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Integral representation of zero-memory nonlinear functions offers prom-
ise as an analytical method for nonlinear control systems study. A review of
work performed at Bell Laboratories and elsewhere on the use of these
representations is presented, with particular emphasis on nmonlinearities
often encountered in feedback control systems. In general, the inlegral
representalions are useful only insofar as the resullting expression can be
readily evaluated. The use of Bennetl functions systematized the formulation
of these inlegrals. The numerical results of a large class of the integrals
can then be given by the tabwlated Bennett functions. A comprehensive
bibliography is appended.

I. INTRODUCTION

Integral representation of zero-memory nonlinear functions has been
extensively used by Bennett, Rice and others (see References) in the
solving of problems such as the finding of modulation products when
one or more sinusoids appear at the input, and the finding of the output
autocovariance function when sine wave and random noise are applied.
In relation to the necessary calculations which oceur in the use of these
integral representations, a class of functions known as Bennett functions,
after W. R. Bennett, has been defined. A selected representation of these
funetions has been tabulated and plotted.

While the original studies were carried out in relation to problems
encountered in communications, the methods and the results can cer-
tainly be applied to advantage in control problems. Some work in this
regard has been done by J. C. Lozier in unpublished notes on the analysis
of the oscillating control servomechanism. On the whole, however, it
appears that these approaches are not known to investigators in the
controls field. The present paper represents an attempt to summarize
in a unified manner the work that has been done and to indicate the
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scope of applications and limitations of the integral representations,
particularly with respect to controls usage.

II. INTEGRAL REPRESENTATION ARISING FROM FOURIER TRANSFORMS

It is known that the function

Cuoou [Tsinud
fl('ur) =35 + ;r-’; X d\ (1)

is discontinuous in its first derivative with respect to u, its value as a
funection of w being:

filu) = u >0
(2)
=0 w < 0.
The plot of fi() vs u is in the form of an ideal half-wave rectifier.
Using fi(u) as a basic unit, other discontinuous functions can be
generated. For example

fa(w) __+ lf smu)\ _1 w0

(3)
=0 w <0
and is in the form of an off-on relay as a function of w.
From (3) the bang-bang type of relay is readily created as:
falu) = 2::1" SmUA _ 4 w>0
0 A (4)
= —A u <0,
A relay with dead zone is
A [“sin (w — )N 4 sin (u + e)A
Ja(u) ==
T A
@ . = A w> ¢
_ 24 [ sin uh cos ek u-)\heos A= 0 —c<u< ¢ (5)
™o = —A u< —c
A limiter (linear characteristic with saturation) is
= —A u< —A
A
folu) = 2f sin ,u)\ sin Ad)\ o A<cu<A (6a)
= A u > A
9. e w g A )/ = —_—
_ 2u cos u\ sin AN n + .ﬁ sin uA cos A\ dn. (6h)
x Jo A T Jo A
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Iquation (6b) is readily obtained by manipulating two functions of
the form of (1). That (6a) is equivalent to (6b) is seen by integrating
(6a) once by parts. Other discontinuous functions can be generated
from the above five functions by appropriate shifting (bias) of each
individual characteristic, or by combining several characteristies. In
fact, simply multiplying by an appropriate g(u) can create quite general
discontinuous characteristics.

It is noted that © may be viewed as the input to the nonlinear element,
and f(u) then gives the response to this input. If w(¢) is a function of
time, for each wu(t) the funetion f[u(#)] yields the instantaneous value
of the output (i.e., f(u) is a functional of w). While f(u) is no more
convenient for use in the evaluation of the output as a function of time
than equations of the form (2), giving the discontinuous funetion as a
set of equations, it is very useful for the purpose of spectral analysis
since flu(f)] is in a compact form suitable for Fourier series expansion.

As an example, we seek to find the output spectral component for the
relay with dead zone, when input is in the form u = P cos z.

Using (5), the output Fourier coefficients are found by :

o =L '{Z_A fmsin (AP cos x) cos A
" 0

ri?\} cos ne dx

T A

24 [T d T
I [ d% cos f'hf sin (NP cos ) cos n de
w2 Jp L.
0 n even
(=)o f MM d\ n odd
411' 0 A

where J,(z) is Bessel function of the first kind of order n.

