Delay Distributions for One Line with
Poisson Input, General Holding Times,
and Various Orders of Service

By L. TAKACS
(Manuseript received December 14, 1962)

At a lelephone exchange, calls appear before a single trunk line in ac-
cordance with a Poisson process of density N. If the trunk line is busy, calls
are delayed. The call holding times are identically distributed, mutually
independent, positive random variables with distribution function H(x). In
this paper the distribution function of the delay and ils moments are given
for a stationary process and for three orders of service: (i) order of arrival,
(72) random order, and (i%7) reverse order of arrival.

I. INTRODUCTION

Let us suppose that in the time interval (0, ) calls appear before a
single trunk line at times =, , 72, -+, 7., --- where the interarrival
times 7, — 7,00 (n = 1,2, -+ ; 7o = 0) are identically distributed,
mutually independent random variables with the distribution function

L 1= ifz =0,
F(z) = {0 ifz <0, (1

that is, the input is a Poisson process of density A. If an incoming call
finds the line free, a connection is realized instantaneously. If the line
is busy, the call is delayed and waits for service as long as necessary (no
defection). The holding times are identically distributed, mutually in-
dependent, positive random variables with distribution function H(x)
and independent of the input process. Such a service system can be
characterized by the symbol [F(x),H(x),1] provided that the order of
service is specified. In this paper three orders of service are considered:
(1) order of arrival (first come-first served), (72) random order (every
waiting call, independently of the others, and of its past delay, has the
same probability of being chosen for service), and (7#) reverse order of
arrival (last come-first served).
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We are interested in finding the distribution function of the delay for
a stationary process and for the three orders of service. We shall prove
that if A« < 1, where a is the average holding time, then there is a unique
stationary process.

Throughout this paper we shall use the notation

W) = [ etane @) 2 0 (2)
and

a = j:q aF dH (x) (k=012 ---). (3)
In particular, @; = « is the average holding time.

II. THE STATIONARY PROCESS

Let us denote by &, the queue size at time { = 7, — 0, i.e., the nth
incoming call finds £, calls (either waiting or being served) in the system.
Denote by x. the time needed to complete the current service (if any)
at time £ = 1, — 0. If & = 0 then x, = 0. The vector sequence

(EH:XM); n =1, 2’ T,

is & Markovian stochastic sequence and has the same stochastic behavior
for each order of service. We shall prove that if Aa < 1 then there exists
a unique stationary distribution, whereas if Aa = 1 then a stationary dis-
tribution does not exist. If e < 1 and (& , x1) has the stationary dis-
tribution, then every (., x.) has the same distribution as the initial
distribution. For the stationary process, let us introduce the following
notation

P[En = .7} P; (J =01, ) (4)
Pix. £ 2, & = jl = Pi(x) (xz0,j=1,2---) (5)

[

and

-]

m() = [ aane ()

%

0,j=12--)  (6)

We shall prove the following theorem, due to D. M. G. Wishart :t

Theorem 1: If Aa < 1, then the stochastic sequence (&, xn), n = 1, 2,
<+, has a unique stationary distribution which is given by Po = 1 — ha
and
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U(s,z) = ill’j(s)z"

=1

(7)

_(L—Mhdl—d(ﬂ@—wﬂﬂ—wﬂ)
2=\ (1 = 2)) s— A1 - 2)

for R(s) =2 0and | z| = 1.

Proof: If we express the distribution of (£,41, xn41) with the aid of
the distribution of (&, x.), and assume that both (f.4;, xns1) and
(£, xa) have the same stationary distribution, and if we form Laplace-
Stieltjes transforms, then we obtain that Py and 1I,(s) (j = 1,2, --.)
must satisfy the following system of linear equations:

m=mmm+§mmmmﬂ
MM=E%§%@%ﬂ+gmmme%
MH=MM@:P4m ®
o M) = b g I () [ (V)]
fory =23, ... and
Py + g; II;(0) = 1. (9)

To prove (8) we use the following two facts: First, the probability that
during a holding time no call arrives is given by

() = f: e dH (z).

