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Two new theoretical models for representing random traffic in connecting
networks are presented. The first is ealled the “thermodynamic” model and
18 studied in detail. The second model 1s formulated in an effort to take
methods of routing into account and to meet certain drawbacks of the “ther-
modynamic” model in describing customer behavior; since it is more realistic
than the first, it leads to resulls that are vastly more complicated and must be
described in another paper.

The “thermodynamic” model is worth considering for four reasons:

(1) 11 4s faithful to the structure of real connecting systems. Indeed it s
an tmprovement over many previous models in that it only considers physi-
cally accessible states of the conneeting network, while the latter suffer the
drawback that a large fraction of the network stales on which caleulation is
based are physically meaningless, being unreachable under normal opera-
lton.

(2) It gives rise to a relatively simple theory in which explicit calculations
are possible.

(8) The “thermodynamic” wmodel provides a good simple descripiion of
lraffic in the interior of a large communications network.

(4) It has an analogy to statistical mechanics which permils us to be
guided by the latter theory as we try to use the model to understand the
properties of large-scale connecling systems.

The two models to be deseribed differ in only one respect. In the first (the
“thermodynamic”) model, the sysiem moves from a stale x to a stale y that
has one more call in progress, at a rale \; the effective calling-rate per idle
inlet-outlel pair is thus proportional (o the number of paths usable in x from
that inlet to that outlet. In the second model, the calling-rate per idle inlet-
outlel pair is sel al X, and s then spread over the paths usable in x from that
inlet to that outlet in accordance with some routing rule. This provides a
mathematical description of rowling, and avoids the unwelcome feature that
a single customer’s calling-rate depends on the state of the network.
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The “thermodynamic”’ model is based on the single postulate thal the
“equilibrium’ probabilities of the states of the connecting nelwork maximaize
the entropy funetional for a fixed value of the iraffic earried. These probabili-
ties have the same geomelric or exponential form as the canonical M axwell-
Boltzmann distribution of statistical mechanics. The theory developed applies
to any connecting network regardless of ils structure or configuration. The
number of calls in progress is analogous lo the energy of a physical system.
As in statistical mechanics, important averages can be expressed as loga-
rithmic derivaiives of a generating function analogous to the partition June-
tion of physics.

It is possible to give an interpretation of the marvmum enlropy postulale
in terms of random behavior at the inlets and outlels of the connecling net-
work; this interprelation leads to a stochastic progress z, of the familiar
Markov type, for which the canonical distribution is invariant. The transi-
ton rate maltriz of z, is self-adjoint in a suitable inner producl space, s0
that the approach of z, to equilibrium is easily studied, with resulting appli-
calions to traffic measurement.

I
. INTRODUCTION

Like the physicist, the traffic engineer is faced with the study of an
extremely complex system which is best deseribed in statistical terms.
The great success of the theoretical methods of statistical physics has
given rise to a fervent hope, sometimes voiced among traffic theorists,
that similar methods exist and ean be found for the study of congestion.
Indeed, the problems are much the same: one desires a small amount of
“macroscopic” information about averages, based in a rational way on
vast complexities of detail. A. K. Frlang was probably influenced by
statistical mechanics when he introduced his method of ‘“‘statistical
equilibrium” into traffic theory. This method has had great success in
dealing with problems of the birth-and-death type, like trunking and
queueing, but as applied to more complex cases it has led mostly to alge-
braic and combinatory difficulties. Nothing as elegant or powerful as
statistical mechanics has resulted so far.

We shall present two traffic models in this paper. The first is the out-
come of a deliberate attempt to ape the methods of physicists in statis-
tical mechanics, and thus to realize, at least in part, the hope mentioned
above. It is called the “thermodynamic’” model, and it is treated in de-
tail. The second model is introduced later in the paper in an attempt to
avoid certain drawbacks that appear in the interpretation of the “‘ther-
modynamic” model. Since it has independent interest and leads to in-
volved, more realistic results, it is studied in detail in a later paper.
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The approach taken in the “thermodynamic” model bears a close
analogy to the methods of statistical mechanics, and is based on the
single postulate that the “equilibrium” probabilities of the states of the
connecting network maximize the entropy functional for a fixed value of
the traffic carried. We develop a theory, briefly summarized in the next
paragraph, by deducing the consequences and interpreting the meaning
of the one basic assumption.

The state probabilities that maximize the entropy for a given carried
load form a distribution funetion over the set of states that has the same
geometric or exponential form as the canonical (or Maxwell-Boltzmann)
distribution of statistical mechanies. The theory applies to any connect-
ing network, regardless of its structure or configuration. The number of
ralls in progress is analogous to the energy of a physical system. As in
statistical mechanics, important averages can be expressed as logarith-
mic derivatives of a generating funetion analogous to the partition fune-
tion of physies. It is possible to give an interpretation of the maximum
entropy postulate in terms of random behavior at the inlets and outlets
of the connecting network. This interpretation leads to a stochastic
process z; of the familiar Markov type, and is such that any stochastic
process based on it satisfies the maximum entropy postulate. The transi-
tion rate matrix A of z, is self-adjoint in a suitable inner-product space;
its characteristic values are real and non-positive, and can be studied by
classical variational methods. In terms of these characteristic values the
approach of z, to equilibrium can be studied, with resulting applications
to traffic measurements. It turns out that the covariance of any function
of z, is strietly positive. The paper ends with a time-dependent or non-
stationary generalization of the maximum entropy postulate that has
close analogies with the statistical “derivation” of thermodynamics.

