A Single-Server Queue with Feedback

By L. TAKACS

(Manuseript received December 14, 1962)

Lel us suppose thal customers arrive at a counler in accordanee with a
Poisson process of density \. The customers are served by a single server in
order of arrival. The service times are identically distributed, mutually in-
dependent, posilive random variables with distribution function H(z).
Suppose that after being served each customer either tmmediately joins the
queue again with probability p or departs permanently with probability q
(p + q = 1). In this paper we shall determine for a stationary process the
distribulion of the queue size as well as the Laplace-Stielljes transform and
the first two moments of the distribution function of the total time spent in
the system by a customer.

I. INTRODUCTION

Although the problems discussed in this paper arose in the theory of
telephone traffic, we use the terminology of queues. Thus instead of calls
and holding times we shall speak about customers and service times
respectively.

Let us suppose that in the time interval (0, ) customers arrive at a
counter in accordance with a Poisson process of density A. Denote by
e (n = 1,2, --+) the arrival time of the nth customer. Then the inter-
arrival times 7,41 — ™, (n = 0, 1, - -+ ; 7o = 0) are identically distrib-
uted, mutually independent random variables with distribution function

1—e™ ifz=z0,
Fx) = {0 if 2 < 0. (1)

The customers are served by a single server in order of arrival. The
server is idle if and only if there is no customer in the system. The service
times are supposed to be identically distributed, mutually independent,
positive random variables with distribution function H(x), and inde-
pendent of the input process. Suppose that after being served each cus-
tomer either immediately joins the queue again with probability p or
goes away permanently with probability ¢ where p 4 ¢ = 1. The event
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that a customer returns is independent of any other event involved and,
in particular, independent of the number of his previous returns.

The process defined above is said to be of type [F(x),H (x),p]. If p = 0,
then there is no feedback.

Let us denote by £(¢) the queue size at time ¢, that is, £(¢) is the num-
ber of customers (either waiting or being served) in the system at time ¢.
Let £, denote the queue size immediately before the arrival of the nth
customer, that is, £, = £(r, — 0). Denote by 6, the total time spent in
the system by the nth customer.

We are interested in finding the distribution of £(t) for a stationary
process, i.e., when £({) has the same distribution for all ¢ = 0 and the
distribution of #, for a stationary process, i.e., when 6, has the same
distribution for everyn = 1,2, --- .

It is easy to prove that the limiting distribution lim P{£({) = Fkj

t—+o0

(k= 0,1, ---) exists and is independent of the initial state if and only
if £(t) has a stationary distribution and the limiting distribution is
identical with the stationary distribution. Similarly the limiting dis-
tribution lim P{6, < z} exists and is independent of the initial state if

and only if 8, has a stationary distribution and the limiting distribution
is identical with the stationary distribution.
Throughout this paper we use the following notation:

w(s) = [ e dHE) () 2 0) (2)
0
for the Laplace-Stieltjes transform of H(z),

w= [ dH@) (=101, (3)

0

for the rth moment of H(x), and
a= [ wan() (4)
0

for the average service time, l.e,, @ = ay .
Further denote by H*(x) the distribution function of the total service
time of a customer. We have

H*(2) = g 3= 9 Hi(a) (5)

where H(z) denotes the kth iterated convolution of H(xz) with itself.
For gp*' (k = 1,2, ---) is the probability that a customer joins the
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queue k times, and if he joins k times, his total service time is equal to the
sum of k& mutually independent random variables each of which has the
distribution functiorn H(x). If we introduce the notation

V*(g) = f ¢ dH*(x) (R(s) = 0), (6)
0
then by (5) we obtain that
S e W (s)
W*(s) = ()] =
(s) qk;p W)l = = DU (s) (7)
Let
a* = f x dH*(x) (r=0,1,---) (8)
0
and o* = ay*. By (7), o* = a/q,
2
ax® = az -+ Zpay y (9)
q ¢
and in general a.* can be obtained by the following recurrence formula
C!f* = Oy + P Z (T) aja,.,j*. (]0)
q =1 \J

1T, THE STATIONARY DISTRIBUTION OF THE QUEUE SIZE

If we know the stationary distribution of the queue size for a process
of type [F(x),H (2)0], then that for a process of type [FF(x),H(x),p] can
be obtained immediately.