Second, let p and 6 be mutually independent, positive random variables
with distribution functions P{p < a} = P(x), and P{§ < 2} = F(x)
defined by (1). Write A = {6 < p}. Then

Pg‘,,l}E[C-x(p—ﬂJlA} — f f c—(.rf”).wfhydyd])(a_) _ )\[H()\) - H(S)]
o Yo § — A

where

T(s) = j:e_”"’ dP(zx).
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Forming generating functions in (8) we obtain

[s — M1 — 2)]U(s,2)

UNE(N)) — U()\,z)} (10)

=nU(Nz2) + Az[T(N) — ¥(s)] {Pﬂ + T(N) — 2

If s = M1 — 2) in (10) then we get

U2 + 800 91— 2Dl {Po+ LA U040, (1)
The comparison of (10) and (11) gives

N[E(s) — (M1 — 2))]
s — M1 — 2)]F(N) — T(AM(1 —2))]

By the first equation of (8), U\¥(N)) = Pyl — ¥(N)], and if we put
this into (11) we get

U(\z). (12)

U(s,z) = [

Po(1 — 2)[F(N) — ¥(M1 — Z))].

U(\z2) = s YO = 2)) (13)
Thus by (12) and (13)
Uls,2) = APez(1 — 2)[¥(s) — ¥(A(1 — 2))] (14)

T T = w(M1 — 2))l[s — A(1 — 2)]

Since by (9) Po + U(0,1) = 1, it follows from (14) that Pp = 1 — Xa.
Thus if Aa = 1, then the assumption that a stationary distribution
exists leads to a contradiction, i.e., a stationary distribution cannot exist
if A\¢ = 1. If A < 1, then there exists one and only one stationary
distribution which is given by Po = 1 — Aa and by (14). This proves
(7).

Remark. From (7) we obtain by inversion that for v = 0

> Pi(x)?’

j=1

| (1 Jaz(1 ) [7 (1%

_ — Aa)Az(l — z —A(1—2)u _
TR =) e e [H(uw + z) — H(u)] du.

Hence forx = 0
P = [ 1L = Hw)du, (16)
=1 0

Accordingly if (£, xa), n = 1,2, - - -, is a stationary sequence, then we

have for x = 0 that
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PlwSzltaz 1) =1 [ 1 - Hwla, (17)

i.e., if an incoming call finds the line busy, then the distribution function
of the time needed to complete the current service is given by

ifz[l—y(u)]du ifz >0,

H*(z) = (18)

0 ifx < 0.

Finally we also remark that the stationary distribution of ¢, , n = 1, 2,
-+, is given by the following generating function

=~ (1= 2aa)(1 = 2)¥(A(1 — z))
Eop’z - YOI —2)) — 2

This follows from (7), because U(z) = Py + U(0,2).

U(z) = (19)

1II., THE DISTRIBUTION FUNCTION OF THE LENGTH OF A BUSY PERIOD

A busy period is defined as a time interval during which the line is
continuously busy. The stochastic law of a busy period is obviously
independent, of the order of service. Every busy period (except the
initial one, if the line is busy at time ¢ = 0) independently of the others
has the same stochastic law. Denote by G/(z) the probability that the
length of a busy period (other than the initial one, if any) is <z and
define

v = [ a6 @) 2 o, (20)
In Ref. 2 it is proved that y(s) is the root with smallest absolute value
in z of the equation
z=T(s+ M1 —2)). (21)
By Lagrange’s expansion (cf. Ref. 3, p. 132) we obtain that

0!:

—()\+n)x n— ldH (%) (22)

7(8) n= 1 n[
where H,(x) denotes the nth iterated convolution of H(z) with itself.
From (22) it follows by inversion that

@ n—1

Gz) =22

n=1 n!

If Aa = 1 then G(») = 1, whereas if Aa > 1 then G( =) < 1.

f ) e ™ dH (). (23)
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In the case of Aa < 1 the 7th moment of G(z) is defined by

I, = fw = dG(z) (r=0,1,2---). (24)

0

If A« < 1 and a, is finite then Ty, Ty, ---, Iy are also finite and we
have To = 1, Ty = /(1 — Aa), and

n v—1
Thor = 2. ﬁ—l__")‘k_ Va. (25)

s n! (1 — ha)rirt
forn = 1,2, ---, where

n! aslay™ -+ an. o
=t (26)

