODUCTION

We showed in a previous discussion that the pulse displacements
at the output of a chain of repeaters may be represented by a linear
transformation of the pulse displacements at the output of the first
repeater.* The linear transformation turns out to be a simple funetion
of a basic operator T which, in essence, represents the action of the
repeater on the incoming jitter. Though the operator T depends di-
rectly on the manner in which the repeater extracts its timing informa-
tion from the incoming pulse train, it is believed that there would be no
basic difference in the major results obtained or in the method of analy-
sis for different timing extractors. We have assumed that the timing
information extractor is a tuned cireuit with a finite but fairly high @
and the source of jitter is the mistuning in the tuned ecircuit. Other
sources of jitter often lend themselves to a similar mode of investigation.

The rest of the discussion in Part I concerned the class of periodic
pulse trains. The problem reduces, in such cases, to a consideration of
linear transformations in a finite dimensional space. F'or a periodic
pulse train with period m, it was shown that the variance of the jitter
remains bounded for an indefinitely long string of repeaters. .

* We shall assume that the reader is familiar with the contents of Part T of

this paper: B. K. Kinariwala, Timing Errors in a Chain of Regenerative Repeaters,
I, this 1ssue, pp. 1769-1780.
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Unfortunately, the above results do not let us draw any conclusions
for the behavior of the variance when the pulse train is not periodic,
but infinite, in length. For example, if there existed a bound M, on the
variance, which was not a function of m, then we can let the period
become infinite and conclude that the variance was bounded for the
indefinitely long random pulse train. However, it is not apparent whether
M is dependent on m or not. The value of the variance is determined
by the number of eigenvalues of the pertinent operator, their location,
and the algebraic signs of the corresponding eigenvectors. It seems
reasonable, therefore, that the bound on the variance is a function of the
period m. The behavior of this function as m approaches infinity will
determine whether the variance is bounded in the nonperiodic case.
We do not pursue the matter in this direction because it is not easy to
express the above function in a simple manner.

Instead, we investigate the general problem directly in the infinite
dimensional space. We establish that the basic operator 7" maps the
normed linear space 1, into 1, for 1 £ p = «. Next, we show that the
domain of 7T for our problem is the space 1,.* We determine the condi-
tions under which the variance is bounded, and we conclude that there
is no bound on the variance of the jitter for the random (infinite) pulse
train. The conclusion remains valid for any specification of dependence
or independence of the random variables @, which take on the value
one if a pulse is present at time ¢ = (—n7), but they are zero otherwise.
Even a bound on the maximum number of successive zeros in the pulse
trains does not seem to alter our result. Only when the operator T is
restricted to a finite dimensional space does the variance remain finite.
Such a restriction oceurs for finite pulse trains, periodic pulse trains,
nonperiodic pulse trains which eventually take on a periodic behavior,
and so on.

The organization of the paper is in the nature of a proof with digres-
sions. Though these digressions are extraneous to the discussion of the
boundedness of the variance, they do serve to bring out some interest-
ing points. We begin with the mathematical statement of the problem,
which includes certain modifications of the previous statement. Next,
we examine the elementary operator T and its properties such as bound-
edness, domain, and spectrum. We then proceed to the discussion of
whether the variance of the jitter is bounded or unbounded. We close
with a brief discussion of the results.

* The space 1, is o normed linear space which is complete. Hence, it is a Banach
space.
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II. STATEMENT OF PROBLEM

The purpose of a restatement of the problem here is to make certain
desirable modifications. We also refer to a possible alternate formulation
which, except for an oceasional observation, we shall not pursue.