Theorem 1: If Aa < q, then the process {£E(t), 0 £ ¢ < «} has a unique
stationary distribution P{E(1) = j} = P*(7=0,1, - )andfor |z| = 1

% — N E — _ }\ﬁ Q(l - Z)\I’(A(l - Z))
Uz) f\;np’z (1 q)(q-lrpz)‘l’(?\(l—z))—z' an

If Aa = g, then a stationary distribution does not exist.

Proof: To find the distribution of the queue size we may assume with-
out loss of generality that the customers join the queue only once and
are served in one stretch; however, their service time is equal to the total
service time that they would have if they were served in the original
manner. Accordingly the distribution of the queue size for the process

of type [F(x),H(x),p] is the same as for the process of type
[F(x),H*(x),0].
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For the latter a stationary distribution { P ;*} exists if and only if Aa* < 1,
that is, h\a < ¢, and is given by A. Y. Khintchine's formula:

e _ (1= 2N —2)T*(\A — z))
;Yf;P PO —2) — 2 - (12)

(Cf., e.g., Ref. 1 or 2.) This proves (11).
Remark 1. Denote by B*(r = 0, 1, ---) the rth binomial moment of
{P;*, that is,

U*(z) =

Br=3% (f,) P, (13)

If @, is finite, then B.* is also finite. We have Bo* =1,

Nap* Mae 4+ 20ai(l — Aew)
B s e "= 14
! 2(1 — Aar*®) + Aay 5Tq = han) (14)
and forr = 2,3, ---
N Apl ¢ r—1 :I
B = &=y s, Yoo | (15
Hl:";(l_ ) +hu§(1—)\*) Yeow| (15)
where
}Tn,u = n Iag*“as*‘iﬂ R an+1*j“ ( )

- ! oy 1ean L. (( 1)on
PR E s Julgale -+ 7, 1(2D)77(3) ((n 4+ 1)1)

The proof of (14) and (15) can be found in Ref. 3.

I11. THE STATIONARY PROCESS

Let us denote by x. the time needed to complete the current service
(if any) at the instant ¢ = 7, — 0, i.e., immediately before the arrival of
the nth customer. If £, = 0, then x, = 0. It is easy to see that the vector
sequence {£, , x. ;n = 1,2, --+} is a Markov sequence. We shall prove
that if Aa < ¢, then {£., x.} has a unique stationary distribution,
whereas if A = ¢, then a stationary distribution does not exist. For a
stationary sequence {£, , x| introduce the following notation:

P; =Pt = j} (G=0,1,--), (17)
Pl(i’) = P[xn = €, Eﬂ = .7} (.7 = 11 2: "t ) (18)

and

M) = [ e"aPx)  G=1,20. (19
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Theorem 2: If ha < g, then the Markov sequence {£n , xu ;0 = 1,2, -+ -}
has @ unique stalionary distribution, for which P; = P;* defined by (11)
and

U(sz) = 2 10,(s)2’

_ (1 _ 7\_&) (1 — 2)[¥(s) —¥(A(1 = 2))]
q/ 0z — (g + p2)¥Y(N1 — 2)][s — (1 — 2)]°

If AN 2 q, then (£, , xa] has no stationary distribution.
Proof. First consider the process of type [F(x),H*(x),0]. It is proved
in Ref. 3 that in this case {£,, x.}] has a unique stationary distribution
if and only if A\ < ¢. Namely P{¢, = jt = P* (7 =0,1, --.) given by
(11) and the generating function corresponding to (20) is given by

w1 = Naa(l = 2)[¥*(s) — ¥*(A(1 — 2))]
UHs2) = == 29" n (T = 2))]ls = A1 = 2)]

(20)

(21)

The distribution of the queue size is the same for both the types
[F(x),H(x),p] and [F{x),H*(x),0].