Since it is known that'
‘1 cos {n sin™! (Q)} b <a
n a

f J.(at) cos bt Al — ) e (7)
0 t a COS?

n{b + /b2 — a?}"

b > a,

then, for n odd:

_ i __q1y(=Dy2 1 N
ap = = (—=1) {;;‘ cos [n sin (P):l} c< P

=0 P <e.
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Certain of the nonlinear characteristics expressed in the integral form
are also amenable to a double frequency type of analysis in which the
input is of the form o

u(t) = P cos (o + 0:) + Q cos (wet + 62).

Bennett’ in particular has contributed extensively to double frequency
studies.

In control systems analysis, a double frequency study becomes neces-
sary in (a) the oscillating servomechanisms’ and (b) the dual input
describing function approach to closed loop servos."*® In what follows,
the fundamental components (i.e., components in w; and w; of the out-
put) from a bang-bang type of relay are found. The approach follows

closely that of Lozier.
The input u is a function of two frequencies w, and w: ; this is brought
to light by setting z = wi + 61,y = wst + 62, and letting Q/P = L.

Thus
u(z,y) = P(cosx + k cos y). (8)

In passing through a bang-bang type relay, it is recognized that the
amplitude P in (8) does not influence the output; thus without loss of
generality it may be set to unity.

The output f(u), written as f(z,y) is:

flzy) = +4A cosx + kcosy >0
flay) = —A cosx + kecosy <0

which may be expressed as a double Fourier series’” as:

Jog) = 30 3 [Aim o8 (mz % ny) + Bym sin (ma )] (9)

n=0 m=0
where

Agun = zizf f f(xy) cos (mx 4 ny) dy dx (9a)

T e 7
Bimn = -2%[ f f(xy) sin (mx % ny) dy dx (9b)

m —a V—1
Ap = lzf _[ fay) dy dr, Bw = 0. (9¢)

™ f—x T

From symmetry of the bang-bang relay, By, = 0 for all m and n;
moreover the integral representation of (4) can here be used, thus:
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AT f”d)\sin(cos.?:-i—kcosy))\
‘4:*:"'”_.7:‘—: - 1] ?\

-cos (ma & ny) dy dr.

The interchange of integration can be carried out here in view of the
finite limits of the outer integral and the bounded nature of the inner
integral, whence:

Appn = ?ﬁ./;, ci_}\.[, dz f_fdy {sin [(cosx + L cos y)A] cos (mx = ny)}.

Upon expanding, collecting nonzero terms, and integrating, the result
is (a8 Aymn = A _u, for all m, n, the & signs are henceforth dropped.):

_ 44 e fm Ju(kX)Tm(N)
Amn = ‘;r"' ( 1) 0 —)\—‘ dk, m + n odd (10)
=0 otherwise
where use has been made of the following definite integrals:*"
2 w/2
- f cos (7 sin @) cos 2nedey
]
SR (11a)
= (—=1)" if cos (z cos ¢) cos (2ng) dp = Ja,(2)
m Yo
2 wf2
= f sin (2 sin ¢) sin (2n 4 1)ede
]
(11b)

2 [T

=(=1)"= f sin (2 cos ¢) cos (2n + Dede = Jonia(2).
m Yo

The integral in (10) may be evaluated by means of formulas attributed

to Sonine and Schafheitlin® (also known as the Weber-Schafheitlin in-

tegrals®), the result being expressed in the form of hypergeometric func-

tions F(ea,8,6,2):

n‘(n+7n—r+1)
al |l —7M8m" W ——

2

[0,
N o —n+m+r+1
! 2 r+1F( 5 )1‘(n+1) (12a)

-ﬁ'(n+7'!_)_"+lj‘L'_"”o_r_Fl,n—%—1,(;?)3

&

ifn+m—r+1>0r>—-1,and 0 < a < b,
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* Ja(an)Imar)

0 AT

r—1

(g) F(T)P(n+m2—-r—|—1) (12b)
- ThndmtrED\_/ntmtr+l\.(n—mtr+1
e e G

ifn+m4+1>0,r>0,and e real; and
bmr(n—i—m—r—!—l)
2

— 1
S (T_t_tnTth:r_) Pom + 1) (190)

2
_F(n—i—m—r—!—l’—n+m—r+1,m+1,b_)
2 2 a?

f(n+m—r+1)>0r>—-1,and0 < b < a.
Accordingly,
an (n+m
er (2E)
2—n-+m
P( 3 )””'H) (13a)

.F(n—lz_m,n_z_m.n+l,k2) fork <1

fm Ja(an)J . (bN) ™
0 AT

A"m — 2_1.4 ( -1 ) (n+m—1) /2
m

ZA ( 1 ) (n+m—1)/2
m

n+m
. P( 2 ) (13b)
2—-—n-+m 24+n+m n—m--4+2
r(==Y )P( 2 )P( )
fork =1
=2;4(_1)(ﬂ+n—1)1'2 ( )
™

T ( =M+ 2 i 4 1) (150)

_F(n—gm,m—n ()) for & > 1.