[I. PRELIMINARIES

In order to give an adequate summary and discussion of our theory in
Section I1T, it is necessary to present first its concepts, terminology, and
notation. Virtually all the notions about to be discussed have appeared
in carlier papers by the author!? so only a brief résumé is given here.

Let S be the set of possible (or permissible, or both) states of a connect-
ing network, and let x, %, - - - be variables ranging over S. The elements
of S are partially ordered by inclusion =, where ¥ =< y means that a
can be obtained from y by removing zero or more calls. FFurthermore,
the states @ € S can be arranged in an intuitive manner in the stale-dia-
gram, the Hasse figure for the partial ordering <. This figure is con-
structed by partitioning the states in rows according to the number of
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calls in progress. The unique zero state (in which no calls are in progress)
is placed at the bottom of the figure; above it comes the row of states
with one call in progress; and so on. The figure is completed by drawing
a graph with the states as nodes, and with lines between states (in adja-
cent rows) that differ in exactly one call. In an earlier work® we made the
assumption that in a given state at most one call could be in progress
between a given inlet and outlet; it is convenient to discard this assump-
tion here.

If the connecting network under study is in a state z, it can move only
to states which are neighbors of z, i.e., are obtainable from x by adding a
new call or terminating a call in progress. It is useful to divide the neigh-
bors of z into two sets 4. and B; where

A, = set of states immediately above z, i.e., accessible from « by add-

ing a new call,

B, = set of states immediately below x, i.e., accessible from x by a

hangup.

Tor any set X, the notation | X | is used to denote the number of ele-
ments of X. The states x ¢ S can be defined? as sets of chains on a graph,
one chain for each call in progress. Hence it is natural to use |2 to
mean the number of calls in progress in x. The kth level Ly is the set of
all states with % calls in progress, i.e.,

Ly = {zeS: la| = k).

111, SUMMARY AND DISCUSSION

We start, in Section IV, with a brief informal discussion of what is
meant, heuristically as well as precisely, by “equilibrium.”

In Section V we formulate and discuss the maximum entropy postulate,
according to which a suitable “equilibrium” distribution {qo, x ¢ S} of
probability over S is obtained by choosing the probability vector ¢ so
as to maximize the entropy funetional

H(q) = =2 ¢:log g
for a given value of the average number of calls in progress, i.e., for

Sl g = m.
reS

Various heuristic arguments are adduced to support the prima facie
reasonableness of this principle. In Section VI it is shown that the
maximizing probability vector ¢ is given by
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— AIII .
Gz = W, X e S
B(¢) = ;;s'“

and A is a constant determined uniquely by the equation
m = Nd/d\) log (N).

Because of their close similarity to corresponding notions from sta-
tistical mechanics, the vector ¢ and the function ®(-) are henceforth
called the canonical distribution and the partition function, respectively.,

In Section VII we have collected together various properties of the
partition function, most of them based on the partial ordering =< of S,
Among these are expressions for ®(-) in terms of the Mébius function
for =, and in terms of several sets of “characteristic polynomials”
associated with < and S.

The canonical distribution ¢ is placed in a dynamic context in Section
VIII. This is done by defining a Markov process z, (taking values on S)
for which ¢ forms a stationary distribution. The transition rate matrix
A (infinitesimal generator) of this process allows one to give interpre-
tations of this dynamic context in terms of calling rates and mean
holding-times. An informal description of the process z, is this: if it is in
state @, it moves to a state y € A, at a rate A, and to a state y ¢ B, at a
rate set at unity by convention.

A full discussion of the analogy between the “thermodynamic”
theory of traffic and statistical mechanies is given in Section IX. I'or
purposes of illustration, we mention that the number of ecalls in progress
corresponds to the energy of a statistical mechanical system, and that
the constant X\ is related to the calling rate and corresponds to the
temperature (up to a monotone transformation).

The reasonableness of z, as a description of an operating connecting
network is discussed and criticized in detail in Section X. Two possible
interpretations of the inlets and outlets are considered: in one, the
inlets and outlets are the ultimate terminals of the system, beyond
which there is no more switching equipment; in the other, the inlets
and outlets are switching centers such as PBXs, frames, or individual
crossbar switches, acting as sources of traffic for a network under study.
In the first interpretation, there can be at most one call in progress on
an inlet or an outlet; in the second, there may be several.

Regardless of which interpretation of the inlets and outlets is adopted,
the transition rate matrix A for z, must be interpreted as saying that
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the calling rate between an inlet and an outlet in a given state x is
proportional to the number of free paths that » provides between that
inlet and outlet. This assumption is unacceptable for the interpretation
of inlets and outlets as ultimate terminals; it is not entirely unreasonable
if the inlets and outlets are local switching centers.

Section XTI is devoted to describing, as an alternative to z, , a Markov
stochastic process on S based on the assumption that the calling rate
hetween an idle inlet terminal and an idle outlet terminal is a constant
. This calling rate is then spread over the possible ways of realizing
the call in question in the current state of the network in accordance
with some method of routing. A mathematical description of such a
method of choosing routes for calls is given. This description leads
directly to a transition rate matrix  for a process x, in which every
idle inlet-outlet terminal pair has a calling rate A in every state. The
possibility that z, may be a useful perturbation of . is considered.

