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Recurrence formulas for the Laplace transforms and the moments of the
interoverflow distributions are obtained under the assumptions that the
traffic offered is random (Poissonian) and that the service limes are inde-
pendent of each other and have a common negalive exponential law. Under
the same assumptions, it is also shown that the distribution of the nonbusy
period of a group of ¢ trunks is identical to the interoverflow distribution of
a group of ¢ — 1 lrunks and that the distribution of the number of consecu-
tive successful calls is essentially a mixvture of geomelric distributions.
Processes obtained by superposing lwo or more overflow processes from
independent trunk groups are not of the renewal type because tnteroverflow
intervals are no longer independent. It is shown here that the correlation
between two eonsecutive tnteroverflow intervals of a composite overflow process
is always posilive.

I. INTRODUCTION

When telephone networks are engineered, the loads offered to the
alternate routes ecannot usually be assumed to be random (Poissonian)
and, in these cases, it is of considerable practical interest to determine
the characteristics of the traffic overflowing the trunk groups. In this
paper we shall be mainly concerned with the interoverflow distribution,
the term used here to designate the distribution of the time intervals
separating consecutive epochs at which calls find all trunks busy (over-
flow). We shall first show that the distribution of the nonbusy periods of
a group of e trunks is identical to the interoverflow distribution of a
group of ¢ — 1 trunks and then obtain new recurrence formulas for the
Laplace transforms of the interoverflow distribution of a single trunk
group under the assumptions that: (a) the load submitted to the group
is random; (b) the service times are independent of each other and are
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all distributed according to the same negative exponential law; and (c)
the requests which are placed when all the trunks are busy are either
canceled or sent via some alternate route. As we shall see, these formulas
are much simpler than the expressions obtained by C. Palm (ef Ref. 1,
pp. 25-26, and Ref. 2, pp. 36—40) and are well suited to the computation
of the moments. Then, under the same three assumptions, we shall also
obtain the generating function of the probability distribution of the
number of consecutive suecessful calls or, in other words, of the number
of calls which are placed during a time interval whose end points coincide
with two consecutive overflows. From the form of this generating func-
tion we can then infer that the distribution of the number of consecutive
successful calls is essentially a mixture of geometric distributions.

In the remaining part of the paper we consider processes obtained by
superposing (pooling) overflow or, more generally, renewal processes.
In particular, it is shown that for processes obtained by superposition
of two or more overflow processes, the covariance between the lengths
of two intervals determined by three consecutive overflows is always
positive.

II. RECURRENCE FORMULAS FOR THE MOMENTS OF THE INTEROVERFLOW
DISTRIBUTION.

Consider a group of ¢ trunks and assume that:

i. the calls are placed at random (Poisson input);

1. the service times are independent of each other and of the state
of the system and are distributed according to the negative exponential
law with mean 1; and

772. calls arriving when all trunks are busy do not wait but are either
canceled or overflow to some other route (loss system).

Under these assumptions, the epochs at which overflows oceur con-
stitute a renewal process. We note also that if at some instant ¢ the ¢
trunks are busy, then the distribution of the time that elapses between
¢ and the first overflow occurring after ¢ is the same as the distribution
of the intervals separating successive overflows. The cumulative distribu-
tion, F.(-), of these intervals will be called the interoverflow distribution.

Before proceeding, we recall the following definitions of the busy and
nonbusy periods: a busy period is a time interval during which all the
trunks are continuously busy, and a nonbusy period is a time interval
separating two consecutive busy periods. Under the present assumptions,
the distribution of the busy periods is the negative exponential law
with mean 1/e.
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Now, let y.(-) be the Laplace transform of the derivative of F.(-).
Then, as shown in Ref. 1, pp. 25-26, and Ref. 2, pp. 36-40,

Ye(8) = Do(s)/Dea(s) (1)

with

Dy(s) =1+ Z{ (’;.)a"'.s(s +1) - (s+ji—=1)
J=

and a the demand rate. (Note that D,(s) = ¢,(—s,a) with ¢,(-,a) the
Poisson-Charlier polynomial of degree n and parameter a.)
The roots vy, 72, =+, 741 of Dq( ) are all negative and distinet so
that:
c+1