The only difference between the process of type [F(z),H(x),p] and
[F(a),H*(x),0] is that in the latter x. the remaining length of the cur-
rent service at the arrival of the nth customer is replaced by the remain-
ing part of the total service time of the customer just being served at
the arrival of the nth customer. The time added to x, is independent of
the queue size and has the distribution function

@) = ¢ 3 pHia), (22)

because the probability that a departing customer will join the queue
k more times is ¢p” and in this case the additional total service time has
the distribution function H(z); Ho(z) = 1if @ = 0 and He(z) = 0 if
z < 0. The Laplace-Stieltjes transform of (22) is

= R N Lk K o_ q
¥(s) = fo e dl(z) = QJ;P[‘I’(S)] = l—:—p‘i;‘(;)' (23)
Accordingly we have
U*(s,z) = U(s,2)¥(s), (24)

whence (20) follows.
Remark 2. 1f x(t) denotes the time needed to complete the current
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service (if any) at time ¢ (x(¢) = 0if £(t) = 0), then the vector process
1E(),x(1); 0 =t < =} is a Markov process. {£(¢),x(¢)} has a stationary
distribution if and only if Aa < ¢ and it agrees with the stationary
distribution of {£, , xa}.

IV. THE STATIONARY DISTRIBUTION OF 8,

If the joint distribution of £, and x, is known, then the distribution of
g, is determined uniquely. If {£, , x.} has a stationary distribution, then
every 6,(n = 1,2, - - ) has the same distribution. In case of a stationary
process let

Ef{e ™ = &(s) (R(s) = 0). (25)

Theorem 3: If Ma < q, then 6, has a unique stationary distribution
P{6, < x}, which is given by the following Laplace-Stieltjes transform

a(s) = 4 2 Ul (RGs) 2 0), (26)
where )
Ur(s,2) = Pok(s + M1 — 2))

F UG+ ML= 2),(q + p2)¥(s + M1 — 2)))  (27)

for N(s) =2 0 and |z| £ 1, Py = 1 — Aa/q, U(s,2) is defined by

(20), and
Uk(s,2) = ¥(s + M1 — 2))Uel(s,(q + p2)¥(s + M1 — 2))) (28)

fork =1,2, ...

Proof: The probability that a customer joins the queue exactly k
times (including the original arrival) is gp"' (k= 1,2, --+). Denote
by 6," the total time spent in the system by the nth customer until his
kth departure (if he joins the queue at least k times). Denote by o
the queue size immediately after the kth departure of the nth customer.
Let

IV

Ux(s,z) = Efexp [— 58,15 (k=1,2,---). (29)
We can easily see that for a stationary sequence {£, , xn}

U]_(S,Z} = PD‘I’(S‘ + ?\(1 — Z)}

+ éIIJ(S‘F)\(l — z))(q+pz)J[‘I’(S—|—)\(l _ z))]j (30}
Pe¥(s + N1 — z))

+ U(s + M1 — 2), (¢ + p2)¥(s + M1 — 2)))



SINGLE-SERVER QUEUE WITH FEEDBACK 511

where Py = 1| — Aa/q and U(s,z) is defined by (20). Now we shall
prove that (28) holds for & = 1,2, --- . Under the conditions ¢, = 7
6,"" = x and that after the kth service the nth customer joins the queue
again, the difference 6, — 6, is equal to the length of j + 1 ser-
vices, the distribution function of which is H ;,(z). If 8, — 6, =y,
then ¢,“*" is equal to the sum of two independent random random vari-
ables: the first is the number of customers arriving at the counter during
the time interval of length y, which has a Poisson distribution with
parameter Ay, and the second is the number of returning customers, which
has a Bernoulli distribution with parameters 7 and p. Thus

Efexp [—s6, V" 6% = 5, 0.9 = 2} = ¢ (g +p2)’. (31)
fn exp[—sy — M1 — 2)yl dH ;1 (y)

= (g + p2)’ (s + N1 — 2)) ™",
or
Efexp [—s0," "1 6,0,
= W(s+ M1 —2)) exp [—s0,“L(q + p2)¥(s + A1 — 2))[""
and unconditionally
Uia(s,2) = W(s + M1 — 2))Usl(s,(¢ + p2)¥(s + M1 — 2))) (33)

which proves (28). It is to be noted that stationarity has been used only
in the determination of U/;(s,z). The recurrence relation (28) is valid for
any process. Finally,

(32)

E{exp [=s6.l} = ¢ 2 p" "Elexp [—s6," )} = ¢ 2. p"'Ui(s,1)  (34)
k=1 k=1
which was to be proved.