In Section XIT it is observed that the rate matrix A for 2 is a self-
adjoint operator in a suitable finite-dimensional inner product space.
This implies that the characteristic values of A are real and nonpositive,
and leads to bounds on the rate of approach of z; to equilibrium. These
bounds can be applied to estimate the covariance of z, , and the sampling
error incurred in measuring carried loads by averaging 2., or discrete
observations of z,. In particular it is shown that the dominant (i.e.,
that of smallest nonzero magnitude) characteristic value r; of A satisfies

—(m/d") £ <0,

where m and o are (respectively) the mean and standard deviation of
the load associated with the equilibrium probability vector ¢ for z., so
that

2l ¢,

TeS

=2 (la]—mie.

TeS

m

In Section XIIT we give a formula for the covariance of any process
f, defined by applying a function f(-) to z, i.e.,

Jo = [(z).

This covariance is always positive. Applications of this formula to traffic
averages are described briefly in Section XIV. I'inally, Section XV con-
siders a time-dependent generalization of the variational principle on
which the “thermodynamic’ theory of traffic is based.

We conclude this section with an appraisal of the “thermodynamic”
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theory presented herein. This will take the form of a list of comments,
first pro, then con, and then a defense.

I. There exist theories®* for connecting networks in which it is as-
sumed that the links of the system are busy or idle with a given probabil-
ity, all independently of one another. It can be verified that an over-
whelming fraetion of the states of the system so considered are in fact
not physically meaningful states that the system can reach under nor-
mal operation. The theory presented here is based only on permitted,
physically meaningful states, and so is not open to this serious objeetion.

2. The theory provides a uniform method of treating any connecting
network in that the caleulation of equilibrium probabilities always re-
duces to that of the partition function. In most other treatments the
nature of the algebraic process of calculating probabilities depends heav-
ily on a detailed account of the network configuration; in our theory it
depends on the network only via the numbers | L, |, | L. |, - - - .

3. The maximum entropy principle can be given a certain informal, a
priort justification. It provides a ‘“‘conservative, worst possible case”
approach to problems and processes of fantastic complexity. This is be-
cause it can be interpreted as enjoining that an “equilibrium’ distribu-
tion of probability for given carried traffic correspond to a condition of
maximum ignorance of the actual state of the connecting network.

4. The eanonical distribution ¢ that results from the maximum en-
tropy postulate can be embedded in a dynamie model of traffic by de-
fining a Markov process z, for which ¢ is the invariant or stationary dis-
tribution. This dynamic model is deseribed by a transition rate matrix
which is a self-adjoint operator, a fact which makes it possible to study
the time-dependent behavior of z, in a simple approximate way, with
applications to traffic measurement, for instance.

5. A very serious drawback of the *“thermodynamic’’ theory is that its
natural interpretation in terms of calling rates appears to be unreason-
able in most practical cases. I’or this reason it will probably remain an
amusing curiosity, rather than become an engineering tool.

6. The problem of caleulating the partition function &(-) is, as in
statistical mechanies, very diflicult except in cases of unrealistic sim-
plicity. Thus, even if its assumptions are granted, our “thermodynamic”
theory does not afford much progress in caleulating quantities of inter-
est.

7. The theory can take into account only one of the many different
possible methods of routing calls in operating networks. Thus it cannot
help the designer choose among alternative methods.

By way of defense against the objections just raised, these points can
be made:
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(z) Comment 5, that the interpretation of the “thermodynamic”
theory in terms of calling rates is unreasonable, depends on a natural,
but not necessarily valid or compelling, assignment of causes for new
calls.

(73) Although the calculation of ®(-) is hard, it is at least a definite
combinatory problem solvable in principle by counting; thus at least,
part of the problem of obtaining state probabilities is disposed of.

(#ii) It is doubtful whether routing methods make as much as an or-
der of magnitude of difference in carried loads in large systems; hence it
is reasonable to ignore them in a relatively crude theory such as the
present one. (See however, Benes, Ref. 11.)

The theory presented in this paper should be judged by its success in
practice as well as by its agreement with our preconceptions. I believe
that in spite of the major failings mentioned, the theory musters interest
enough to warrant its presentation to traffic engineers, if only because
its concepts and results may prove useful in more realistic approaches.

IV. EQUILIBRIUM

Quantities that are of interest in the design of a connecting network,
such as the average load carried, the variance of the load, or even the
probability of blocking, can often be calculated from a knowledge of
some “equilibrium” or “stationary” state probabilities {g:, v e S} for
the network of interest. These probabilities are usually assumed or
proven to be of “equilibrium” type in the sense that they have some
physically reasonable invariance property.

Sinee the concepts of stationarity and equilibrium can assume many
precise forms of varying strength, it is important to consider briefly
some of these senses. The strongest notion, of course, is that of strict
stationarity of a stochastic process, defined by the condition that all the
finite-dimensional distributions be independent of time, i.e., be transla-
tion-invariant. A whole class of weaker notions can be obtained by re-
quiring only that the distributions of dimension not greater than n be
invariant. The notion of wide-sense stationarity, defined by the condi-
tion that the covariance depend only on the difference of its arguments,
is still another concept of stationarity, formulated for a moment rather
than a distribution. Again, Markov processes are described as homogene-
ous or stationary if their transition probability operators are time-in-
variant.

