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In an earlier paper' we proved the exvistence of stimulated emission of
bremsstrahlung for electrons moving in the vicinity of nuclei. However, no
esttmate of the available power was given at that time.

This paper extends the theory to the fourth order of perturbation theory,
which allows one to estimate the available power from this process. We find
that the available power increases proportional to the fifth power of the fre-
quency, and that one might oblain power in the order of one watt at a fre-
quency of 1000 gigacycles. The oscillation condition at these high frequencies
is met by the passage of many slow electrons through a dense assembly of
ions or aloms. Although these conditions are uncommon, stimulated emisston
of bremsstrahlung may play a role at microwave frequencies in very high
current semiconductor experiments.

I. INTRODUCTION

In an earlier paper' we showed that stimulated emission of bremsstrah-
lung exists. This statement has the following meaning. Bremsstrahlung
is the radiation which an electron emits by passing in the vicinity of a
nucleus. We demonstrated that the emitted power into a specific mode
of the radiation field is proportional to the energy density in that mode,
which shows that we have indeed stimulated emission of radiation. It
has to be expected that the emitted power can not be strictly propor-
tional to the energy density, but that it must depend on the energy
density in some nonlinear fashion. If this were not the case, the oscilla-
tion would not reach saturation and the energy density in the cavity of
the oscillator would build up indefinitely. If we knew the nonlinear
dependence of the emitted power on the energy density, we could predict
the power output of a practical device.

Since it is very hard to find an exact solution of the problem, we will
give an approximation by finding the next higher approximation of the
perturbation theory, which will give us a term proportional to the square
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of the energy density in addition to the already known linear term. This
approximation will allow us to calculate the available power for electron
currents which just barely exceed the current necessary to satisfy the
oscillation condition. For higher electron currents this approximation
will give not more than an order of magnitude estimate of the available
power.

The result so obtained shows that the available power is proportional
to f5 (f = frequency) and is very low below 10 gigacycles (ge). However,
the available power increases very rapidly, and a circuit designed to
satisfy the oscillation condition at 1000 ge would deliver power in the
order of one watt.

Since the use of a Coulomb potential appears to be an unnecessary
restriction, we use a potential ¥V = ¢ "/ which is an approximation
to the potential of a neutral atom. The shielding effect of the electrons
orbiting around the nucleus is taken into account by the factor ¢™"". It
turns out that stimulated emission will occur if 7iy/mv < 1 (with 2% =
h = Planck’s constant, m and » mass and velocity of the incident elec-
tron). This treatment neglects the interaction of the incident electron
with the bound electrons in the atom. It is conceivable that additional
emission or perhaps absorption of radiation may occur which is not in-
cluded in this analysis. The bound electrons will certainly decelerate the
free electron in flying through solid matter so that their presence poses
additional serious problems.

Finally, in Section VII we discuss the advantages of using periodically
distributed scattering centers. Periodic structures have the advantage
that the emitted power becomes proportional to the square of the number
of elements in the periodic arrangement. However, to utilize these at
frequencies of 100 gc or higher requires the use of monoenergetic elec-
trons, which are not easily available.

The utilization of stimulated emission of bremsstrahlung requires an
arrangement which allows slow electrons to pass through dense assem-
blies of atoms or ions. This effect, most likely, plays a roll in semicon-
ductor crystals to which high de currents or current pulses are applied.

The following sections 11 to IV outline the fourth-order perturbation
theory. Instead of the second quantized relativistic theory of the elec-
tron used by the authors of most textbooks, the problem is simplified
by using a nonrelativistic approximation and first quantization only.
The theory is presented with the purpose of showing the particular
approximation used in deriving (34).

The reader who is not interested in the derivation of the theory may
skip over sections II to IV and continue with section V. The expression
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for the available power in section V is derived under the assumption
that the incident electrons move parallel to the electric vector of the
stimulating radiation field.

II. PERTURBATION THEORY

We will use quantum electrodynamies to derive the equation for the
emitted power.

We simplify the problem by assuming that only one mode of the radi-
ation field exists. The interaction of the electron with the photon vae-
uum will be neglected. This is justified as long as we are only interested
in the stimulation effects and not in the spontaneous emission of brems-
strahlung. The state of the system including the electron and the radia-
tion field will be described by a state function ®(n,k); n designates the
number of photons in the radiation mode while & refers to the electron
propagation vector, which is related to the momentum wmv of the elec-
tron by

hk = mv. (1)
The system is deseribed by the Hamiltonian
H=H,+H;. (2)

Iy is the Hamiltonian of the electromagnetic field plus the free electron.
H; is the interaction Hamiltonian, which is related to the interaction
energy between the field and the electron.