}'l'l'J'2+Z:'+J-r§=" Julgal - L2D(B)7E - ((n+ 1)1

F14 2 gt - Anin=n
If, in particular, H(z) = 1 — ¢ (x 2 0), then a, = rla’ and
[ | —
Yoo = o > L S n (n 1) ot

drtist ety el e gl vl = 1
F1+2igt- - Anja=n

Yvnw =

TFormula (26) can be proved as follows. If we define
u = s+ Nl — ¥(s)),

then by (21) s = w — A1 — ¥(u)], whence by Biirmann’s theorem
(ef. Appendix) forn = 0, 1, - -+ we have

dn+lu du n n+l dn 1 n+l
(ds“"’l)g:n - l:du" (E) :L_u B [E (1‘_ = ‘I’(u)) ] (27)
[ w=0

and the nth derivative can be calculated by using Faa di Bruno’s formula
(ef. Appendix). On the other hand

d ’
— = —_ = N 2
(ds)s:u 1 —x(0) =14 Al, (28)
and
dn+l . N
(dsn::') =0 = -_XT( H)(O) = (_1) Alnp1 (ﬂ = lv 2: "')- (29)

Comparing the above formulas we obtain T, for every n.
Finally we remark that, by (25)

Iy = TI-—%T.CEP M (30)
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ho oy B (31)
N Y LR I VS T

o 10\ avas 153 a’ R

o= (1 — Xa)® T (1 — )b + (1 = Xa)?" (32)

IV, THE DISTRIBUTION FUNCTION OF THE DELAY

Let us denote by 5, the delay of the nth call. If the order of service is
specified then the distribution function of 7, is uniquely determined by
the distribution of (&, , x.). If (£, x.), n = 1,2, +--, is a stationary
stochastic sequence, then 5, has the same distribution for every n. In
the case of the stationary process write P{, < 2} = W(a) and

Ele ™ = Q(s)

for each order of service. Define

W, = f a" dW () (n=0,1,2, ). (33)
0
In each case W, is finite if «,, is finite. I"'or each order of service
_ Acva

For service in order of arrival

Wo= ey New (35)
TO3(1 —Aa) 0 2(1 — Aa)?’ ’
for service in random order
2hevs Naw

W, = = 36
Y0 v yo ey v S e v 7 v SR G

and for service in reverse order of arrival
II"'I AC!’:; A an (37)

T30 = ha)? + 2(1 — Aa)?’
(7) Service in Order of Arrival. This case was first investigated by I'.
Pollaczek® and A. Y. Khintchine.” Cf. also D. V. Lindley.®
Theorem 2: If ha < 1, if the process is stationary and if service is in
order of arrival, then the distribution function of the delay of a call is
given by

W(x) = (1 — M) Aiﬁ‘ ()\a}kﬂ'k*(‘t) (38)
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where Hy*(z) denotes the k-th iterated convolution of
}
0 ifx <0,

fz[l-—H(u)]du ifz =0,
0 (39)

with itself; Hi*(z) = 1if ¢ =2 0 and He*(x) = 04f z < 0.
Proof: Evidently
W(z) = Po+ Zl Pi(z)*H ()
-
where Hij(z) (j = 1,2, ---) denotes the jth iterated convolution of

H(z) with itself; Ho(x) = 1if « = 0 and Ho(z) = 0if 2 < 0. The
symbol * denotes convolution. Hence

s) = P+ Sl = Py + LETED) )
= w(s)
where U(s,z) is defined by (7) and Py = 1 — Aa. Thus
_ l-)a
2(s) R IOK (42)

8

whence (38) follows by inversion. Formula (38) was found by V. E.

Benes."
If a, 41 is finite then W, is also finite and is given by

- Nl
Wn - ; (I—:W‘ Yﬂ.v (43)

where Y, , is defined by (26). For,

W, = (1" (d";z("s))hu (n=0,1,--+) (44)

and the nth derivative of 2(s) can be obtained by Faa di Bruno’s
formula (cf. Appendix).
In this case W, is given by (34), W, by (35), and

Ay Nasas 3Ny’

S i1 @) T T = A1) (45)