Fo(t) = D k1 — exp (—si)], TP = —8i 1=1-,c+ 1
=

where the coefficients k;,7 = 1, -+, ¢ + 1 are given by the relations:
ks [T (s; — s0) = a”"'D(=s0),  i=1,2,--+, ¢+ L
iFi

We shall now derive the distribution of the nonbusy period. To this
end, let us consider a busy period starting at time 0, say, and let T be
the epoch at which the next following overflow occurs. We distinguish
now between two cases:

1. At least one call is placed during the busy period under considera-
tion. In this instance, the conditional density function, fi(-), of T has
the following expression:

fi(t) = (¢ + a) exp [— (¢ + a)t].

2. No call is placed during the busy period under consideration. In
this case, the interval T is made up of three independent subintervals,
namely, the busy period, the nonbusy period that follows it, and the
period that elapses from the time at which all the trunks are made busy
again to the occurrence of the first overflow. Since the distribution of
this last subinterval is also F.(-), the conditional density function,
fa(+), of T is then:

t L
f(t) = (e + a) f f exp [— (e + a)ulh(v — w)F, ({ — v)du-dv
0 1]
where h.(-) is the density function of the nonbusy period and F.'(-)

is the derivative of F.(-).
‘ases (1) and (2) occur with probabilities respectively equal to
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a/(¢c + a) and ¢/(¢ + a) and we have therefore:

Fi(t) = aexp[—(c + a)il +cf0 fn 2)

exp [— (¢ + a)ulh.(v — w) Fo(t — v) du-do.
Taking the Laplace transform on both sides of (2) yields:

a 4 ¢

(c+a+s) (c+a+s)

with ¢.( -) the transform of &.( -). Hence, solving for ¢.( - ), we find
eel(s) = (c 4+ a+ s)/ec — (a/e)ly.(s)]

_ (e +a+ 5)D:(s) — aDeu(s)
eD.(s) '

“ye(8) @.(8) (3)

FY::(S} =

Since (cf Ref. 2, p. 38 and p. 83)
aD.1(8) = (e + a + 8)Du(s) — eDea(s)
it follows that:

D._\(s)
D.(s)

which is the same as (1) with ¢ replaced by ¢ — 1. This shows that the
nonbusy period distribution of a group of ¢ trunks is identical to the
interoverflow distribution of a group of ¢ — 1 trunks with the same
demand rate and average service time. ( Note also that, under the present
circumstances, the nonbusy period distribution remains unchanged if
the calls finding all trunks occupied are allowed to wait.)

We have, therefore:

‘Pt1(3> =

‘Pa(s) = 'Yu—l(s)
and (3) can be rewritten as follows:
v(s) = ale + a + s — cvea(s)] (4)

Tt is interesting to note that this recurrence formula is considerably
simpler than the one obtained by Palm,' namely,

o(8) = yera(s + D1 = 7ea(s) 4 vouals + DI (5)

The latter, however®, is valid for arbitrary recurrent input while (4) was
obtained under the stronger assumption that the input is Poissonian.
As one may expect, (4) can easily be obtained directly from (5). Indeed,
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the recurrences (cf Ref. 2, p. 38 and p. 83)
aD.1(s) = (¢ + a + s)Du(s) — eD.a(s)
and
D.(s) = DJ(s) + [Di(s) — 1]1D(s 4+ 1)
imply that
D.(s+ 1) _ Dea(s) — D.(s)

-1
e— 1) = =
v S+ D = 5T T Dils) = Doals)
_1(e+a+ s)D(s) — eDea(s) _ D.(s)
a D.(s) — D.(s) D.(s) — D.(s)
_lle+a+s) —eyeals) _ 1
a 1 — veal(s) 1 — yea(s)”
Tiquation (4) then follows by substituting this expression in
| 1 — yeal(s)
ve(s) Yea(s + 1)

which is Palm’s recurrence in the reciprocal form.