We are interested in studying the behavior of the equation

i

Y = lrim|: DT":|X, (1)
where X and Y represent the input and output jitter vectors, respec-
tively, for a long chain of repeaters. By input jitter we mean input to
the second repeater in the chain, and it is understood that the input to
the first repeater is a jitter-free pulse train. The linear operator T
represents the action of the repeater on the incoming jitter, and we shall
describe it presently. The simple form of (1) is obtained by assuming
that the mistunings, which appear as coefficients in the power series in
T, are identical. This assumption does not alter the convergence prop-
erties of the relevant limit since the mistunings are of the same order
of magnitude.*

The operator T' in our previous discussion was obtained under the
assumption that the jitter is observed in the neighborhood of time ! = 0
with the pulse train extending back in time towards { = — <. We
included in our description of 7', X and Y the pulse position deviations
regardless of whether a pulse was present or not. The operator T was
defined by the matrix

(@ @8 @
So So So
@ @B
T=| 0 —_ == .. c
1 P , (2)
0
where @, = 1 if a pulse is present at { = —nr and equal to zero other-

wise; 8 is a positive number slightly less than unity (8 =~ 1 — (#/Q));
and

8; = gu(t".l.[ﬂn. (3)

* The question of convergence should not be confused with the question of
boundedness of the resulting operator or of the operator 7.
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When @, = 0, all the elements in the nth column of T' are zero. As
we observed in the periodic case, we can eliminate these columns and
the corresponding rows without in any way affecting the results. Phys-
ically, this amounts to a consideration of jitter only at those positions
where pulses were present in the original pulse train. With these minor
changes, we represent 7" in the following manner.

1 Bil Bil+i2
So S S
T = I L N (4)

[ S S

I:I 8", (5)

where

_M"

So =

and
S,s =14 8"S,. (6)

Vectors X and Y are also assumed to be suitably modified.

Though we are not concerned with it, we take note of the fact that an
alternate formulation of the problem is possible by assuming that the
pulse train starts at time ¢ = 0 and extends towards ¢ = + . There
are many disadvantages in such a formulation and we mention it here
only for completeness. The operator of interest in this case takes the

following form.

1
Sor 0 0
il
ooy
T‘Z = b1+ bH’ ’ (7)
A
Ser Sap Soy

where
Sop =1, (8)
and
Sur =1+ "S- (9)
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Referring back to (1), we are interested in determining whether the
mean and the variation about the mean of ¥ are bounded or not. The
averages are to be taken over the components of Y. For our purposes,
we shall not be concerned with evaluating any averages. As shown in
Part I, the dominant part of ¥, the mean of ¥, is the element repre-
senting flat delay in the jitter Y. All we need to know is whether the
dispersion (or, the spread) about this flat delay remains bounded or
not. Though this dispersion has some relation to the variance, it is not
the variance. However, we shall continue to use the term variance for
the dispersion about the flat delay. The relation between these quantities
is shown in Part I. Moreover, the behavior of the dispersion also gives
information about the spacing jitter. It also answers the question about
the worst pattern.

III. BOUNDEDNESS OF T

We proceed now to examine the operator 7 to determine some of its
important properties. It will be shown here that 7 is a bounded linear
operator which maps the normed linear space 1,(1 < p £ =) into
itself *

Theorem: The norm of T (i.e., | T | ) on 1, is bounded for each p.t

Proaf: Define a diagonal matrix

D = diag'llgll—lp ‘S'l_[, ‘g'.!“l) o '}’

and a matrix 7T such that

T = DT,.

Then,
(T =|DTo| £|D| T

< |, ([D]=1),

= |1 + diag:[6", 8% 8%, ]S + diag-{g" ", p*7, .o} 80

+o s
* The space 1, is the linear space of all sequences = = |a,)] of scalars for which

the norm | & | = | .1 | @a|?}V/7 is finite. The norm for 1 is

| 2] = sup,| e |.

For precise terminology and definitions as well as a basis for many of the state-
ments made and coneepts used in this paper, the reader should consult: N. Dun-
ford and J. T, Sehwartz, Linear Operators — Part I: General Theory, Interscience
Publishers, Inc., New York, N. Y.; 1058,

t The bound or norm of T defined on a linear space x is Lh(%rHFI[) | Tx|, de-

rl =1

noted by | 7'|. The operator 7" is hounded if | 7| < =.
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here

is defined on 1, with | S| = 1 for each value of p. Note that 0 <8 <1
andé, = 1for»=1,2,3, ---. 50

[T =Ty

< 2:% |(BS)” |

A

> 68T

S S
1 — 88|

since | 85 | < 1. The norm of T'is shown to be bounded for each p.