INTEGRAL REPRESENTATIONS 1819

The three cases of (13) are essentially equivalent if one recognizes that

T'(e)T'(c —a — b)
T(ec — a)T(c — b)

F(abel) =

and that, for & > 1, the situation is identical to that of inverting the
role of n and m, and defining a new quantity k" = 1/k.

The output fundamental components are 4, and Ag ; from (13) one
has:

_ 24 2 L1,
Aw—";r—'I‘TP-(-l';F(Q, 5,1;’1})
2 (14a)

_4A _1_2_3 4_5 6
*?(l iF e ot

1
. kl‘(—)
Am=%‘1:_—/-l--—--——1 2 F(%,;,Z,kﬂ)
r(y)re (14D)
_ 24k Loy 3,0 )1
(e B,

Considered together with the input (8), this yields Lozier’s oft-quoted
result,”"’ that the equivalent “gain’ of the relay, for small values of
k, is 6 db higher for the “carrier”” than for the ‘“signal.”

It is not difficult to see that the Weber-Schafheitlin integrals also
occur for two frequency inputs applied to the characteristics (1) and
(3), but that integrals of the form

= TalaN)J (b)) {sin Ah}

=
0 AT cos A (15)

occur for characteristics of (5) and (6). Moreover, inputs with more
than two frequency components will result in generalized Weber-Schaf-
heitlin integrals of the form

j:) _I=IlJi(a.-)\))\" d\ (16)

T Equations (14a) and (14b) ean also be expressed in terms of the complete
elliptic integrals for which tables are available. See Refs. 3, 21, and 22.
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for characteristics (1), (3), and (4), and generalized integrals of the
form

0 i=1 cos AN

L7 an {Sin Ak} \ (17)

result for characteristics (5) and (6).

Unfortunately no general solutions have been found to represent
(15), (16) or (17) in known functions. In such cases, numerical solutions
can be used. Numerical solutions in terms of Bennett functions and their
tabulation are deseribed in Section IV of this paper.

III. INTEGRAL REPRESENTATION ARISING FROM LAPLACE TRANSFORM' 2

The integral representation of Section II is closely related to the
Fourier transform. An alternate approach using the Laplace transform
is more convenient in some cases and has been extensively used by
Bennett and Rice, among others. We mention some results of this ap-
proach for the sake of completeness.

Expressing the output of a nonlinear device in response to an input
u as f(u), it is possible to find the (possibly two-sided) Laplace trans-
form of f(u), denoted F(s), or,

F(s) = [ ™ fw) du. (18)
The inverse transform is then
1 us
flu) = 5] ¢ F(s) ds (19)
27 Je

where (' is some suitably chosen contour of integration. If F(s) exists,
then (19) is an explicit expression for f(u) which may be used to ad-
vantage. In the case of solving for modulation products, f (), written
explicitly in @ and y, may thus be used directly to compute the double
series coefficients.

To compute A, , for example, using double Fourier Series expansion
in response to an input u = P cos « + @ cos y, one has

Apn = 3’%[ _[ cos mx cos ny dv dy [% j;' P eos st sy p(g) ds:IT

s ™
= ""‘"_f F(s) ds _[ e'" % cos ma dx j "V cos ny dy.
81!'3] c x —
1 ém is the Neumann factor, defined as:
€m = 1 m =
em = 2 m=1,2,---
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Since

'Z_f e” " 008 na da = J,(2) (20)
0

™
and letting s = jw, one obtains,

€mé€n

2

Apn = 527 [ F ()T (Po)T(Q0) ds (21)
and the required coefficients are evaluated by contour integration.

The above result can readily be generalized. IFor example, where
there is a de bias of b units superimposed on the P cos 2 + @ cos y in
the input, (i.e., v = b 4+ P cos @ + @ cos y), the net result is to insert
a factor ¢ under the integral of (21).

Inputs of the form u = b 4+ D_i— P; cos x; will result in coefficients
of the form

MejooSu,
== = f ™ Fjw) [T Jo (Piw) do  (22)
c i=1

Any,on,

™

whenever f(u) is Laplace transformable. The contour €' is a function

only of the nonlinear device, as may be expected. The Laplace transform

of several ordinarily encountered ideal nonlinear devices, as well as their

associated contour of integration € has been given in Rice'' in his ap-
pendix 4A.