Equation (4) can be used to obtain recurrences for the moments of
the interoverflow distribution. Indeed, writing p,(¢) for the nth moment
of F.(+), we find upon taking the nth derivative on both sides of (4):

(_l"_ d"

Do) | = (=1)me) = afsle + a4 s = epa(es !

Il

= “Yu(fgl ) o 'r.fg”)

where Y. (fg1, -+, fg) is a multivariable Bell polynomial (ef Ref. 3,
p. 34-35 and p. 49) with:

fo = (=) kla™

g = 1+ emle — 1)

g = (=) Mew(e — 1), k> 1.
Since

w1 (0) = nla™", n==012--

these relations can be used to compute the moments of the interoverflow
distribution recurrently. In particular, we have:

ap(e) = 1 + emle — 1) = Eic'(a)
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where E;.(a), which is known as the first Erlang loss function, is the
probability that a call is placed when all trunks are busy and is
therefore cleared from the system. For n = 2, 3 and 4 we have the follow-
ing recurrences:

aps(e) = 2ap’(c) + cp(c — 1)

aps(e) = Gam'(c) + bem(e)uel(ec — 1) + cpa(e — 1)

du(e) = 24a’m*(¢) + 36ac p’(c)ua(c — 1) + 6w’ (c — 1)
+ 8 ac mlc)ps(c — 1) + ac pa(c — 1).

Finally we note that repeated use of the first of these relations yields
the following expression for the second moment:

ute) = 23 D 2o — n)
with (¢)o = 1 and (¢)n = ¢(c — 1) +++ (¢ — n + 1).

III. DISTRIBUTION OF THE NUMBER OF CONSECUTIVE SUCCESSFUL CALLS

In this section we consider a group of ¢ indexed trunks with calls
always assigned to the free trunk having the lowest index. The calls
whieh find the first m trunks busy will be referred to as m-overflows,
and those which are placed when at least one of the first m trunks is
free will be said to be m-successful. (c-successful calls are simply said to
be successful.)

We shall designate by F,,(-) the cumulative distribution of the time
interval separating two consecutive m-overflows and by P.({,n) the
probability that exactly n — 1 calls are m-successful during a time inter-
val of length ¢ whose end points coincide with two consecutive epochs
at which m-overflows occur.

Taking the average service time as unity, we have then the following
recurrence:

P‘,(t,?’l) ch(t) = ek‘Pc—l(t;n) chkl(t)
n—1

t
+ > [ (1 —e™)P,(t —un— k)P, y(uk) dF.(t — u) dFe_i(u). (6)
k=10
Indeed, let us assume that a c-overflow occurs at time 0. Then the event
“the first e-overflow after time O occurs in the interval (#,t + Af) and
there are n — 1 successful calls during (0,f)”" can be split as follows:
i. The first c-overflow after time 0 occurs during (i, 4+ At); the call
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being served by the cth trunk at time 0 does not terminate before t;
and the number of (¢ — 1)-successful calls is equal to n — 1. The proba-
bility of this event is equal to

¢ 'Pi(tn)AF, (1) + o(At).

1. The first (¢ — 1)-overflow after time 0 occurs during (w,u + Au),
w < t; the first c-overflow after time 0 occurs during (¢,f + Af); the
call being served by the cth trunk at time 0 terminates before u; and
the number of (¢ — 1)-successful calls during (0,u) is equal to k — 1,
while the number of ¢-successful ealls during (w,t) is equal ton — k — 1,
k=1, .-+, n — 1. The probability of this event is, in first approxima-
tion:

(1 — e )Pt — un — k)P a(u,k)AF(t — w)AF, 4 (u).

Equation (6) is then obtained by summing up these probabilities and
then passing to the limit (Ax — 0, At — 0) and integrating with respect
tow (0 S u =)

Now write:

A(Tw) = 2 2" fw ¢ "P.(tn) dF.(t).
[i]

n=1
Then (6) implies:

)\u_l(:lf,w "I" 1)
I — A(zw) + Aea(w + 1)

which is of the same form as Palm’s recurrence (5). (Note that while
(5) holds for arbitrary recurrent input, (7) is valid only when the input
is Poissonian.)