As we shall see in the next section, the space 1, is of particular interest
to us. The norm of 7' on 1, is given by the supremum of the sum of the
absolute values of elements in a row. Since T is a stochastic matrix,
| 7| = 1 when it is defined on 1, .

IV. DOMAIN OF T

It has been stated before that for our problem the domain of the
operator T is the space 1, . This is not a separable space and, hence, it
is not the most convenient one to work with. It must clearly be under-
stood, therefore, that the problem is defined on this space not due to
preference but out of necessity. In our discussion of this matter, we
begin with some observations in physical terms about the domain in
question.

The operator T operates on the sequence representing the jitter at
the output of the first repeater (or, the jitter input at the second re-
peater). The domain of T must include the set of all jitter sequences
at the output of the first repeater.* The nature of these sequences is

* Here, we are concerned not with a specific operator but with the totality of
the operators.
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determined by two essential properties of the original pulse trains, viz.,
infinite length and random character. Since the pulse trains can be in-
definitely long and completely random, the jitter sequences need not
all converge to zero or to any other value. This conclusion is valid re-
gardless of whether we consider jitter at all the possible pulse positions
or only where the pulses are present. As a consequence of the above
conclusion, and since the set of all the jitter sequences is certainly not
a finite set, the domain cannot be any of the spaces 1, with p finite. It
also follows that the domain cannot be either ¢, (the space of sequences
converging to zero), or ¢ (the space of convergent sequences). These
are separable spaces and they are to be preferred over 1, if we are able
to represent the problem in terms of any one of them. However, the
above discussion shows that this is not possible.

On the other hand, if the jitter sequences are all bounded sequences,
then the domain of 7' can be 1, . Obviously, the jitter sequences must be
bounded in any realistic situation. In fact, the formulation of the prob-
lem assumes that the jitter introduced by a single repeater is quite small
compared to 27 radians. Thus, the jitter sequences are all bounded and
the domain of 7" is 1 .

A more precise bound on the jitter sequences can be obtained quanti-
tatively. The jitter sequences are defined by

(85,871, (10)

where S, are defined in (6) and S, = (d/dB)S,. The bound on any
sequence of the above type exists, and it can be obtained by determin-
ing the worst case as discussed by Aaron and Gray.* It is also clearly
seen from (10) that the sequences need not all necessarily converge to
zero (or, to any other value). We see now, in a precise manner, that the
domain of 7' must indeed be 1 .

V. SPECTRUM OF T

So far we have established that all the jitter sequences at the input
of the second repeater are elements of the space 1., and the operator 7'
is a bounded operator defined on 1, with | 7| = 1. We recall that the
jitter accumulation in a string of repeaters is given in terms of a funec-
tion of the operator T. In order to determine the properties of a function

*M. R. Aaron and J. R. Gray, Probability Distribution for the Phase Jitter
in Self-Timed Reconstructive Repeaters for PCM, B.S.T.J., 41, March, 1962;
pp. 503-558.
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of an operator it is necessary to start with some knowledge of the spee-
trum of the operator.*

The operator T is represented by a triangular matrix. We wish to
emphasize that, for an infinite triangular matrix, the diagonal elements
are not necessarily the eigenvalues of the matrix. Equally important is
the observation that the set of eigenvalues may indeed include elements
which are not to be found on the main diagonal.t Moreover, the spec-
trum of T may also contain points other than those in the point spec-
trum (i.e., the set of eigenvalues). Therefore, even though 7" is repre-
sented by a triangular matrix it is not a trivial matter to determine its

spectrum.
Of course, T is a stochastic matrix and so X = 1 is an eigenvalue of T
with the corresponding eigenvector xp = (1, 1,1, ---}. Some other re-

sults also follow from the stochastic nature of T. We shall denote the
spectrum of 7' by (7).

Theorem: The spectrum of T is a subset of the unit disk (i.e., | o(T) | =
1), and any pole \ of T with |\ | = 1 has order one.}

Proof: The first statement follows immediately from the fact that
| 7| = 1. It is well known that for any X such that |\ | > | T | the re-
solvent operator (A — T')' exists. Thus, the spectral radius of 7', viz.,
sup | ¢(7') | cannot exceed one. The spectrum is a subset of the unit disk,
ete.