Wy

Remark. Let T'(x) = W(z)*H(x), ie, T(x) is the distribution func-
tion of the sum of the delay and the holding time of a call for a stationary
process. Define
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.= [ dT) (=012 ). (46)
0
If e, 41 is finite then T, is also finite and is given by T, = W, 4+ « and
=W, + 2 W,z_1 (n =23, ) (47)

where W, is defined by (43). Conversely, if we know T'; for j = 1, 2,
-, n then we can obtain W, by the following formula

w. = (= 1) n'[,\ + 3 "”“’T} (n=1,2--). (48)

=1 .7'

Formulas (47) and (48) follow from the relationship
[ e ar) = ats)ws) - U=l (1 - i) (s). (49)
1]

Finally we also note that the rth binomial moment of the stationary
distribution of the queue size, i.e., that of {P;} defined by (19), is given
by

Br=Z(J)P,~:)‘T’ (r=0,1,---). (50)
j=r \T r.
For we can easily see that
P;‘ — f —\z ()\'E) dT( ) (51)
0 Jl

whence

B, = [ 8L gpey = XTx (52)

0 7l rl

(72) Service in Random Order. The case of exponentially distributed
holding times was investigated by many authors (cf. Ref. 8), the case
of constant holding time by P. J. Burke,” and the general case by J. F.
Kingman." The following theorem is due to J. F. Kingman."

Theorem 3: If Na < 1, of the process 1s stationary and if service is in
random order, then the distribution function of the delay of a call has
the following Laplace-Stieltjes transform:

A 1 ! dv
Q(S) = (1 - 2\62) {1 +§f;(a)exp|:" fuv — ‘I’(S + )\(1 — y))j|

u—1 -
'[1 T T u))]d“} (53)
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where v(s) is the root with smallest absolute value in z of the equation
z=T(s+ A1l — 2)) (54)

and is giwen by (22).

Proof: Under the condition that j(j = 1,2, ---) calls are waiting in
the system when a service is about to start, denote by W ;(z) the prob-
ability that the service of a given call among the 7 calls starts within
time x if time is measured from this instant. Define

a,(s) = f: CEAWA) (RG) Z 0). (55)

The distribution functions W;{z) (j = 1, 2, ---) can be obtained by
using the following relationships: Wi(z) = 1 and

1 1 = * —Au ()\u)k
ww =t (=D () [*Wreaa)  (50)
7 1/ k=0 LYo k!

forj = 2,3, -+ and for z = 0. To prove (56) we take into consideration
that if the given call will be chosen for service among the j waiting calls,
then its service starts immediately; if the given call is not chosen for
service at this time then it must wait during the holding time of the call
chosen for service, and if during this holding time % new calls arrive,
then there is an additional delay which has the distribution function
W ;4x(x). Forming the Laplace-Stieltjes transform of (56) we obtain
the following system of linear equations for the determination of Q;(s)
(j=12 ---):2(s) = 1and

J(s) =1+ (7 — 1) 2914_;:_1(3) f: c*‘“"”%f!—)kdﬂ(x) (57)

forj = 2,3, - -+ . The solution of this system is given by J. I. Kingman"
in the following form:

Q,(s) = LI(R) (’Xp|:"" fu v — ¥(s —:lv)\(l - U))] (58)
. 5

_ w! Ju
w—W(s+ M1 —u))

where v(s) is defined by (22). By integrating by parts (58) can be
written in the following equivalent form:

o) =1 -G -1 [

v (8)

! dv —2
"exp [_ f v — W(s + AL — v)):‘ w du.

(59)
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Now the distribution function of the delay is given by

W = o+ 2| [ O ap ) [ W) @)

i=1 k=0 ]h!

For, if a call arrives and finds the line free, then its service starts without
delay. If an arriving call finds 7 (j = 1, 2, - - -) calls in the system, then
its delay is composed of the time needed to complete the current service,
and if during this time k new calls arrive, then there is an additional
delay that has the distribution function W, ,(x). Forming the Laplace-
Stieltjes transform of (60) we get

(s) = Py +ZZ[[ ~ane () dp(l)} Qals).  (61)

=1 k=0 kU

Putting (58) into (61), we obtain

1 ' 1 dv
Qs) = Py + e exp [_ fu v — ¥(s 4 A(1 — ”)):I

(62)
UG+ —w, W)
wfu — V(s + N1 — u))]
where PPy = 1 — Aa and U(s,z) is defined by (7). Thus
a(s) = (1 —m){1+’-‘ .
! dv )
'e"p[_fu v — (s T A(L —v))] (63)