“Fquilibrium” is a word that usually connotes a stable, quasi-static
random behavior which is perhaps a condition of attraction for a process,
in the sense that a process not in equilibrium tends toward it. Ergodic
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Markov processes with denumerable state spaces are typical examples.
It is to be remarked, though, that use of the word “equilibrium’ usually
implies a nondegenerate limiting behavior for a process y, under study
as { — =, Thus a time-homogeneous Markov process may not have a
genuine “‘equilibrium” distribution because it in some sense ‘“‘blows up,”
e.g., the process may take values on the integers and the probability
mass may move out toward + o, even though the transition probabili-
ties are time-independent. In such a case, clearly, no first-order distribu-
tion can be assigned which is time-invariant.

The analytical expression of “equilibrium” often takes the form of a
statement to the effect that an operator has zero as a characteristie value.
Perhaps the most familiar example of such a statement arises in the case
of a Markov process in continuous time with a transition rate matrix A ;
the equilibrium equation is A¢ = 0, for a probability vector ¢.*
This equation, together with its connections to semigroups, to Markov
processes, and to the notion of statistical equilibrium used in traffic
theory, is discussed immediately below.

A traditional analytical method in telephone traffie theory is that of
“statistical equilibrium,” due to Erlang.? This method may be described
heuristically as follows: A notion of equilibrium is defined by the prop-
erty that the rate of flow of probability into (or onto) a state equals that
out of (or from) the state; this equilibrium is expressed in a set of equa-
tions among the state probabilities, the so-called statistical equilibrium
equations; the “equilibrium’ state probabilities are then taken to be
(or defined by) the solution of these equations.

The method of statistical equilibrium can be interpreted in the mathe-
matically rigorous context of semigroups of positive operators, here the
matrices of transition probabilities {Q(1), t real} for a Markov process
x¢ taking values in S, with

Q) = (qn(1))

qz(t) = Pr {state of system is y at ¢ if it was v at 0}.

The generator A of the semigroup is the matrix of transition rafes or the
derivative

A=nmﬂ%:l=qmy
10

The matrix 4 expresses the relative probabilities of the various changes

* We are using the convention (Ag), = 2 @,:q,, rather than the more usual
y

(-’lq)f = Z Arylfy -
v
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that can take place in a small amount of time, and indeed

Q) =T+ At + o(t) as t—0.

In terms of the generator A the equation of statistical equilibrium can
be written as A¢ = 0, which expresses the fact that the vector ¢ of
state probabilities is an eigenvector of A corresponding to a zero eigen-
value of A. From the semigroup property

Qt + 5) = QUHQ(s)
it follows that
Q1) = exp At

Z Gyuz(t) = ¢z, T €N, { real
]

the last equation expressing the invariance of ¢ under the transition
probability matrices Q(-).

V. THE MAXIMUM ENTROPY PRINCIPLE

In the method of statistical equilibrium, the state probabilities are
calculated a posteriori from a prior equation expressing an equilibrium or
invariance principle. This equation is either postulated or is derived
from assumptions that lead to a Markov stochastic process as a model for
the operating network.

In the present work we use a variational principle rather than an equi-
librium principle as a basis for caleulating ‘“‘equilibrium” state proba-
hilities. In drawing this distinetion we refer only to the immediate form
of the assumptions and derivations, and imply no absolute distinction,
since an “‘equilibrium” principle can almost always be given a “varia-
tional” form. For example, if A is a transition rate matrix for an ergodic
Markov process, and A is self-adjoint with respect to an inner product
(-,-), then the “equilibrium” probability vector ¢, i.e., the solution of
Ag = 0 is equally well described as the vector which maximizes the
Rayleigh quotient

(Aq,q)
(g,q)

It will turn out that the probabilities {¢., v e S} derived from our
variational principle also have an invariance property expressible, as in
the example given, in terms of the self-adjoint generator 4 of a Markov
semigroup by the equation Ag = 0. This equation can be interpreted
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as a ‘‘statistical equilibrium” equation, and the elements of A related
to calling-rates and hangup rates, in the various states x ¢ S.

However, instead of starting with a suitable matrix A to represent
the infinitesimal dynamic behavior, and solving A¢ = 0 in order to
obtain an equilibrium distribution {¢., * ¢ S} over the states of the
system, we shall directly choose a certain ¢, to be used as an “equi-
librium” distribution for caleulating quantities of interest, according
to this eriterion: The entropy functional

Hiq) = —Z g log q.

is to be as large as possible subject to the conditions

q: = 0, relS

qu:ll

TeS

2 lalg=m,

TeS
where m is a given number, the average load carried. The first two condi-
tions ensure that only bona fide probability distributions are considered,
while the third enjoins that ¢ give rise to m as the mean number of calls
in progress in equilibrium. This eriterion or method for choosing a prob-
ability distribution over S we call the mavimum entropy principle; it is
exactly analogous to that used in statistical mechanics, provided that
the number of ecalls in progress is interpreted as the energy of the me-
chanical system. We have already stated that this principle leads to a
unique ¢ which is exactly the same as would be obtained by a particular
choice of A, given later, and solving A¢ = 0; this matrix A has a definite
interpretation in terms of system behavior during small periods of time.