In order to prove the second statement, it suffices to treat the case
that A = 1 is a pole of 7. Or else we treat a modified operator (7'/ A)
with norm one for | A | = 1. Suppose that the order of the pole is at least
two. Then there must exist an 2p € F(1; T)x, such that (I — T)ax, # 0,
but (I — T)%, = 0.§ Consider a function of 7' corresponding to f(\) =
A"/n in the neighborhood of A = 1. We obtain a relation of the form

1ﬁii”“:vo = l—;t:n + (I — T)ay.
n n

Letting n — =, we conclude that (I — 7')xg = 0, which is a contradic-
tion. Henece the poles of T which lie on the unit circle are simple poles.

* The speetrum o (7') of T' is the complement of o(T). The resolvent set p(T)
of T is the set of scalars A, for which (\] — 7')~! exists as a bounded operator with
domain x, where x is the domain of 7. The function R(»; T') = (A — 7)1, de-
fined on p(7"), is the resolvent of T

+ We hope to discuss elsewhere these statements and their implieations in
greater detail and with reference to linear operators in general.

1 An isolated point Ao of ¢(T) is called a pole of T'if R(A; T) has a pole at Ao .
By the order »(Ao) of a pole Ao is meant the order of Ay as a pole of R(\; T).

§ E(ho; T) is a function of 7' which is identically one on a pole Ao of T but
which vanishes on the rest of «(T'). Observe that E is a projection operator, i.e.,
E® = E. The definition of E given here is a highly restricted one but it suits our
purposes.
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The next two theorems give us some more information about the
spectrum. The first one shows that there cannot be a pole on the unit
circle for X # 1. The second one concerns the dimension of the eigen-
manifold corresponding to the eigenvalue A = 1.*

Theorem: All points on the unit circle except A = 1 are in p(T).

Proof: We already know that A = 1 is in o(7'). We also know that
any A such that | A | > 1isin p(7"). To show that any A = 1 on the unit
circle is in p(7'), consider

Rn;T) = =T)" o1, |\]|=1].

If we can show that () ; T') exists for all « in x with a bounded norm,
we have proved the theorem. It is easy to verify that R(A, ; 7') may be
expressed as shown in (11).

R(n; T) =
_ ; e AT _

Mo — 8o o — S o — S (o — So™) (o — S (ho — Sa7Y)

0 1 3‘231-1 _

(o — S179) (ho — 8 ) (o — 827 . (1)
1
0 -
0 ()q) - SQ_I)

Since Ao is a complex number, it follows that (A, — S;,™*) # 0 for any
1. Next, we show that R(\,; 7') is a bounded operator. Observe that
the norm is given by

| RO T) | = sup ZJ: | ai; |, (12)

where, a;; represents the element in the 7th row and jth column of the
matrix in (11), ie, R(A; T) = | a; ||.

Consider the resolvent R(X; ; 7)) for Ay = (1 + €) with ¢ > 0. Ob-
viously Ay is in p(7') and | R(A; T) | < «. We assert that, given any
Mo, there exists an ¢ > 0 such that

[ B3 T) [ = [ROM;T) | < . (13)

The validity of our assertion is proven by first noting that R(\, ; T') is
represented by the matrix in (11) with A¢replaced by ;. Let R(A\; ; T") =
| bix ||. Next we show that | ax | < | ba|, for all 7 and k, from which
follows relation (13). Let Ao = cos 8 + jsin 8, (j = v/ —1). Then

*If A = 1is a pole of T, this is the dimension of the range of projection E(1; T').
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n -1
t;mn = :_j (=t ;: — g'_l ) n = (m + 1):
= _—_)\1 - S’"_l n=m
An — Sm_l 3 b
form = 0,1, 2, ---. In any case, for n. = m,
,. - 87
%1"_ <1l —__)\1 | since N | < IM].
mn r=m 0 = v
Consider a term of the form
A]_ —
M —all

where @ = (1 — B) is the lower bound on S,”". Then

1+e—a
cos @ — a + jsinb

zl: (1+€—ﬂ£)2 :r
1+ a? — 2acoséd

1

M —a

N —

A

provided that
€+ 2(1 — a) — 2a(l — cos 6) = 0.