Clearly, \.(x,20) can he written as a ratiof:

A(rw) = (7)

Dc(mjw)

A(zw) = m . (8)
Substituting this expression in (7), we find that
D¢+1(33,'w') - Dg(ﬁ',w) _ D,_.(.’E,w) - Dcﬁl('r;w) - ...
Dxw + 1) D.y(zw+ 1)
(9)
_ Di(zw) — Dy(xw)

Do(xw + 1)

1 The method used here to solve (7) is formally identical to the one used in Ref.
2 to solve Palm’s recurrence (5).
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Setting Do(a,w) = 1, which is not a restriction of the generality, we
obtain, using (9):

Do p(zw) = D(zw) + [Di(zw) — 1D (2w + 1), r= 1. (10)
We note that:

ax

w + a

Mlzw) = j: e v dFy(t) = ax fw exp [—t(a + w)] dt

so that: Dy(zw) = (w + a)/ax.
Solving now (10) recurrently, we find:

m 1 F )
Date) =1+ 3 (") (%) et = ) + v+ G = 1
=1 \J ar/) =1
I'rom this, it follows that the probability generating function, H.(-),

of the number of successful calls between two consecutive c-overflows, is

A(z,0) 1 D.(2,0)
€T

H,;(:U) = - .’l_'.De,{-l('T‘JO)

with
D) = 143 ("’j) (%) [T (a1~ =) + (& - D]

These relations can be expressed in a simpler manner. Indeed (cf
Ref. 2, p. 83):
axD, (2,0) = (m + a)D,(z,0) — mD,(x,0)

and, with the notation N,.(z) = (az)"D,(x,0), we have, therefore:

N (x
H,(x) = GWE(:})
where:
No(z) =1, Ni(z)=ua
and
Non(z) = (m + a)N, () — aam Nypa(w). (11)

The polynomials N, (-) have the following properties which are im-
mediate consequences of (11):

7. No(z) >0fora 20,m=20,1,2,---.

71. the degree » = »(m) of N,(-) is the integral part of m/2.

iii. The coefficients of 2, 21, - - - , 2" in N,,(x) are alternately positive
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and negative. Taking (77) into account, it then follows, as x tends to
o, that N, (x) tends to « if »(m) is even and to — » if v(m) is odd.
Repeated application of (11) yields:

(m 4+ a — 2)Npn(z) + {azfm(m + a — 2) + (m + a) (m — 1)]
—(m4+a)(m+a—1)(m+a— 2)|Nua(x) (12)
4+ (m+a) (m—1) (m —2) (ax)’Nn_s(x) = 0.

Using (12) and the properties (i)—(%zi) of the polynomials N, (), it
is easily shown by consideration of the signs that N,.(-) has »(m)
distinet roots which are positive and separated by the »(m) — 1 roots
of Npo*),m = 4,5, -+ . Let now 2, < 22 < -++ < %yesn be the
roots of N.41(-). Then the generating function H,(-) is of the form:

»(e41) z -1
Hiw) =w+ 2w (1 - ;)

where vy = 0if ¢ is odd and v, > 0 if ¢ is even, and where the constants
vi, 1 =1, , v(e + 1) are strictly positive.

Consequently,t the distribution of the number of successful calls is
a mixture of #(m) distinet geometric distributions when ¢ is odd; when
¢ is even, the distribution of the number of successful calls is a mixture
of »(m) 4+ 1 distributions, one of the latter being the distribution with
probability mass 1 at the origin and the remaining ones being distinct
geometric distributions.

Finally, we note that the recurrences

arD, y(zw) = (m + w + a)D,(zw) — mDy(x,w)
and
Dpnplzw) = Dy(zw) + [Di(zw) — 1D, (2w + 1)
allow us to write (7) in the simpler form
Azaw) = azfe + a + w — e a(xw)]
Hence, we also have
Hz) = ale + a — ceHey(2)]™

which may be used to compute the moments of the distribution of the
number of consecutive successful calls recurrently.

t Since H.(-) is analytic for |z | < 1, it follows that the roots z:, z2, ---,
T,+1y are all larger than 1.
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IV. COVARIANCE BETWEEN INTEROVERFLOW INTERVALS

Under the assumptions made here, the overflow process of a single
trunk group is of the renewal type. The processes obtained by super-
posing two or more such processes (called here composite overflow
processes) do not, however, have this property because successive inter-
overflow intervals are no longer independent. We shall now prove
that the correlation between two consecutive interoverflow intervals
of a composite overflow process is always positive.