The nonlinear devices expressed as in (19) may be used fruitfully in
certain investigation in noise problems. These are briefly deseribed here.
Reference may be made to Rice’s classic papers of 1944 and 1945."

For inputs that include narrowband noise, the input waveform will be
of form

w = R cos (wal + 6) Rz0

where R and 6 are functions of time whose variation is slow as compared
to cos wul. (wwm/27 is approximately the midband frequency.)
The output f(u) then is

flu) = % [ F(jw) exp [jwR cos (wnl + 0) dw].

By means of the relation

o

gl e _ E E"j" cos ned ,(2) (23)

n=0
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the equation above may be written:

flu) = i A (R) cos (nwmt + nb) (24)

n=0

where
AR) = e f F(je)Jn(oR) de. (25)

In this representation, important conclusions may be reached concern-
ing the properties of the output without undertaking laborious compu-
tations. For A,(R) whose variation is of the order of that of R, the
output spectrum has bands which are centered at fy. , 2fm- - -. A narrow-
band filter centered about nf, will then yield a slowly varying cosine
wave with envelope A4,(R). A narrow-band low-pass filter will yield the
level Ao(R).

In some cases the probability density funection P(R) of R is known.
(For narrow-band Gaussian noise, for example, P(R) is the Rayleigh
distribution.) The probability density of the output envelope A,(R)
is simply:

P(R)
Plaa(R)] }dAn(R) ‘

dR

Another application in which the representation of (19) is useful is
the calculation of the autocovariance function of the output of a zero-
memory nonlinear device. F'rom this the output power spectrum is found
by taking the Fourier cosine transform.

The autocovariance function of the output is:

(26)

¥(r) = lim [ @state + 1. (27)

By (20):
1

T
L [ PG exp (@) o | PG

-exXp [jmgu(t + 7)] dw, dt.

If an exchange of limits is justifiable, the above becomes

¥(r) = lim
T‘bm

1 . .
V(r) = 4—7'_2./; F(juw) dw j; F(juws) dews

l T
-I:lim —f exp [Jau(t) + jeu(t + 7)] dt].
T->0 T 0
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The quantity in the bracket is the (time) average value of
exp Jlou(t) + wu(t + 7))

which, in the event that u () satisfies the ergodic hypothesis, is equal to
the characteristic function of the two variables u(¢) and u(¢ + 7). De-
noting this quantity by g(w; , w=, 7), one has:

v = L f Pljer) des f Fjun)g(anyen,7) des.  (28)

This gives an interesting approach to the computation of the output
autocovariance funetion.

It is interesting to note, incidentally, that the characteristic function
of u(t) = P cos pt is

Jo(P\/w|2 + we? + 2wiws cos 'pr),

and for

u(l) = P cos pt + @ cos gt
where p and ¢ are incommensurable, the characteristic function is
Jo(PV i + w? + 2wiws cos pr) X Jo(Qv/ @ + we - 2wy 008 qr).

Here, as elsewhere, one is limited by his ability to integrate. The auto-
covariance function, however, has been solved for particular nonlinear
characteristics, for example, the square-law device.

IV. NUMERICAL SOLUTIONS AND BENNETT FUNCTIONS

Since it has not yet been found possible to express the modulation
coefficients in a more general case in terms of known funetions, it is
often necessary to resort to numerical computations. The numerical
approaches have been tackled by Sternberg, Kaufman, Feuerstein,
Shipman, among others.’®-1% Some of their results have been tabulated
and a class of generalized functions encountered in these investigations
are christened Bennett functions.™

The original approach of Sternberg and Kaufman is along the lines of
direct integration, summarized below.

If the output f(u) can be expressed in the form of a continuous N + 1-
sided polygonal function over a closed interval —a = u < q, ie.,

flu) = f(—a) + Zl giU_s(u — u;) i=1 N (29)

where u; and g; are constants, u; being the “break-points” of the polygo-
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nal funetion
—a 2w < <u---uy<a (30)
and U_s(u — u;) are unit ramp functions:
U,g('lt - ‘H»,') =0 uw < Uu;
(31)
Ug(u — w;)) = u — u; u = uU; (t=1,2--- N).
If the input is of form w = P cos x +  cos y, one can confine his at-
tention piecewise to N functions of the type
fizy) = f(P cosz + Q cos y; ui) 1=1,2.--N. (32)

The over-all function is then
N
flxy) = f(—a) + ; gif (). (33)