According to Heitler”

Hi=H+H+V (3a)
o 2 9 a2 T
Ho=—-Sp4, Ho=-°"4 v=-2z°". (3b)
me 2me* r

The meanings of the symbols used are explained in the list of symbols
at the end of this paper, Section VIII.
The vector potential is given by *

1= 2+/rc

VL

Tt is assumed that the w-direction coincides with the direction of the

incident electron and the direction of the vector A, which means

that the electrons are incident parallel to the electrie veetor of the radia-

tion field. The symbols ¢ and ¢* are the absorption and emission opera-
tors, respectively.

(ge™ + q*e ™). (4)
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We assume that box normalization is being used. That means that
the propagation constant k of the electron wave can assume only the
values

2

k= T (u = integer). (5)

The electron wave function is given by

1
V=B

Using the unperturbed wave functions of plane electron waves as
zero-order approximation corresponds to the Born approximation.
The state function @ is the product of the photon state function and the
electron wave funetion y. The time dependence of the state function is
given by the Schroedinger equation.

dd
(2

h— = (Hy + H;)®. (7)
dt

nk-r_ (6)

1t is more convenient to introduce interaction representation by mak-
ing the transformation

3 = exp (3 H.,t) @ (8)
fi
H, = exp (1 Hot) H; exp (—i Hut) (9)
fi i
With these transformations (7) goes over into
i “;i: - 0. (10)

The interaction energy is small compared to the energy of the noninter-
acting fields. We can therefore use an approximate iteration solution
of (10). (We write henceforth H instead of H;)

®e(t) = SP(0) = (So + Si 4+ So 4+ -+ )P(0) (11)
where

Sp =1

) 1! . , 1 71 . .
lSl = ’L_ﬁ,j(-j dTlH (T[) lSﬂ = (Tﬁ—y»/; (lT'i [ (ET'_];I (TL)H (1'2)

0
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; 1 '/l [1‘1 fT-_- , . , ,
S = b : I DI (=)
3 (zﬁ)‘i . (1T1 . (11_ . ({1’3 [ (T[)[[ (T_)H( 3.
1
()

S4 =

f@ﬂmf%%%ﬁMWMWMWM)

The operator S is called the scattering matrix. The probability of
finding a system, which at ¢ = 0 is deseribed by the wave function &, ,
after time ¢ in the final state deseribed by &5, is given by the absolute
square of the matrix element hetween these two state functions:

P o= | (@4 S&) [* (12)

In order to evaluate the matrix element of the S-matrix it is necessary
to convert the operator products H'(7,)H'(r2) into matrix products.
This can be done with the help of a complete set of state functions which
are assumed to be eigenfunctions &, of the unperturbed Hamiltonian H,
with the eigenvalues

E, = .Zim kY + . (13
Making use of
(b,* H'(7)®,) = exp [% (K, — EJT] (®,.* Ho,) (14)

which follows from equation (9), we obtain, for example, for S,

t T
! S (B HE,)(B,* Hd,) f dr f drs
(¢71)? 7 Yo 0

-exp |:;7 (K, — E,)n] exp |:% (E, — En)n].

Corresponding expansions hold for all the other S;. The summation
extends over all possible combinations of the products of all the free
photon and free electron states.

(‘bp*, qu’g) =
(15)

11I. EVALUATION OF THE MATRIX ELEMENTS OF THE S-MATRIX

[t can easily be appreciated that for higher-order approximations the
matrix elements of S; become very complicated. Not only will an in-
creasing number of nonvanishing terms appear in the summation but
also the products of the individual matrix elements of H become in-
creasingly involved since each H according to (3a) consists of three
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terms, so that each term in the sum corresponding to S; will contain 3¢
terms.

Luckily, however, not all of these terms give a contribution. Let us,
for the moment, assume that we are interested in the process of the emis-
sion of one photon. We sce immediately that all terms containing only
products of matrix elements of V give no contribution, since V' does not
change the photon number and since the scalar product of state func-
tions with different photon number is zero. Also, all those products dis-
appear which contain one term with the matrix element of H, and all
others with V. H. changes the photon number either by 2 or 0, so that
no state with one additional photon can result. These considerations, if
applied to all possible products, reduce the number of those terms con-
tributing to the matrix element S; considerably.