Let us consider n trunk groups Gy, Gu, - -+, Gu(n = 2), of sizes ¢,
Cz, -, Cn, respectively, and let A; be the (random) load offered to G. .
Let us now place ourselves at an overflow epoch and suppose that the
overflow call in question comes from group G; . Let also U and V be the
two consecutive interoverflow intervals separated by the overflow under
consideration. Then, by an argument similar to one used by Cox
and Smith," it follows that:

PriUzuw,Vzu=[1—F ()l

=m0

= u-4v

—F, (x) (13)

where F;(-) is the cumulative interoverflow distribution of ; (con-
sidered by itself) and

M = jl;““ xdF; ().

[Equation (13) implies that the process obtained by superposing con-
tinuous renewal processes is itself a renewal process if and only if all
the distributions F;(-) are negative-exponentials. An overflow process
is therefore of the renewal type if and only if n = 1.]

Under the present, assumptions we have:’

ci+1
Fiz) = 2 aill —exp(—siw)], 220
=t (14)
Fiz) =0,2 <0
wherea,; > 0,s; >0,7=1,---,¢c; +1,1=1,2,--- ,n,and
e+l
a;; = 1
=1
ei+l & -

i=1 8ij

Upon substituting (14) into (13) we find that:
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PriuzuV =

1 e1+1 c141
ﬂ I:Z a1; exp (—Suu):| [Zl Q1; €Xp (_Sljv)il
j=

j=1

H qu l:“il aij exp (—s.,x)] dx

1=2 Jj=1

1 c141 c1+41
= 7 [Z a; exp (—sl,-u):] [Z a1; exXp (—Sljﬂ)]
Myl =1

j=1

ci+1 a:
[Z % o [— s (0 + u)]]

i=1 8ij
c1+1 e1+1
[Zau exp( — Sl:’u)] [Z; a1; exp (—Sljv):l
o

* Q27,0355 * *°

(15)

i

Gnin oxp [— (825, + 33 + + =+ + snjp) (1 4+ )]

82738853 "' ° Snjn

where the summation D * is to be extended over all (n — 1)-tuples
(j2, -+, jn) arising when multiplying out

n c.‘+la__
G5
-'I=Iz [; s.-,-]'

TFrom here on we shall use the letter J as a generic symbol for any one
of these (n — 1)-tuples.
Integrating now (15) with respect to « and » yields:

[ [PriU 20, v 2 ol dudo = ‘ML > m(J)REAT)
0 1

with:
m(J )= B G ] (o, e )
82j2 o Sﬂ}‘ﬂ
and
c1+1 @y
Bll) = v T =, yin
W(J) ; syt (o £ - + Sui) (Jo ) Jn)

We also note that:
f (1 — Fi(u)] [H f ﬂ)—dx,-] du
1] i=2 Yu Hi

| '
11—4—12 ml('f) RI(J)-

Il

51
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When the overflow call separating the two intervals {7 and V is from
group G;, 1 # 1, we define M, m,(J) and R:(J) to have the meaning
corresponding to M, mi(J) and R.(J), respectively. Let also P; be the
probability that the separating eall is from group G; . Then with p denot-
ing the average length between successive overflow calls and Cov(U,V)
standing for the covariance between {/ and V', we have:

n

= ;Zﬁ‘ > Fm(J)-Ri(J)

and

Cov(U,V) = Z S (SRS — 4

i=1 A[

We note now that:

n

W= T (J)[Rm 1]2

;M 2 ml DRAT) — 24 + ”EIM >F malJ).

(16)

Therefore, since:
bl

n @ ¢ckp41
S FmJ) = p ]; Z; [as; exp ( —spx)] dx = M;
k=i J=
=1

we obtain, upon substituting this last expression in (16):

Cov(U,V) = ; if S FmIRAS) — ul* 2 0. (17)

In order to complete the proof, we have to show that the equality
sign in (17) cannot hold when » > 1. This, however, is an immediate
consequence of the fact that the s;’s occurring in F;(-) are then all
distinet.