A measure of justification for using the maximum entropy principle
can be obtained from five arguments:

(1) Insofar as a high value of the entropy funectional is an indication
of a low degree of information, so far can use of the principle be inter-
preted as postulating that an equilibrium distribution {¢., x € S} corre-
sponds to a condition of maximum ignorance subject to a given average
number of ealls in progress. The principle may thus be said to represent
a ‘“safe’” or “worst case possible” approach to the problem. Exactly the
same principle is used in statistical mechanics to obtain the canonical
distribution. In both ecases it is a reasonable and systematic way of
throwing up our hands.

(2) The principle is appealing for the obvious reasons of unity, uni-
formity, simplicity, and elegance.
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(3) It leads to a theoretical structure similar to that of statistical
mechanics. As in the physical theory, statistical quantities of interest are
caleulated from a partition function, characteristic of the network under
study, that depends on purely combinatory properties of that network.

(4) The principle of maximum entropy leads to a unified theory ap-
plicable to all connecting networks. That is, the resulting “equilibrium”’
distribution depends algebraically on the structure of the network in a
way that in a sense is uniform for all networks.

(5) The principle can be given a dynamic context in terms of Markov
processes. This context permits the study of the approach to equilibrium
in time, with important applications to sampling error.

VI. THE CANONICAL DISTRIBUTION

In the next few sections we develop some of the principal consequences
of the maximum entropy principle, and examine their similarity to
statistical thermodynamics. In the present section we determine the
distribution {g., x ¢ S} which maximizes H(q) for a given average load
carried. The following lemma is no doubt well-known, especially to
physicists; since its application in traffic theory is relatively new, its
detailed proof is included for completeness.

Lemma 1: Let f(+) be a nonnegative function defined on S, and lel

we) = S
The maximum of
H(q) = =2 ¢:log g
reS

subject to the conditions

q. = 0, el

=1 (1)

TeS

E gf(x) = my, (m; a given positive number in the closed (2)
wes convex hull of the range of f(-),)

18
H(q) = log ¥(w) — mylog w,
where w 18 the unique positive solution of

w(d/dw) log ¥(w) = my.
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The maximum is achieved by the choice

g = ['9/¥(w)],
(3)
= exp [ —af(2) — az — 1}, el

where ay , az are (the values of Lagrange’s multipliers) determined by any
two of the relations

log W(e ™) — 1,
> f(a) exp (—af(x) — a: — 1),

TEeS

$
[

=
oy
Il

w = exp { —a].

Proof: With a; and as as Lagrange’s multipliers, we form the expression
h= =2 glogg —a 2 1(2)g: — a2 2 g
differentiate with respeet to each ¢, and set the resulting derivatives

equal to zero. This gives the equations
oh/ag. = —(log ¢ + 1 + quf(x) + a2) = 0, eSS (4)

whose solution is (3). The multipliers a; and @ are to be determined
from the conditions Y ..« ¢, = 1 and > s f(x)q. = my . The first gives

| = C-azfl E exp [—-alf(’b)]'

TeS
as = log ¥(e ™) — 1,
while the second yields

my = ¢ Y f(x) exp [—af(x)]

TeS

Z;,f(a:) exp [—arf(x)]
Z; exp [—af(x)]

Setting @ = exp {—a;}, it is found that « should be a solution of the
equation

w(d/dw) log ¥(w) = m; > 0. (5)
From the fact that
Clogw(e) = Lo 5 (@) + - Llogw(e™))
da? V() @\ da

>0
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it is easily shown (Khinchin,® p. 77) that there is exactly one solution
w of (5), and that « is positive.

A relative extremum of H(g) in ¢ = 0 subject to (1) and (2) must
satisfy equations (4). Since these have only one solution there is only
one such extremum. To show that it is a maximum it is enough to
show that the matrix of second derivatives of H(g) with respect to the
components ¢, of ¢ is negative definite. However, this is straightforward,
since

if 7
i [0 T # J-
900y _L if z=uy
e

In Lemma 1 we let
flx) = | x|
= number of calls in progress in state x

and we ohtain
Theorem I: Let m > 0; let
(g = 2 &7

TesS
and let X be the unique (positive) root of
m = Ad/d\) log ®(N).

The mavimum of H(q) = — 2 s ¢z 10g o, subject to the conditions
that ¢ be a probability vector over S and that S| x| g =m, s

Hupux = log ®(N) — m log A
and is achicved by the veetor ¢ with components

A
Ok

x el

This is the distribution of probability over S that is determined
uniquely by the maximum entropy principle; as noted before, it is the
canonical distribution. The function ®(-) is called the partition function
of the connecting network whose states form the set S. Since m deter-
mines A uniquely and vice versa, we can use A as the parameter that de-
termines the average traffic level instead of m. Indeed, m is a monotone
increasing the function of A = 0. Also it can be seen that moments of
the distribution of the number of calls in progress (other than the mean)
can be caleulated from @(-) by logarithmic differentiation.
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VII. PROPERTIES OF THE PARTITION FUNCTION

In this section we exhibit various identities and relationships that are
typical of the partition function @(-). This function is the generating
function of the number of states in a given level; that is

d(E) = D £ [ Ly |, w = max | v |.
k=0 res

Thus the problem of caleculating A, ®(-), and ¢ in our model reduces
to the caleulation of the sequence

| Lo |, [ Lo,

and vice versa.

Remark 1:

1L =2 2 14,

]hyd_;,_l
Tl = T lel = @)

The first part of this result was proven as Theorem 1 in Ref. 2, and it
implies the second part.