V. THE MOMENTS OF @,

Although it seems very complicated to find a closed formula for &(s),
the moments of 8, can be determined explicitly. We shall prove that
®(s) = ®(s,1) where ®(s,z) satisfies a functional equation. This observa-
tion makes it possible to find explicit formulas for the moments of 8, .

Theorem 4: If N\a < q and 8, has a stationary distribution, then

e + 2a0(1 — Aey)

Eio.) = 2(q — \ay)

(35)

provided that as is finile, and



512 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1963

2
-2
E{6.}] = g~ -
) = §(g =R & — 4@ F ) T e
. {Zq[ﬁ?\alg — Ba’ — Ghagaz + 3az + Aesl (36)

— [12}\&13 — 12as* — 6Agas + W — 3)\2a22]],

provided that as is fintle.
Proof: Let

B(s52) = 4 2 P Uils2) (37)

where U(s,z) is defined by (27) and (28). By using the recurrence
relation (28) we obtain that

®(s,2) = qUs(s,2)

(38)
+ pP(s + A1 — 2))®(s,(q + p2)¥(s + M1 — 2))).
Let
_ (9 e(s,2) ]
is = ( dsiaz )s:[.’!,z—l ) (39)
If we form ®,; by (38) for¢ +j = r (i = 0,1, ---, r), then we obtain
r + 1 linear equations for the determination of ®;; . These equations can
be solved successively for » = 1, 2, -+ . By (26)
E(67} = (—1) &0 (r=0,1,--") (40)

for a stationary process.

VI. A PARTICULAR CASE

If we suppose, in particular, that the service times have an exponen-
tial distribution
1 —e™ forx =z 0,
H(z) = {0 forx < 0, (41)

then H*(z) = 1 — ¢ " fora = 0, ¥(s) = u/(p + s) and ¥*(s) =
ug/(ug + s). In this case (27) and (28) reduce to

_ . ulg + p2)
Up(sz) = p+ s+ A1 —z) Ui (s’i-‘ + s+ A1 — z)) (42)

fork = 0,1, ---, where

_ (1 -2 _ M
Usls2) —(1 #q)/(l #q)' (43)
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By (42) we obtain that

Ui(s)]l) = E((sl)__—%%

where a;(s) and bi(s) (k = 0,1, ---) are given by the following matrix
equation

(44)

ax(s) pEAFs I
= * . (45)
bi(s) A p| |2
M Kg
Now by (26) the Laplace-Stieltjes transform of P{6, = z} is
A ™ k—1
o0 = (1- 2 S (16)
In this particular case
Ef5,) = — (47)
pg — A
and
E{0,%) 2u(29 — ¢) (48)

T (ug — NMeCq — @) — A1 = QI
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APPENDIX-—BY W. 8. BROWN

Caleulation of the Second Moment of 8,

If A < ¢ and if 6, (the total time spent in the system by the nth
customer) has a stationary distribution, then the moments of 4, are
determined by (38)—(40) as explained in Fection V. The first moment
can be caleulated by hand without serious difficulty. The calculation of
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the second moment, with the aid of an IBM 7090 computer,’ is de-
seribed in this appendix.

It is convenient to replace z by ¢ = 1 — z and Uy by W = qUy/
(g — Aay). Then the rth moment of 8, is

= (-1, (49)

o =[(2) (Y o] £

The functicn ®(s,t) is implicitly defined by the equation
d(s,t) = (¢ — ) W(st) + pe(s + M)P(s,0(s.t)) (51)

where

where*
p(s) = ZG( ”“rs

w(st) =1 — (1 — pt)y(s + M) (52)

IV(SJ) = \b(s + Xt) 4+ S(S -+ Mahw(u‘?,t))i”(w(s,t))
with

S(ay) = ﬂxi_:—:"@
| ! (53)
T(w) = Al — w)