V. SOME ADDITIONAL PROPERTIES

It is stated in Ref. 4 that the processes obtained by superposing n
identical renewal processes tend usually to remewal processes with
negative-exponential distributions as » tends to infinity. To get an idea
about the speed of that convergence, we shall examine how fast the
correlation between two consecutive intervals, U/, V, determined by
three consecutive arrival epochs tends to zero (arrival epoch = epoch
at which a renewal occurs in any one of the n processes).

Let £(.) be the cumulative distribution function of the intervals
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separating pairs of consecutive renewal epochs from the same process.
Under some mild restrictions, namely that F(-) and its first derivative
are continuous in some closed interval [0, 8], > 0, it can be shown that:

lim 2°Cov(U,V) = v (18)

n—>m

where v, a constant, is strictly positive if F/(0) > 1, strictly negative
if (0) < 1, and zero if F'(0) = 1. [Here F’(0) has to be understood
as being the right-hand derivative of F(-) at 0.] Further:

Cov(U,V) = O(n"), n— w, when F'(0) = 1. (19)

Let Var(X) stand for the variance of X and p(X,Y) for the coeffi-
cient of correlation of X and Y.
We have here Var(U) = Var(V) and

lim »*'Var(U) = o

1>

where ¢ is a strictly positive constant.
We have, therefore:

lim n-p(U, V) =k (20)

n—>oa

where &, a constant, is strictly positive if #/(0) > 1, strictly negative
if #/(0) < 1, and zero if F'(0) = 1. I'urther:

p(UV) = 0(n?), n— w, when F'(0) = 1. (21)

We proceed now with the proof of (18) and (19). Assuming that
EU = EV = 1, we have:

Cov(UV) +n° = j;w f 1 —F)lll — F(o)]exp[(n — 1)H(u+ 0}
~du-dy
with
HG) =log [ 11 = Fldt

Letnowu = (y + 2)/2,v = (z — y)/2. Then:
Cov(U,V) 4+ n~"

_ f exp [(n — DH(2)] f [1 - F(z J: y)][l - F(Z B ,,)]

~dz-dy.
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We note, however, that:

clog [[ [ —FWldt = =[0G, 0Se<} v
so that:

(n—1)—(ite)
Cov(UYV) +n* Nj; exp [(n — 1)H(2)]

L[ [ (5

a—1)—(hte)
- fq( | exp [(n — 1)H(2)] [z — F'(82)2 + 0(z")]-dz

0=6=1

= b

0=e< i

Upon expanding exp (n — 1)H(2) and making the substitution { =
(n — 1)z, we find:

Cov(U,V) + n*
(n—1)4—¢ 1ot _ _
1 f e*‘{l +F(0£/n 1) — 1
0

~ (n — 1) 2
. t_ ot taO(n"2}} [t — F'(ot/n — 1) t_ Tt fEO(n_Z)].d!
where0 = ¢ = 1.
We can therefore conclude that:
1 2F°(0) | 3lF'(0) —1] 1
Cov(U,V) (n — 1)2 T m—1)° + (n —1)* n?
—4y _ F'(0) —1 4
+ O(n )#—(m‘}‘o(ﬂ ).

This relation implies (18) and (19)

I'inally, we shall state the following three properties:

7. If F(-) is the uniform distribution, then Cov(U,V) < 0 for all
values of n(=2).

7i. For any given n( =2), it is always possible to choose F(-) in such
a way that the correlation between U/ and V vanishes while the variables
U7 and V are not independent.

721. Let n = 2 and assume that:
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F(a)
F(z) = p, o
Fx) = 1, azf
where ap + 8(1
Then Cov(U,¥V) = 0 if and only if
6pa(l — a)* 4 8(pa)*(1 — @) + 2(pa)’(pa = 1) = 1 =0

When this condition is satisfied, p(U,V) = 0 although U and V are
dependent.

0, T <«
<

|
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