In addition we will make one more approximation. Since we are in-
terested in obtaining the nonlinear effects (nonlinear with respect to n),
we do not want to improve the approximation of the result given in Ref.
1 as far as the potential V is concerned. In other words, we have ob-
tained previously a result which was proportional to ¢’nV. By considering
all terms in the higher-order approximations which contain one factor
H, and an arbitrary number of factors containing V, we could obtain
improvements in the previous caleulation in the (symbolic) form

(V4 VE+ TV,

However, these terms improving the previous approximation as far
as the potential V is concerned will not give any information concerning
nonlinear effects with respect to n. What we want instead is an approxi-
mation which results in

S Vn(l 4 en + e'n + ---).

Therefore, we will consider only terms containing one factor ¥V and
neglect all those containing more than one.

Without going further into the details of the calculation, we will im-
mediately quote the results of the caleulation of the matrix elements
which differ by one photon in the initial and final states. This fact will
be indicated by a subscript 1 on the matrix elements. The matrix ele-
ments for the operators H, , H, and V are given by:

(@*(n £ 1,5), H®(n})) = \‘//;;- 4/ 278 S 18, aBerws (16)

(‘-13* n+2 &y K) I[o‘t'(n A)) ’m' f RB(I ,k,ﬁxy 05,,z F28 (17)
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(8*(nx), Hd(nk)) = 2 %%gna 18e,.03¢,.0 (18)
Ze 4r
**(np), Vo(nk)) = =25 T
(@*(nx), Va(nk)) AT 1 (19)
With these matrix elements we obtain
Ar Ze'n! o kz — k
Bp* Soby), = F__F_ Len onn  Ke T B
(e, 5o = F 00 " 1/ [« — k[ + 42
: (20a)
exp [;,—1 (Ep - Eo)t] -
' Er — E,
dr° Ze'nt 1/27;-?3 1
* = — —— — . P —
(‘I’F ,Sa‘bu)l (LB)- m2oh @ IK _ kl_; _|_ "Yz

7
exp [— (Er — Eu)t:l -1
F2Uuwl(k, — k) f T 7 (200)

(F —_ 0

— 27}% (ke + b — k™™ — kei""")}

47|-0 Ze’nd 2rh f
" B 2z R
(@e*, Sio)1 = (La) miw*t 1/ w |k — K[|+ 2

. {(51.:21{: — 3k — &k — &)

- exp - [(EF — Eu)t] (200)

.BFH'.EU

+ 21% [-'K;r: - 2k"z2 + Zk“z(k - K.!:) cos wi]}‘

Of the two signs given in these equations, the upper sign refers to the
case of emission and the lower sign of absorption of one photon. The

value of x = | x| is also dependent on whether emission or absorption
of one photon is being considered

= k/1 F 2 (21a)
with

e = I (21b)
muo*
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The equations (21) follow from the conservation of energy Er = Eo
with the help of (13).

The matrix elements (20b) and (20c) include the process of the virtual
emission and absorption of one photon. While the final state ®» differs
from the initial state ®, by one photon, states with two additional pho-
tons appear in the intermediate steps of the calculation leading to (20b)
and (20c). One may say, therefore, that these matrix elements corre-
spond to a process either by which one photon is being absorbed and two
photons are emitted, or by which two photons are emitted and one is
absorbed. The final state has gained a photon in either case. In contrast
to this, the matrix element (20a) corresponds to the simple emission
or absorption of one photon without virtual emission and absorption
processes taking place.

However, we have also to consider the case that two real photons are
emitted or absorbed. This process leads to transition probabilities which
are of the same order in e as the contributions which (20b} and (20e)
will give to the emission or absorption probability of one photon.

The matrix elements corresponding to the emission or absorption of
two real photons are given by:

O’ Ze*nkia, 1
L8 mile |d — k|2 4+ +?