The Mobius function u( ) of the partially ordered system (S, <) is
defined recursively by

w0) =1, ple)= =2 uly) if >0, xek.

y<r

We have remarked in previous work (Ref. 2, Rection VII) that if S is
a class of network states, then u(-) takes on the simple form

pla) = (=) x|
We define the generating function M/ (-) by

J‘][(E" — Z E]r],u(.l‘_).

TeS

Since

—

®(g) = 287 = 2 (o' E ulr

re8 T‘.

it can be seen that (except for a change of sign in the generating variable)
@( ) is the exponential generating function associated with (). Thus
we have
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Remark 2:
oo
M(E) = [ e "®(—Eu)du
0

Proof:

Il

M(¥) éf’“‘lm-(—l)*‘fr!

> (=5 | L [ e “u’ du
k=0 Yo

= { e " p( —Eu) du.
Y0
In analogy with Birkhoff,” p. 15, (12), we define for each € S a
characteristic polynomial by the recursion formula*

po(8) = £ = 3 p, ().

<
This is related to the Mébius function w(-) by the fact that if u,(-)
denotes the Mébius function for the set {x: @ = y}, then

Pa(£) = Z £, ().

V==
However, the partial ordering of the cone {&: @ = y} is again of the
same form as that of S; i.e., there are exactly (| @+ — y |)! ascending
chains between y and x, all of length | + — y |. Hence, by ref. 7, p. 15,
(11),

L (_I)Wr—ul B N
() = (|—1—_T|)*, = ulx —y)
and
p(&) = ; (e — y)
=&+ 2 (e — ).
y<r
Let now
@.(8) = 2 &
y<z
P.(£) = ;pz(f)-

* Actually, Birkhofl’s polynomial p.[¢] equals £p, (). The definition we use is
more convenient for our purposes.
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The Mgbius inversion formula gives

£ = 3wl — y)g(8)

y<z

pa(E) = 2 u(x — y)Py(§).

y<r

To caleulate ¢.( - ) explicitly, we note that if 0 < & < | x|, then, using
the cup N for set intersection,

ent s = (1),

3 I) states with & calls up below any state a.

i.e., there are exactly (J
Hence

g(8) = 28 = (1 4+ )l — g,

u<r

Let us write

E\rl — E ,.”(E'),

u<r

where r,(-) are functions to be determined. Using the Mébius inversion
formula once more, we find that one choice of the r.’s is

re(E) = 2 (e — y)E"

ver
= p(§) — &7
so that
El-rt — ZIZG (pu(E) _ Elyt)
= P(£) — qu(§)
and
P(g) = (1+ 8"

I
i™M=
~— +
~——

b

It is apparent that

| .
BL+E =2 (148" = (l‘,ﬁ:')s*’.

res reS k=0
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Since for 0 < &k = | « | there are precisely

||
I
elements in L, that are below 2, we have

B(1 4+ &) = 2 P.(§).

zes

The preceding results yield the following identities for &(-):

d(N) = oA =20 > ule = g, (N)

= Z Z<: r,(\)

=2 ; (N — A"

= ;rﬂ(x) - 2 (N

=&(1+ ) — 2 2
TES Y<I

VIII. A REVERSIBLE MARKOV PROCESS FOR WHICH THE CANONICAL DIS-
TRIBUTION IS INVARIANT

We shall describe an ergodic reversible Markov process z,, taking
values in the set S of states, and having the property that its stationary
distribution over S is precisely the canonical distribution derived from
the maximum entropy postulate. This Markov stochastic process can
be used to place the canonical distribution into a dynamic context by
exhibiting it as invariant under a semigroup of positive operators, viz.,
the transition matrices of the Markov process in question. The transi-
tion rate matrix A of this process, i.e., the generator of the semigroup,
then provides several interpretations (cf. Section X) of this dynamie
context in terms of behavior at the terminals of the networks, i.e., in
terms of calling rates and mean holding-times.

Let x ¢ S be a possible state of the network. In Section 1I we have
introduced the sets of states 4, and B, with

A, = set of states immediately above x, i.e., accessible from x by

adding a new call,

B, = set of states immediately below v, i.e., accessible from x by a

hangup.

The process z, to be considered can be described heuristically by
saying that if z, = x then z.., is moving to each y € A at a rate A > 0.
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to each y e B, at a rate unity, and to any other state at a rate zero. Its
transition rate matrix 4 = (a.,) is given by

(= x| =X|A| if y=u

N it ye B.
@ =) iy ed,
0 if yed,UB, and y # a.

With this matrix we can define a Markov proecess z, in the usual way.
(Cf. Doob.®) A discussion and eritique of possible physical interpre-
tations of the rate matrix A is given in Section X.

The probabilistic interpretation of the rate matrix A is that if z, = «
there is a conditional probability M + o(h) that z,, = y, for y e A, ;
there is a conditional probability & + o(h) that z,.n = v, for y ¢ B, ;
there is a conditional probability 1 — N | A, | — k| 2| — o(h) that
zepn = @; all other events have a conditional probability o(h), as h — 0.
The constant A is the calling rate per idle path.

An alternative informal description of the Markov process z, is as
follows: the length of time spent in any state x is a random variable
independent of all other lengths of time spent in a state, having a
negative exponential distribution with a mean

1
BEDEAS
At the end of a stay in @, a new state is chosen (independently of every-
thing except x) from A, U B, according to the probabilities
N S
o]+ XA
1
[+ 2] A
The equation A¢ = 0 is the matrix-vector form of the statistical equi-
librium equations for the process z, . These equations can he written out
and solved explicitly, as follows: Ag = 0 is equivalent to

Hal+ M Al = 2 a0+ X2 g, wedS (6)

yed g veliy

for elements of A,

for elements of B, .