_ w— 1 u—1 :l
uw— WAl —u)) u — V(s 4+ A1 — w)
whence (53) follows by integrating by parts and by using the fact that
v(s) satisfies (54) in z.
If @,41 is finite, then W, is also finite and can be expressed by

f " dWi(x) = (=1)" (di(s)) (64)
0 8T a=0
forr =1,2,--- nandj=1,2, ---, and by

i aj+k U s

forj 4+ &k = n. By using the following formulas we obtain (34) and (36):

N y_ali—1)
fo @ dW;(x) = 57—, (66)
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* gy 280 — 1) —2) | (6 —Naa(j — 1)
fo O R TR v c=s W= vy REY
and further Uy = N, Uy = Aa/2, U = Aes/3,

_ Nay
U = A + m,
Moz | Aas Na®
Un =5 +7+4(1 — )’
and
Nz + 3N Mar'
Uu = 3(1 — Aa) T30 = )t

(1) Service in Reverse Order of Arrival. The case of exponentially
distributed service tlmes was investigated by E. Vaulot" and the general
case by J. Riordan'® and D. M. G. Wishart." Now we shall prove

Theorem 4: If Aa < 1, if the process is stationary and if service is in
reverse order of arrival, then the distribulion function of the delay of a call
for x = 0 s given by

W) = (1= a) + A3 ™ (’“';.)IH [0 - ala (6s)

where H j(z) denotes the jth iterated convolution of H(x) with itself.

Proof: Denote by G(x) the probability that the length of a busy
period in the queueing process considered is <x. G(z) is given by (23).
Then we can write that

W) = Pt (=P 5[ [ O amw |*6ua) (o)

where Gi(z) denotes the kth iterated convolution of G(x) with itself;
Go(z) = 1if 2 = 0 and Go(z) = 0if z < 0; H*(x) is defined by (18)
and Py = 1 — Ae. For, if an arriving call finds the line free, which has
probability Py, then its service starts without delay; if the line is busy,
which has probability 1 — Py, then its delay is composed of the remain-
ing holding time of the call being served, which has the distribution
function H*(z), and if during this time interval & new calls join the
queue, then there is an additional delay that has the same distribution
function as the total length of % independent busy periods. Thus we
obtain (69). Forming the Laplace-Stieltjes transform of (69) we obtain
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a(s) = Py + L= P05 o [T Oy gy g

(70)
1 —w(s+ 21— 'Y(S)))

s+ All — v(s)]

where y(s) is defined by (22). Since y(s) satisfies (21) in z, we get from
(70) that

= (1 — ra) + A

Al — y(s)]

Q(s) = (1 — Aa) + SENT =G (71)
By using Lagrange's expansion (cf, Ref. 3, p. 132) we obtain
A
s) = (1 — Aa) +)\+s
(72)

(=1 dT [w(s 4+ N))
o2 d"sfl( CESSE )

whence (68) follows by inversion.
If @41 is finite then 1V, is also finite and we have forn = 2, 3, ...

that

- (n—2 4 )N

We=2 (n — 1)! (1 = ha)m i

Yo, (73)

where Y, is defined by (26). If n = 1 then W, is given by (34). Ior,

W= -0 (T0) =0z aw)

If we use the notation « = s + M1 — y(s)]and s = uw — A[1 — ¥(u)],
then we ean write that

As) = (1 — ra) + A L= ¥ (75)

u

whence by using Biirmann's theorem (cf. Appendix) we obtain for
n =213, - that

IV _ (_l)n-—l ﬂ]—n 1 n—1
n— 1 \du| 0T — W(u) (76)
u u=0

and the nth derivative can be calculated by Faa di Bruno's formula
(cf. Appendix).
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In this case W, is given by (34), W» by (37) and

Aas + 3N aas + N
4(1 —r)®  2(1 —ra)t  2(1 — Aa)®

Remark. If Po(t) denotes the probability that the line is free at time
t given that it was free at time ¢ = 0, then we can write that

W(z) = 1 — [Po(z) — Po()] (78)

where Pp( ) = 1 — Aa.