Tl —w— (1 — pa)¥(w)

This last pair of equations can be rewritten in the more useful form

S(xy) = E( L 1')”“Cr(:ﬂ,y)

= 1)!
T - _ — W
(w) g — M1 — pw)e(Aw)
where
Ll r
Cxy) = T Y - Satyt
r—y k=0
(55)

o0

( —1 ),Cl!r+] xr
r=0 (7' + 1) *
* For convenience we have assumed that all of the service moments a. [see (3)]

are finite. However for the calculation of 8, it is clearly sufficient to require only
the finiteness of ary.

p(z) = ! —"‘p(a;) =
r
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It is now clear that

Y(0) = a, = 1
S(0,0) = —a
T(0) = — M (56)
qg — )\Of]
w0 = 1
qg — Ral
so from (49)—(51)
60 = ‘p[)o = ‘I—’(0,0) = ]. (57)

as is required by the definition of the zeroth moment.

Now suppose all of the quantities ®¢; for ¢ 4+ j < 7, where r is some
positive integer, have been calculated and are expressed as rational
functions of A and p (or ¢) and the service moments a; . Then by differ-
entiation of (51) we can obtain a system of » 4 1 linear equations in the
r + 1 unknowns, ®;; with 7 4+ j = r. These equations will also contain
the quantities ®,; with ¢ + j < », which can be replaced by their known
values. The solutions of this linear system will again he rational func-
tions of A and p (or ¢) and the service moments «; . Theoretically this
procedure permits the calculation of arbitrarily many of the moments,
but in practice the calculations are extremely lengthy. The reader may
wish to try the first moment as an exercise,

We shall now outline the computation of the first two moments, g,
and B, . The first step was to fix the time scale by setting A equal to
one. The next step was to express ®(s,¢) as a Taylor series with coeffi-
cients ®;; and expand (51) to second order in s and {. Since rational
function operations were not yet available, all denominators had to be
eliminated by suitable premultiplications. The result obtained by the
computer was a gigantic polynomial in s, ¢, ® , P, Bro, Bpo , By, Py,
@, as, a3, and q. We chose to view it as a polynomial in s and ¢. Setting
@y = 1, all the terms independent of both s and ¢ vanished as expected.

The equations for ®; and &), , obtained by setting the coefficients of
t and s to zero, are

QA‘I)(]] + B = 0

(58)
20%, + 2Ddy, + E

Il
=}
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where
A = (g = a)lg — gler + 2) + ai
B = —(2a — 20 — a)|d’ — ¢len + 2) + ai
C = —qlqg— ) (59)
D= —a(g—1)(qg — o)
E = (20 — 2010 — a2)[(an + 1)g — au].

These expressions were factored by hand. From (58) we have

B
tpl)l = —ﬂ
(60)
Bu = BD — AE
v 24C
so0, using (59)
_ _ 2(112 _— 2(11 — 9
¢01 - (I)l[) - _—m_' (61)

Thus the mean time spent in the system (waiting time plus service
time) is

& 1 — as
B1= —dpy = (q — a1) + 3(q — a) (62)

In the absence of feedback (p = 0, ¢ = 1) this reduces to

) _ a2
81 = o + 2(1 — 011) (63)

where the first term is the mean service time and the second term is
the familiar expression® for the mean waiting time in a single server

system.
The equations for &y , ®;1, and @y, obtained by setting the coeffi-

cients of #*, st, and s? to zero (and replacing @y by ), are
A1®e + B®n + C1 =0

Agdy + Aoy + By + Cp = 0 (64)
Au®o + Apdy + As®e + By + C3 =0



<
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where
s = 6(¢ — a)’lg" — ¢'(200 + 3) + q(a” + 401 + 3) — (e + 2)]
Ap = —12(q — a))g® — g(en + 2) + o]
rig;; == —12&1((1 — 1)(q _— O:’l)z(q - oy — 1}

2 (65)
Ay = 6g(q — )
Ap = 12a4(q — 1) (q — ay)?