Factoring out P in each term, and introducing parameters hy = u;/P,
k = Q/P, we express fi(z,y) as the double Fourier series:

fiwy) = 3PAw(hok) + P Z_UAim,,(h‘-,k) cos (mz + ny)t  (34)
where
ry - 1 "f”,... -
Agun(hik) = 3P [r _ffl(:L,y) cos (me £ ny) dx dy,
mn=01,2:--;1=12:-+N

and for f(x,y) we carry out another expansion:

f(zy) = 2Cto+ 2 Camn cos (me = ny). (35)

mn=0
The (’s and the A’s are then related by
N
3Cw = f(—a) + 3P ; gildoo(hs,k) (36)
N
C;l:am = P E gl'A-;[:mn(hi 3 k)-
i=1

As Apmn(hik) = A_pa(hik) for all m and m, the & sign can be
dropped.

s
+ ¥ denotes a summation without the Aw term; in addition, terms whose in-
m,n=0

dex is such that m-n = 0 are to be weighed by a factor of .
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By considering the function

P(eosz 4+ kcosy — hy); cos x + k cos y = hy
0 cosx + keosy < h;
i=1,2-.- N

fixy) =

the zones over which integration for the evaluation of A,, must be
carried out is seen to be bounded by the curve

cosx + kcosy = h; h = h;

]f[; . {_‘K
-7

Five cases need to be considered; two are degenerate:
d1)y 14k =h
2) —(k+1) 2 h

over the closed square
x
y

m™

[IA 1IA
1A 1IA

.

In the first instance the integrand vanishes everywhere except possibly
over a set of zero measure, and hence the coefficients are identically
zero, In the second instance the integration is to be carried out through-
out the zone (excepting possibly a set of zero measure), which means
the output is the same as the input except for a constant multiplying
factor.

The three nondegenerate cases are:

(i) h<1+Fk or
h>1-—kFk.
The integral here is to be carried out over a zone R of the x,y plane
bounded by a closed curve lying wholly within £, .
(i) hz=k—1, or
h=1—-1§k
The integral here is to be carried out over a zone B bounded by two
open curves (ie., two opposite segments of the boundary of R also
constitute the boundary of Ry).
(i) h<k—1, or
h > —(]ﬂ + 1)

The area of integration is bounded hy four open curves. The integra-
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tion can thus be carried out for these nondegenerate cases by formulas
of the type:

Apn(hE) = ;2[ [f (cosx + k cosy — h) cos ma (L‘L] cos ny dy

+25f I:f(COSI-I-kCUSy — h) cos mx dx}cosnydy
T YRoy
m,n:(),],z...

A (b)) = if |:f (cos & + k cosy — h) cos I’deJ:' cos mx dx
7|'

+%f [f (cos.’c—l—kcosy—h)cosnydy] cos ma dx
T YRy

m,n=0,1,2---

where R, , R., Ry, R4 are zones appropriate for each of the cases.

Tt is seen that the inner integrals can be performed, after which suit-
able manipulation will yield a set of recurrence relationship first derived
by Rice.” Except for misprints, they are:

(m - N + 3}Am+l.n—l = —(m + n — 3)A-W;—l.n—l + 2Wl’hl“im.ﬂ-‘l

— 2mk A mmn = 1

—(m —n— 3)Anan—2(m — DkAp_1n
+ 2(m - ]-)hAm—l.ﬂ m ; 2!” = 1

(m + n + I)Aﬂlﬂ

(ﬂ' + m + l)Anm = '—(’ﬂ —m — 3)44m.nL2
1 h (37)
- 2("’ - 1) ']E Am—!..ﬂ—l + 2(“ - 1) E Am.nfl

mz=1ln =2

‘ (n —m + 3)Am—l,n+1 = —(n + m — 3)Am-1.n—1

h 1
+ 2n E Am—l,n - 2'n x_ Amn m,n g 1.

With the aid of these relationships, the higher-order coefficients can
be expressed in terms of the first four coefficients Aw(h,k), Aw(h,k),
Aw(hk) and Ay (R E).

For cases such as the ideal limiter, the antisymmetric condition
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J(=u) = —f(u) is observed; u, are now symmetric and the “gains”
g: are antisymmetric. Here:

Aol —hJe) = Aw(hk) + 2k
Ap(=hk)=1 — Ay(hk)
An(=hk) =k — Au(hk)
Apn( =) = (=1)"""A . (h k) (m+n>1).