(Dp*, Sabo)2

) (22a)
exp [% (Br — Eu)t] -1
’ Ep - EU
An* Zé'nh (o2 — k)°
(Bp*, Saby)s = TIF mid [6 — L]+ 42
(22b)

exp [% (Er — Eo)t:| -1
) Er — Eo ‘

The subscript 2 on the matrix elements indicates that two photons
have been emitted or absorbed. In (22) ¢ is the propagation vector of
the final electron with the energy

2
Er = A o + (n %+ 2)fw. (23)
2m
From Er = E, follows
c=k/1F 4 (24)

with e of equation (21b).
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IV. THE PHOTON CREATION RATE

We can now calculate the probabilities for the emission of one and
also for the simultaneous emission of two photons. More important
than the transition probability is the transition probability per unit
time. According to Heitler* this is obtained by summing the transition
probability P over all possible values of the energy of the final state and
dividing by the time ¢£.

w:lzpzlf PprdEs. (25)
t F t Jo

pr is the number of states per unit energy. We keep the energy of the
radiation field fixed and allow the final energy of the electron to vary,
disregarding conservation of energy for the moment. It turns out that
conservation of energy is automatically assured since P contains a 6-
function, as will be shown.

The number of states in the box of size L' (box normalization) turns
out to be

mL’k
pr = IWW)F“ dQ. (26)

kp is the magnitude of the electron propagation vector, which is either
« or ¢ depending on whether we consider the one- or two-photon process.
dQ is the element of solid angle into which the electron is scattered.

The probability P; for the emission of one photon is given by (12)
and (20)

Py o= | (®#* Seo)1 + (®r*, Ssdo)r + (@r*, Sido)s 2. (27)

We neglect all terms of orders higher than ¢'. Two important terms will
occur in (27). One is

exp [% (Er — Eu)t} -1
‘ T, — T

24t exp [3% (Ey — E’n)t:|

2
sin (Ey — Ey) 3% (28)

Er — Ky
ZFT:ta(Ep - Eo).

The other one is
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. 2
(exp I:% (Br — Eu)t] — 1)
= 27

exp |:E’- (EF - Eﬂ)t} -1
i i

B — Fy By — By
)
- exp [Eﬁ (Bp — Eo)t:l (29)
: B(EF - ED)

- 2m'%a(Ep — ).

The limiting process

lim S“l—;’{” = 8(z)

K-»>x

can be taken since, even for relatively short times, we will have Eq ;_i > 1.

The somewhat daring calculation in (29) is suggested by Heitler* and
Mandl.?

The same calculations have to be performed with P,, the probability
for the emission of two photons.

We see that P is proportional to ¢, so that w = 1/t( >_ P) will be
independent of time. P is also proportional to a é-function which guaran-
tees the conservation of energy. If we write

P = %% | Kro['5(Er — Eo)
we obtain
2 2
w=W‘I(FDIPF- (30)

This equation was taken as the starting point of the previous paper
[Ref. 1, equation (1)].

We will not write down the explicit expressions for w, and w, but will
go immediately to the photon creation rate AN’. AN’ denotes the num-
ber of emitted photons per second and, according to equation (15) of
Ref. 1, is given by:

3
AN’ = (wy + 2uwn) %NeNn . (31)

By substituting (30) and (27) and its equivalent for the two-photon
process in (31), we obtain:
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. SaZ%N (ke = )’
ANE C umeth? {U k— K [° 4 4%)?

2re’N# [x(k — )3 — B 4 Skio(k — x2)]

- mi’ v — K2+ 422
- ﬂ(l | ,) . (32)
F 2me  k(ke — K) _|_1 ooz — k)
i —kF+70 " 2([0— k[ + 7

1 Boolo. — k)* :l}
F - N.N, .
26— K[+ 7

Terms proportional to cos wt have been neglected in (32) since, if the
time average over one period of the oscillation is taken, no contribution
from these terms would result.

AN, is the number of emitted photons if we ask only for the probabil-
ity of photon emission and take the corresponding values for x and ¢
and the upper signs. AN, is the number of absorbed photons. In order
to obtain the net number of actually emitted photons, the difference
AN’ = AN, — AN.' has to be taken.

AN, of equation (32) implies also that we are interested only in

those photons which are emitted while the electron is scattered into a
certain direction of space given by x or ¢ into the solid angle dQ. In
order to get all the photons, we have to calculate

AN = f (AN, — AN,") d. (33)

It is interesting to note that the last two terms in (32), stemming from
the two-photon process, give only a negligible contribution to (33) and
can be neglected.