If G*(x) denotes the probability that the length of a busy period is
<z for the dual process [H(x),F(x),1], i.e., when the interarrival times
and holding times are interchanged, then we can write that

W(z) =1 — [G*(=) — GXx)] (79)

where G*(» ) = Aa.

(1) Ar Extreme Case. Suppose that in the stationary process the
service of a particularly chosen call starts when and only when no other
calls are in the system, i.e., its service is delayed until it becomes the
only call in the system. Denote by W*(x) the distribution function of
the delay of this particular call.

Theorem 5: If \a < 1, if the process is stationary, and if a particularly
chosen call will be served only when no other calls are in the system, then the
distribution. function of the delay of this call is given by W*(0) = 1 — A
and forx > 0

W; = (77)

dW*(z)
dx

where G(x) s the distribution function of the length of a busy period and
is given by (23).

Proof: Denote by (,(x) the nth iterated convolution of G(x) with
itself. Now we have

W) = Po+ 23 [ [ )" ip, (u)] Gaale). (81)

= (1 — xa)A[1 — G(2)], (80)

iol k=1 I
For, if the particularly chosen call finds the line to he free, then its
service starts without delay; if it finds j calls (7 = 1,2, - - -) in the system
and if during the remaining part of the current service k (k = 0,1, - --)

more calls arrive, then its delay is composed of the remaining holding
time of the call being served at its arrival and an additional delay which
has the same distribution as the sum of j 4+ k& mutually independent
random variables each of which has the same distribution as a busy
period.
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Denote by Q*(s) the Laplace-Stieltjes transform of W*(x). By (81)

2(s) = Po+ LT (54 A = () ()]
. (82)
=Py + U(s + X — My(s),v(s)) = Py l:l - 1_—_:_@_)]

where Py = 1 — A and y(s) is given by (22). We obtain (80) by inver-
sion.
If an4 is finite then

W,* = f: o AW () (83)

is also finite and is given by

)\(1 - Aa)l—‘nqﬂ
n—+1

where T', 4, is defined by (25). This follows immediately from (82). In
particular we have

W, * = (n=1,2-.-..) (84)

Aaz

* _ 5
Wi 2(1 — Aa)?’ (85)
)\013 R2C122
* —
LE T (e v L e VO I (86)
. Aevs 5N anas 15\ s’
Wt = 4(1 — ra)? + 2(1 — Aa)® T 4(1 — Aa)®’ (87)
APPENDIX

A.1 Biirmann's Theorem

(Cf. Ref. 3, p. 128.) Suppose that the first N derivatives of f(z) and
the first N — 1 derivatives of g(z) exist at z = 0. If s = u/g(u) and
¢(0) = 0, then

ﬁm=x®+éﬂ¢iﬁ@ﬁﬂ3£+am. (88)

? dyr1

A.2 Faa di Bruno's Formula

(Cf. Ref. 14, p. 33.) If = = f() where y = g(x), then the nth deriva-
tive of z = f(g(x)) with respect to = at x = 0 is given by the following
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TaBLE 1
" ¥ J1 J2 iz Js Js Ciifaares in
1 1 1 b
2 1 0 1 1
2 2 2 0 14
3 1 0 0 1 14
3 2 1 1 0 52
3 3 3 0 0 8
1 1 0 0 0 1 ¢
4 2 1 0 1 0 1
4 2 0 2 0 0 g
4 3 2 1 0 0 g
4 4 4 0 0 0 e
5 1 0 0 0 0 1 18
5 2 1 0 0 1 0 ig
b 2 0 1 1 0 0 3%
5 3 2 0 1 0 0 3g
151 3 1 2 0 0 0 5%
5 4 3 1 0 0 0 54
5 5 5 0 0 0 0 Lgq
formula
n ] n dl’
dan =0 = dy* Jy=s0)
where
g™ (0 [g® (0))* - -+ [¢™(0))
Yn,v = (90)

Gitiattin=r 112l ce Za (D207 - ()
J1+2i2+ e mip=n
provided that the derivatives in question exist.

Forn < 5 Table I contains all the n-tuples (ji, 2, - - -, ja) satisfying
the requirements j; + jo + -+ + Jju = vandji + 22 + -+ + W = 0,
and in addition the coefficients

nl
jldaedn T T T : — y 9]
Cin ey ey (o O

which we need in using formula (26).
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