Ay = 60‘12(‘1 — 1)(g — a1)2

and
By =6(g — 1)(g — a) g — (200" + 4o + a)]
By = 12(¢ = 1)(q = «)'[2ges — (20 + Bas + a2)]  (66)
By = —6(q — 1)(¢ — @)’ (2a® + 201 + @)

and finally

Cy = — 2¢'(6ay’ — 6cy” — bayar + 3 + ) + 3¢°(8a" —8ay"an

— 8a;’ — benar + 2ma3 — a7’ + bas + 2a3) — 2¢°(6e”
+ 120" — ba’ar — 6’ — 2le’oe + Baltas — 1201
— 3aa’ + Taws — 300" + 9+ 3a) + g(12a° (67)
— 18’ + 20’0y — 3’ — 120 + 10a s
— 120" — Yaa’ + 12ai00 + 10ai0s — Gao’)
+ ai(ba’as — 20’y + 3o’ — baar — dogas + 3an?)
Cy = 2¢'(1200" — 18a* — 120" + 6a® + Gasaws + 205 + 3
+ ay) — (240 + 120" — 240’a — 48a”® — 48",
+ 8a’as + 120 — b’ + 30mar + 1200 + 3ag
+ 18as + 6as) + (24’ — 12" — 36c’cy + da’a;  (68)
— 12a — B’ — 1200%a + e’ s — Yasa® + 30y
+ 2ajy — 3a2°) + an(12a° 0 — 4ar’ar + Gayan’

— 1200 — Genay + 3ay’)
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Ca = -'-q?(12a15 - ]2(!14 - 120{13&2 _ 60’!]20.'9 + 2(.‘(12(2‘3 + GC!]CEQ
+ 2a1a3 + Bas’ + Baz + 2a3) + q:xl(12a14 — 12a13
—180{120{2 ‘|‘ 2(.!1:’&’3 - 30:'1022 + 40!16(3 + 12{1’2 + 4:(23)

+CE12(6Q'1C¥-1 - 26?10(3 + 30{22 - '60.’2 - 20{3).

(69)

These expressions were factored by the computer using the “divide if
divisible” subroutine and a long list of trial divisors including all factors
appearing in (59). The complete solution of (64) was obtained in three
passes through the computer with some assistance from the author
hetween passes. On the first pass the quantity

By + Oy

was calculated [using (61) for ®,] and an attempt was made to divide
it by each of the factors of Ay;. The division by the cubic factor was
successful, and there followed the result

2qF — G
T = G =) (70)
where
F = 60[13 —_ 6&'12 - 6&10!2 + 3062 + az
(71)

G = 120[;3 - 120512 - 60(1012 + 26!1&3 - 30.’22.
On the second pass the quantity
A23¢02 + Bﬂq)ﬂl + 02

was calculated [using (70) for g and (61) for @] and an attempt was
made to divide it by each of the factors of Az and by the numerator of
&y . The latter division was suecessful, and the result

_ [2¢F — Gllg" — q(en + 3) + ai (72)
12(q — a1)*l¢* — q(an + 2) +
was thereby obtained. On the third pass the quantity
[ — qlar + 2) + alldu®y + AuPe + Bi®u + C4

was caleulated (the first factor being introduced in order to cancel the
corresponding factor in the denominator of &) and an attempt was
made to divide by each of the factors of Ay . Only the division by ¢
was successful. This yielded the final result

_ (2¢F — G)(¢" — 29)
6(g — a1)?l¢ — qaa + 2) + e

by

(73)

Ba = P
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where F' and G are the expressions defined in (71). Note that ®y. appears
as a factor in ®;; and &y . In the absence of feedback (p = 0, ¢ = 1)
(73) reduces to

2

@ _ a ag -
B = T —a: T30 = ) (74)

which is the correct result. To see this we use the law of composition
to obtain

.62(0) = as + 20{1001 + ws (75)

where a; and ay are the service moments while w; and w, are the waiting
moments. The latter are given in Ref. 5 as

as
2(1 — o)

a

a2y a3

S0 —a)? 30 —a)

Substituting (76) into (75) we obtain (74) as expected. To obtain
(36), substitute (71) into (73), replace each a; by Nay , and divide the
resulting expression by \°.

w; =

(76)

wa =
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