We obtainf
AN _ 8Z'¢N.N., _ 2 ( _ (PNLF)
N mip f2 Ve + o whf?
with n = v/k < 1 and e = hf/m* < 1. Equation (34) holds as long as
N
whi?
Equation (34) is identical to equation (32) of Ref. 1 if n = 0 in the

limit N — 0. [In (2/¢) — 1 has been approximated by omitting the 1.]
However, we now have obtained an expression for the photon creation

(34)

< 1. (34a)

1 All equations in this paper are written in electrostatic ¢.g.s. units.
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rate AN /N, which depends on the energy density ifN of the radiation field.
For increasingly larger N, the creation rate AN /N becomes decreasingly
smaller. We therefore have the possibility of computing the available
power.

V. ESTIMATE OF THE AVAILABLE POWER

The power P, radiated from a cavity is given by

) 2 1 1

P, =2xhf'"NV (— — —). (35)
QL Qf

The energy density AfN in the cavity will build up to the point where

the number of created photons AN equals the number of photons which

are radiated from the cavity and absorbed by its walls. We obtain for

the oscillation condition

AN _ gV

N Q.
Substituting (34) into (36), solving for N, and substituting into (35),
we obtain

_ 2w’V ( 1 1) - a3V

e

(36)

P, : :
r 2 : I
40222QLN,‘N.- In \/E—H (37)

P 3

Q. Q.

{e.g.s. units are being used).

Because of (34a), this equation holds if the expression in the brackets is
much smaller than 1 (but larger than 0).
As soon as the product N, N, is large enough to make P, = 0, the cavity
oscillates. The oscillation condition is, therefore
amivt 3V
NN, z > .
462°0, In ——
e Z Q) In Vet

(37a)

It is understood that the power carried by the incident electron beam
must be substantially larger than the power calculated from (37).

The most surprising fact about (37) is its dependence on the fifth
power of the frequency. This means that at low frequencies the power
obtainable from stimulated emission of bremsstrahlung is small.

Table I illustrates the situation for a practical example. We assume
that we use bare nuclei with charge Z = 1. Correspondingly, we have to
take n = 0. Furthermore, we assume that the expression in the bracket
of (37) has the value of 0.1 and that Q. = 10°, ;> Qu,v = 2 X 10°
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Tarre I
i P, NeNp Nu/V
10 ge 107" w 10% em™2 see™! 105 em—3
100 ge 10°° w 197 em™2 see™! 108 em™3
1000 ge 1w 10H? em™? sec™! 102! em™3

em/see corresponding to an accelerating potential of 10 volts. The cavity
volume is taken as V' = 10 cm®.

The values for NV, given in Table I are the products of nuclei and
electron density current necessary to satisty the oscillation condition
(37a). N,/V in the last column of Table I is the density of nuclei
which results from NN, with V' = 10 em® if N, is chosen to equal a
current density of 0.1 amp/cm®.

We see that the available power is very low at f = 10 ge and reaches
interesting values for /' = 1000 ge. However, the required density of
nuclei (or ions) also increases very rapidly with inereasing frequency.
Equation (37), which was used to compute the values for the available
power in Table T, is an approximation. It does not hold for NN, — .
However, it seems reasonable to believe that the results of Table I are
correct to the order of magnitude. We can not hope to obtain one milli-
watt of power if our theory predicts 107 w.

VI. USE OF NEUTRAL ATOMS AS SCATTERING CENTERS

We derived (37) under the assumption that the electrons are scattered
by a potential

92 [’ r

V= —=Zc

According to the Thomas-Fermi statistical model of the electron®
v AR A )

TTET ORE T (38)
Kquations (37a) and (38) allow us to calculate the required minimum
number of atoms necessary to achieve selfsustained oscillations. It has
to be remembered, however, that we have completely neglected the
interaction of the incident electron with the bound electrons in the
scattering atom. The only way the bound electrons enter the picture is by
effectively shielding the Coulomb potential of the nucleus. In reality,
the incident electron will excite the bound electrons into higher energy
states and will also ionize some of the atoms. It might be that the process
of ionization is accompanied by either stimulated emission or absorption
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of radiation, just as the process of scattering is accompanied by a net
stimulated emission of radiation if the incident electrons fly more or
less parallel to the electric vector of the stimulating radiation field.!

FFor all practical cases we will have

e <Ky

and therefore we obtain as the oscillation condition from (37a)
Tmivt f3V

47%°Q, In (g%) (39)

N.N, z

Table 1I lists the product N.N, of (39), the atom density for an elec-
tron current of 100 ma/em® and the velocity v as well as the correspond-
ing accelerating potential U/ as a function of frequency for three different
values of Z. The velocity is chosen so that n = 0.2 [equation (38)]. Z
is equivalent to the order number of the atom in the periodic table of
elements. We have again assumed @, = 10* and V = 10 em®.