Since 0 < « < 1, the polynomial on the left side has one zero for ¢ > 0
and one zero for € < 0. There exists, therefore, an ¢ > 0 such that the

above inequality is satisfied as long as 8 # 0. Since

v —1 _
=1,
it follows that
n -1
g‘_""‘g:[;[;__:_g"il, n=m
S Al - n—m-+1
T A — «a
=1.

iamnlzlbmnl=0, forn < m.
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The theorem is thus proved, and all the points on the unit circle except
A = 1 are in the resolvent set p(7).

It follows from the above theorem that there are no poles on the
unit circle except possibly at A = 1. We know that such a pole, if it
exists, must be of order one. The next theorem concerns the dimension
of the eigenmanifold corresponding to A = 1.

Theorem: There exists one and only one nontrivial element x € x such
that Tx = .

Proof: 1t is apparent that a, = {1,1,1, ---} is one such element.
If there exists another element @ # x, (but, |x| = | % | ), then some
of its components must be unequal. Let * = {&,&,%&, ---}. Then
there is some £, # £,41 . We will show that this is impossible.

If T = x, it follows that [ef. (4)]

Eo= S+ STBT g + ST TR,

and

Eopt = Supt Euga + Supd B e + -
Substituting the second equation into the first we obtain

o= STk 4 S) BT S b
Or, since from (6)
S, —1 = .3'-"+18n+1 ’
we have a contradiction
=

This proves the theorem, and the eigenmanifold eorresponding to A =
1 is of dimension one.

The results obtained in this section about the spectrum of T are quite
general and remain valid under any restriction of the domain 1, assum-
ing, of course, that x, is in such a restriction. The all-important question
not answered in this section is whether or not T has a pole at A = 1.
This is a crucial question indeed and, on the basis of the results already
obtained, the answer determines the behavior of the variance of the
jitter. We delay the discussion of the existence of a pole at A = 1 in
order to first show its pivotal character. Next, we show that the existence
of the pole depends upon a certain suitable restriction of the domain of
T. These two points lead us to our final conclusions.
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VI. BOUNDEDNESS OF VARIANCE

Let us consider now what happens to the output jitter as the number
of repeaters approaches infinity. We obtain the results, at first, under
the assumption that T has a pole at A = 1. We discuss later the case

where A = 1 is not a pole of T.
Theorem: If A = 1 is a pole of T, then there exists a bound on the vari-

ance of
y = [gon]x. (14)

Proof: Let A = 1 be a pole of T. Then ¢(T') may be decomposed into
the union of a closed set o, which lies inside a circle | Z | < ag < 1, and
the simple pole at A = 1. Let us put By = E(1; 1), Ep = (I — Ey)
and D = TEp .* The range of E, is one-dimensional, and the iterates
of T are given by

T™ = E, + D", (15)
since for a simple pole at A = 1
f(TE, = J(1)E,,
and
T™Ep = D™

It also follows that o(D) = ¢ + {0}, and so ¢(D) is contained in the
disk | Z | < ay for some &y < 1. From the definition of spectral radius,
this implies that lim supm_., | D™ [Y™ < ag, from which it follows that
form = 1,

|D™| £ Mag" (16)
for some positive number M.

Next, observe that the space x is a direct sum of subspaces x1 = Fix
and x» = Epx, which are invariant under 7' since T commutes with
E, and E, . Tt follows from (15) and (16) that

(a) Tx = z,forzin x1 ;

(b) T"z — 0 exponentially fast, for z in x» .

Every  in (14), then, is given by
T =m+ Tp,
where z;, = Ex and 2, = Epr. The element x; except for a constant

* Observe that Ep is also a projection operator since Ep® = Ep .
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multiplier is the eigenvector {1, 1,1, ---}. Then

y = lim [Z": T" (21 + xp).

n—w gm=

Obviously, the mean of y increases indefinitely* since

g = lim [2 T + 90, (17)

n—+% m=0

where

Yo = lim [Z T”"].'L',u . (]8)
n—=x m=0
The first term on the right-hand side of (17) increases indefinitely, and
s0  — . The limit in (18) exists [ef. (16) and statement (b) above]
and so

vy — 4l = yo — §o (19)

is bounded. Hence, the variance is bounded, if A = 1 is a pole of T, as
was to be proved. The physical interpretations of this case are discussed
in the coneluding section.