We find by substitution that ¢. taken proportional to A'*! gives a solu-
tion. Hence the unique normalized (to be a probability vector) solution
is

Ri-fl )\|1'|

qxz_—i_f

2 AT @)

zeS
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This is precisely the canonical distribution of probability over S which
was obtained earlier from the maximum entropy principle. Thus, one
sense in which the canonical distribution is an equilibrium distribution
is that it is invariant under the transition probability matrices of z .

It will be noticed that the vector ¢ has components which satisfy not
only the statistical equilibrium equation (6) for z,, but also the much
stronger condition

ary = Qylyz xy € S,

which is an analog of the principle of detailed balance. In the language
of probability, this condition is that of reversibilily; that is, it 1s equiva-
lent to the condition that the process z, look the same whether seen
forward or backward in the sense that for any two times { and s

Pri{zz=2 and z =y} =Prizz=y and z = z}.

The reversibility of z, has important statistical consequences, explored
in Sections XII-XIV. However, an immediate consequence is the
following form of the Boltzmann H-theorem for z; :

Remark: Let

H-c(t) = - E:S qr-y(t) ]ng qxu(t)»
b'13
where
gn(l) = Priz =y |z =zl
Then

(d/dt)H (1) = 0.

The proof of this is well-known, being just Pauli’s proof of the
quantum-mechanical H-theorem from the principle of detailed balance.
(See Tolman,? p. 464.)

IX. ANALOGY WITH STATISTICAL MECHANICS

As its name suggests, the eanonical distribution of probability over S,
implied by the maximum entropy principle, resembles the canonical
ensemble of statistical mehcanics and thermodynamies. This analogy
extends to several other concepts arising either in traffic theory or in
statistical mechanies, and will now be described. It is assumed that the
reader is familiar with the rudiments of statistical mechanics; a lucid
account can be found in Khinchin.®

Let us consider a conservative mechanical system embedded in a heat
bath, and assume that it is described by a canonical ensemble. It can
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exchange energy with its surroundings; its energy is a randomly varying
quantity. The basic identification we make is of the number of calls in
progress in a connecting network with the energy of this mechanical
system. In other words, new calls in the operating network are analogous
to increments of energy in the mechanical system, while hangups repre-
sent decrements of energy. The average energy is identified with the aver-
age load carried by the network.

The surfaces of constant energy in the phase-space of the mechanical
system are analogous to the levels L, , i.e., the sets consisting of the
various states with & calls in progress for k = 0, 1, 2, - - . The number
| Ly | of ways of putting up % calls, on which our theory rests, is the
analog of the area of a surface of constant energy. Just as the canonical
density funection is constant over the surfaces of constant energy and
maximizes the entropy for a given average energy, so is the eanonical
probability vector ¢ constant over each L, and maximizes I (q).

The partition function of statistical mechanies is defined (ef. Ref. 6,
p. 79) by

Z(a) = [('_"”'”rll'(r)_,
s

where I' is the phase-space, @ ¢ T is a typical state, H(x) is the total
energy of state x (here given by the Hamiltonian function), and 41 is
the volume element of phase-space. In a similar way, the partition
function ®(-) is the generating function of the numbers | L |, & =
0, 1, 2, -++. The set S of states corresponds to the phase-space T,
H () is analogous to | x |, the volume measure on T' is analogous to the
counting measure on S, and ¢ * replaces £.

In Khinchin’s development® of statistical mechanies the temperature
is defined as inversely proportional to the unique root @ of the equation

(d/de) log Z(8) = average energy.
Specifically, the absolute temperature 7' is given hy
o= (kT),

where k is Boltzmann’s constant. In our model for a connecting net-
work the analog (modulo a logarithmic transformation) of @ is the
solution A of

(d/d\) log ®(N) = average load carried.

Thus it is tempting to identify (log A)™' as proportional to the “tem-
perature” of the traffic system.
The matrix A, introduced in Section VIII as the “transition rate”
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matrix for the process z,, provides a sense in which the canonical
distribution ¢ is of “equilibrium” type. The reversibility of z is analogous
to the detailed balance property of transition matrices in statistical
mechanics. (Cf. Tolman,” pp. 165 and 521.) This property also implies
that a form of the Boltzmann H-theorem is valid for z,, as we saw in
Section VIII.

The analogies between our thermodynamic model of traffic and
statistical mechanics ean be collected in the following tabulation:

STATISTICAL MECHANICS TRAFFIC THEORY
Energy Calls in progress
Partition function Generating function ®(-) of number of
ways of putting up k calls,0 = k £ w
Entropy - Z ¢z log ¢.
TEeS
Temperature {log (calling rate per idle path) [
Area of surface of given | Li | = number of ways of putting up %
energy calls
Transition rate matrix A
Detailed balance Reversibility of z,
Equilibrium Ag =0
Heat bath Idle customers’ needs
Phase space T' Set S of possible states
Volume measure on I’ Counting measure on S

X. DISCUSSION AND CRITIQUE

It is now reasonable to consider possible physical interpretations of
the stochastic process z, and of the transition rate matrix 4 in terms of
items describing behavior at the inlets and outlets of the connecting
network, such as calling rates, holding-times, and routing rules. Obvi-
ously, transitions of z, from a state @ into B represent hangups, while
transitions from x into A, represent new calls; the entries of 4 indicate
the “rates” at which these events occur in the different states. However,
the reasonableness, and so the acceptability, of z, as a model for traffic
depends on the interpretations of z, and A in physical terms. Hence we
must inquire whether (and how) the rates entered in A can be viewed as
realistically deseribing the terminations of calls in progress, the occur-
rence of new calls between inlets and outlets of the network, and their
routing or disposition.