VII. DISCUSSION OF THE FEASIBILITY OF A BREMSSTRAHLUNG OSCILLATOR

The examples given in the last section show the problems involved
in building an oscillator utilizing stimulated emission of bremsstrahlung,.
At low frequencies, where it is easy to satisfy the oscillation condition,
the available power is very low. The available power reaches useful
proportions in the region of 100 ge and becomes abundant at frequencies
higher than 1000 ge. However, the required number of scattering nuelei
or atoms hecomes very high.

There is a possibility of using periodic arrangements of scattering
centers rather than the randomly distributed atoms or nuclei considered
here. The author has considered seattering by a string of nuclei (or
atoms) which are arranged on a straight line parallel to both the direc-

TasLe I1

f Z NNy Nu/V v U

10 ge 3 X 109 em2 sec™!| 4.8 X 10" em™?

100 ge| 1 3 X 10 em2sgec | 4.8 X 102 em™ | 1.1 X 109 sec| 345 volts
1000 ge 3 X 10 em 2 sec™!| 4.8 X 102 ¢em™3

10 ge 6.5 X 103 e¢m™? see™! 1 X 10 gm™3

100 ge| 10/ 6.5 X 10%° em ™2 see™! 1 X 10t em™ | 2.37 X 10° sec|1600 volts
1000 ge 6.5 X 10" em ™2 sec™! 1 X 102 em™3

10 ge| | 2.2 X 10% em2 sec1| 3.5 X 1047 em? ‘

100 ge| 50| 2.2 X 10%° em™2 sec™!| 3.5 X 10 em~2 | 4.05 X 10° sec 4660 volts
1000 ge 2.2 X 102 em~2 sec™!| 3.5 X 102 em—3 |
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tion of the incident electrons and the electric field vector of the stimulat-
ing radiation field. The result was that, if the distance between sucecessive
atoms is d = v/f, the number N, of scattering centers entering (34), or
(39) in case of a random distribution, is replaced by N, Scattering by
periodically arranged atoms thus greatly enhances the effect.

However, if the atoms are not aligned in one straight line but rather
are in periodically arranged planes, N, has to be replaced by nN,, , where
N, is the total number of atoms, while » is the number of planes. If 100
periodically arranged planes filled with scattering atoms were used, the
number N, quoted in Tables I and IT would be reduced by a factor of
100, and the corresponding atoms would have to be distributed over
these 100 planes. Using a frequency of 100 ge and atoms with Z = 50
would require a total number of 4 X 10" atoms or 4 X 107 atoms in
each plane. If a plane of 10 cm? area is used, its thickness would have
to be of the order of 1000 angstroms.

There is a limit to the number of planes which can be used in practice.
This limit is set by the requirement that all electrons have to pass the
distance between all these planes in the same time interval. The spread
in electron velocities which can be tolerated decreases in inverse propor-
tion to the number of planes used.

One could use electrons moving in conduction bands of solids rather
than free electron beams and let them scatter from impurities in the
erystal. Since the concentration of ionized impurities in semiconductors
can be very high and since extremely high current densities can be
applied, it appears that stimulated emission of bremsstrahlung should
oceur.

VIII. LIST OF SYMBOLS

A=(4,,0,0) vector potential of the electromagnetic field

¢ =3 X 10" em/sec  velocity of light

Bek Kronecker 8 symbol equals 1 if x = & and is 0
otherwise

E energy of the physical system composed of RF
field and electron exclusive of the interaction
energy

e = 4803 X 10" electron charge (or base of natural Logarithm)

dyn™* em

e = hf/mv*

7 = v/k

f frequency of the stimulating RF field

® state function of the physical system

¥ shielding factor of the potential of the neutral

atom
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107" erg-sec

V=1
kx

Vied + k2 + &2

—28

n/L*

2xf
my = hk
ih(d/0x)

REFERENCES

Planck’s constant

Hamiltonian of the noninteracting system

interaction Hamiltonian

or sometimes used as subscript

propagation constant of the incident electron

magnitude of propagation constant of the scat-
tered electron after the emission of one photon

length of the fictitious box used for box normali-
zation

electron mass

number of photons in box of volume L*

photon density

number of electrons per second per em’

total number of scattering nuclei or atoms
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