The funection A,.,(h,k) are called by Sternberg the Bennett functions
of multiplicity two and order m,n. In part II of Sternberg’s paper,"
the functions Aw(h,k), Aw(h k), Au(hk) and Ay (hk), have been tabu-
lated for h between —2 and +2 in 0.2 steps and % with values of 0.001,
0.01, 0.1 and 1.0. The values As(h,k), Aw(hk), Aw(hk), Au(hk).
A(h k), Ag(hk) are tabulated for & of 0.1 and 1.0. All values are tabu-
lated to six decimal places. The accuracy of the first set of tables is held
to be to one unit in the last place, while for the second set the accuracy
is about three units in the last place.

The above approach is extendable to devices with continuous and
smooth characteristics if it can be approximated in a piece-wise linear
form. As long as the characteristic may be approximated to within a
pre-chosen e > 0 uniformly on the interval —a = u £ a by

N(e)

S(”:E) = f(-—a) + Z gil'l'72(_“' - “’l'): (39)

(38)

Sternberg and Kaufman show that the approximate modulation product
amplitudes computed as per (33), (34) and (35) will not differ from
the true values by more than 4¢/7 in all cases, and the output will be
within e of the true value for all time if it is obtained by summing over
the approximate expansions.

For a symmetrical ideal limiter

{r—gu-o U= —u
flu) = gu —uy < U = 0 <u <2P,g>0.
gito U = Uy
The approaches described above ean be applied to the range
—a=v=a
a = 2P.

Sternberg, in part II of his paper," gives the results relating the co-
efficients C',., and A4, as:
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Comn =0 m+n=024--- (40a)
Chy = Pyl — 24w(h,k)] (40b)
Cy = Pylk — 24u(hk)] (40¢)

Cymn = —2PgA(h)  m+n =357 .  (40d)

Here H = wy/P, k = Q/P and input are in the form

u(t) = P cos (pt + 0p) + Q cos (gt + 6¢)
0<P<P4+Q=2P

In Ref. 17, Bennett functions of the »th kind, denoted A" k),
are defined. These are the coefficients for the output of a vth law recti-
fying function in response to a two-frequency input. » is usually taken
to be an integer. 4,.," (k) for » = 1, 2 have been tabulated.'” Bennett
funetions of a given kind can be obtained from those of the lower kinds
by means of recursion formulas.

By extending the above, Bennett functions with multiplicities of
three or higher (i.e., modulation coefficients when the input has three
or more distinet frequency components) can readily be defined. For
input of the form

w(t) = P(cosx + kycosy + ks cos z) (41)

for example, the output from a piece-wise linear nonlinear element can
be expressed in terms of the Bennett functions of the first kind,

u
Am,.f(h, ln‘] , ]u'g), h = ?!]
where, as before, u, is the breakpoint for an individual segment. Simi-
larly, for a vth law rectifier subjected to inputs of the form (41), Ben-
nett functions of the »th kind

14:111“‘.(,) (_h, Iy , ]‘12)

can be defined.

A number of interesting relations have been derived for the three
frequency Bennett functions of the vth kind." These include recurrence
relations and integrals linking three-frequency Bennett functions with
two-frequency ones. No tabulation of the three or more frequency
Bennett functions is known to have been attempted.

Relationships between the “Fourier’” representation and the “La-
place” representations for nonlinear characteristics have also been
revealed by Feuerstein.” He has shown that, in many cases, the contour
integration in the “Laplace” formulation can be reduced to integrals
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over the infinite real line. The results are generalized Weber-Schafheit-
lin integrals of the form (16) and (17). This is perhaps not a surprising
result from intuitive grounds.

It is interesting to note, however, that for a »-law rectifier, the Ben-
nett funetion of the vth kind of arbitrary multiplicity is given by

Amn(”),...my(h,kl: T lk!ﬁl’) = V:j‘“ﬁl’ﬁ'] i j; A_(,—H) CcOS Ah

N
T T (RN dx
i=0

for » integer, (42a)
Mz v+ 1,and
M 4+ v odd,
and
Amum,---mN(h;kl; sy k) = VI.?'Mﬂkzg jl-) A

N
sin A JT T (B AN oy

for » integer,
M zZ », and

M 4+ v even,
N
where M = Z m; and ke=12=k;.
i=0

By these formulas, the generalized integrals of (17) are related
directly to Bennett functions.

Feuerstein in fact did not stop with the considerations of integer ».
The formulas of the Bennett functions of the vth kind, with noninteger
v and with M taking in values other than those shown above, are re-
lated to the generalized integrals of (17), though in a more compli-
cated form.
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