It must be observed that the bound on the variance is shown to exist
for all elements x in x. Hence, the result is valid for the admissible ele-
ments, viz., the jitter sequences.

The boundedness of the variance is a consequence of the inequality
(16). Asa function of ay , the hound varies as (1 — @) " and increases in-
definitely as a, approaches one. Therefore, we ask whether infinity is, in-
deed, the least upper bound on the variance when A = 1 is not a pole
of T'. We anticipate the results of the next section to state that there is
no bound (finite) on the variance when 1 is not a pole of 7. We first show
that given any number M, there exists an element x in x, such that the
variance of y exceeds M. Next, we show that there exist admissible ele-
ments for which the same conclusion holds.

VII. UNBOUNDED VARIANCE

We show, at first, that A = 1 is not a pole of T in the general case.
By the general case, we mean that the domain is not restricted in any
way.

Theorem: The point X = 1 is the limit point of the point spectrum of T.

* As discussed in Part I, there exists at least one X such that z; = 0.
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Proof: We first determine the conditions that 2 must satisfy for Tx =
Az, Let @ = {&, &, - -+}. Then, if Tz = Az,
N = S0 A ST b A ST T +
and
Nyt = Sust fat + SupB™ g + o
Substituting the second equation into the first, we obtain

()\ - Sn_l)gn = RSH_I n+lﬁi"+1En+1 .

Or, since
Sn - 1 = )8’-“'”81144 3
we have
S, — (1/A
En+1 = ‘_'—u_)gﬂr (n=0v112:"')- (20)
S. —1

Trom (20) we note that when A = S,”" we obtain an eigenvector x with
(n + 1) nonzero elements &(k = 0,1, ---, n). Hence, if the diagonal

elements S, approach one as n — «, then A = 1 is a limit point of the
set of eigenvalues. However, of greater physical importance is the case
when the number of successive zeros in the admissible pulse trains has
a finite upper bound. In such cases, the diagonal elements have an upper
bound less than unity, i.e.,

S 2a<l. (21)

Even in these cases, there exists an eigenvector z for every A such that
a« < A = 1. We obtain the vector x from (20), starting with & = 1.
Since 8, < A\ = 1, we find that the sequence {£,} is a strictly decreas-
ing sequence, i.e.,

0 < bopn < £ #= 0.

The sequence z = {£.} converges to zero, and hence it is a member of
the space ¢, and has norm one. A simple substitution of z, obtained
from (20), into the equation Tz = Az shows that z is indeed an eigen-
vector. Since an eigenvector z exists for every X such that « < A = 1,
the point A = 1 is the limit point of the point spectrum of T'. The proof
is complete and A = 1 is not a pole of 7.

It immediately follows that when all z in x are admissible elements,
there exists no bound on the variation of i about the flat delay. If it
does, let M be such a bound. Then we can always find an eigenvector z,
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corresponding to a A, > «, such that (1 — A;)™" > M. Since 2; is a mem-
ber of ¢, the flat delay in the jitter is zero. The dispersion is given by

\ _( 1 )x
Jl—l—?\l 1,

Ly [ > M |2,

and

which is a contradiction. Hence, there is no bound, ete.

To show that the same conclusion holds when the admissible elements
x are the jitter sequences, we need merely show that there exists an
admissible jitter element x in ¢ such that (@ — z;) is nonnegative, i.e.,
nonnegative elements in the sequence (x — z,). Then, since all elements
of T are nonnegative, | Tz | = | T2, | > M | 2, |. Such an element z can
be constructed easily by letting all pulses be present for a long enough
time and then letting one of the pulses be absent, after which there is
a string of alternating pulse and space, and then two pulses are absent,
and so on. The sequence x for this case is a member of ¢; since the jitter
will ultimately approach zero. The elements of x are assuredly greater
than those of x; provided we make the string of pulses long enough
between spaces.*

Similar conclusions are valid when the number of successive zeros in
the original pulse train does not exceed a specified finite number. In
this case, we use a member of the space ¢, v = 2, + x;, where #; is de-
fined above and a, is the eigenvector corresponding to A = 1. The dis-

persion is, as before,
2 1 )
Jl ]. - )\] o

The admissible jitter sequence is one that converges to z, but otherwise
has properties similar to the previous case. Physically, the pulse train
converges to a periodic pulse train with one pulse and at most the maxi-
mum number of suceessive zeros in each period.

We have thus shown that the bound on the variation of the jitter
about the mean exists if 7" has a pole at A = 1 and that there exists
no such bound otherwise. At this point, we recall that a somewhat
different formulation of the problem is obtained in (7). Let us note
here that in the alternate formulation somewhat different but similar

* In faet, numerous admissible sequences with the same properties can be
easily constructed. Their linear combination would also be such a sequence, and
S0 On.
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development takes place. In the alternate formulation, the point A =1
is not a limit point of the point spectrum. But, in general, neither is
it a pole of T It can be shown that every neighborhood of A = 1 con-
tains points in the spectrum of T. From this fact, the rest of the con-
clusions follow.

VIII. DISCUSSION OF RESULTS

The results may be stated simply in terms of the existence of a pole
of Tat A = 1. If A = 1 is in the point spectrum of T and it is an iso-
lated point of the spectrum of T (i.e., it is a pole), then the variance of
the jitter is bounded. Otherwise, the jitter dispersion has no bound. We
show that, in the random case, A = 1 is not a pole of 7. The same result
is obtained when a constraint is put on the number of successive zeros
in the pulse train. Thus, there exists no bound on the variation of the
jitter about its mean value for the truly infinite and random pulse
trains.

On the other hand, of some physical importance are the cases which
may be approximated by periodic pulse trains or nonperiodic pulse
trains which either are finite or become periodic after a finite interval.*
For such cases, the operator T is restricted to a finite dimensional
space and A = 1 is necessarily a pole of 7. The variance is, therefore,
bounded. Of course, the bound is a function of the dimension of the
space as well as of the other eigenvalues in the spectrum. Kach case
must be investigated separately to determine the corresponding bound.
Such a bound may be all that is important in the usual situation where
a finite chain of repeaters is present in the system. Some practical
means of determining the bounds will be discussed in a subsequent
paper. We shall also discuss there many other practical matters, such as
errors involved in our model, transients, ete.

To sum up, as the number of repeaters gets larger, the dimension of
the space gets larger (since the effective pulse train gets longer), and
the maximum dispersion of the jitter increases. Thus, there is such a
thing as a worst pattern when there are a finite number of repeaters.
However, the worst value of the jitter keeps on increasing.

The rate at which the variance increases as a function of the number
of repeaters is not investigated in this paper. It is, of course, not pos-
sible for the dispersion to grow faster than n, the number of repeaters.
This conclusion follows from the fact that the norm of 7' is equal to one.

* Many other physical constraints may be used to restrict 7' to a finite dimen-
sional space. The variance is bounded in all such cases.
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More precise determination of the rate of growth would depend upon a
particular distribution of the random variables involved. We do not
pursue this aspect of the problem.*

The conclusions about the spacing jitter (cf. Part 1) follow along the
same lines as above for the finite and infinite dimensional spaces. The
misalignment, 7"z, in the nth repeater is also influenced by the di-
mensionality of the domain of 7. When the dimension is finite, the
misalignment is merely a flat delay (since A = 1 is an isolated eigen-
value) for reasonably large n. However, when there is no pole at A = 1,
the misalignment is not so simply stated, but it is different from re-
peater to repeater.

We conclude with the observation that the approach proposed here
should be potentially useful for many problems of signal processing
encountered in data systems.

* For some partial results, for a somewhat different model, refer to C. J. Byrne,
B. J. Karafin and D. B. Robinson, Jr., Pattern Induced Timing Jitter in T-1
PCM Repeaters, to be published. This paper uses a model proposed, in an un-
published report, by R. C. Chapman, Jr.