In general, to construct a Markov process as a model for traffic in a



THEORY OF TRAFFIC 589

connecting network whose states form the set S, it is usually sufficient to
give, for each state r ¢ S, and each inlet « and outlet »,
(7) the hangup rate for the various calls in progress in x,

(#7) the calling rate between w and v in state x,

(##¢) the method for disposing of requests that encounter congestion,

receive busy tone, ete.,

(zv) the method for choosing routes of new calls.

A particular choice of the items (7)—(iv) leads to a transition rate matrix,
and so to a Markov process. We shall assess the reasonableness of z, as
a model for traffic in terms of items (7)—(iv) above by exhibiting two
choices of (7)-(4v) that both lead to the rate matrix A of 2, .

In the dynamic model z, deseribed in Section VIII, the role of the in-
lets and outlets is open to (at least) two different interpretations, each
of which induces a corresponding interpretation of the transition rate
matrix A.

One possible interpretation of the inlets and outlets is to take them
seriously as actual terminals or customers’ lines. They are then the outer-
most portions of the network under study, the original sources for traffic
that enters the system, beyond which there is no more connecting or
switching equipment. From any inlet, or to any outlet, there can be at
most one call in progress. In this case the rate matrix A4 can be inter-
preted as saying that in a state » each call in progress is terminating at
a unit rate, that the calling rate from an idle inlet « to an idle outlet ¢ is

A-number of available paths from u to v in state @
= A-number of states covering & which include a (u,r) ecall,

and that of the possible routes for a new call one is chosen at random
(cqual probability for all). The reader ean verify that this choice of
(7)—(2r) does in fact lead to the rate matrix A. Note that this desceription
does not provide for the generation of blocked calls.

The choice of a unit hangup rate per call in progress is tantamount to
measuring time in units of mean holding-time, with the convenience that
carried and offered loads come out in the standard units of erlangs. This
unit hangup rate can be obtained as a consequence of assuming that the
holding-times are negative-exponentially distributed with mean unity,
mutually independent, and independent of the random process deserib-
ing new calls. This assumption of “negative exponential holding-times”
is a standard one in congestion theory. (See e.g., Syski,' p. 9.)

More interesting (and questionable!) is the fact that under this inter-
pretation the calling rate in a state » between an idle inlet « and an idle
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outlet » depends on the number of ways in which a call from u to v
could be put into the network in state x. This calling rate can therefore
change in time as the state changes, even if « and » remain idle. It can
be argued that this is an unrealistic feature, and that therefore z, is not
a wholly reasonable model for telephone traffic in a network whose in-
lets and outlets are interpreted as terminals or customers’ lines. For
surely the idle calling parties do not know the state of the system, nor
the number of paths available for a call between them, and so they can-
not (let alone do not) adjust their calling rates accordingly.

In a sense, it would be more intuitive and reasonable to assign a call-
ing rate A to each idle pair (u,) of terminals (an inlet u and an outlet »)
irrespective of the state v of the system. This basic calling rate for each
idle pair (u,) is then distributed over the states that cover x and realize
(u,v) [assuming that (u,) is not blocked, so that there are such states]
in accordance with some routing rule. A stochastic process x, on S based
on this idea is described in Section XI, and is studied in detail in a work
(Bene&!") to appear later.

I'rom an a priori viewpoint, x, is a more reasonable model for traffic
than z, . The objection (described above) to letting the calling rate for
an idle pair depend on the state is severe. Nevertheless it does not neces-
sarily destroy the usefulness of the process z, for describing traffic. Three
comments are relevant here:

(1) If all calls can be put up in at most one way, then x, and z; coin-
cide.

(2) If calls can be put up in only a few ways, it may often be possible
or useful to regard z, as a small perturbation of x, obtained by raising
various calling rates. This idea is explored in Section XI.

(3) Even if z, is not in any precise sense a small perturbation of the
a priort reasonable model x, , 1t deserves to be considered as a model of
traffic. Tt must not be forgotten that the usefulness of a theory rests
more on its success in predicting than on its mecting criteria of reason-
ableness that are adduced a prior:.

However, it is possible to give the inlets and outlets a second interpre-
tation, different from the one that assigns them the role of “outermost
terminals.” This interpretation makes z, a fairly reasonable model of
traffic, in the a priori sense we are discussing. It consists in letting each
inlet or outlet represent a point from which several or many calls ean be
in progress to other points in the system. Physically, such an inlet or out-
let might be a PBX or central office serving a locality. As such, it would
itself contain a connecting network which is left out of account in the
model. It no longer necessarily makes sense to speak of busy and idle
inlets, or outlets.
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To give an intuitive rationale for this interpretation and for the as-
sumption about calling rates that corresponds to it, let us pick an inlet-
outlet pair (u,r) and think of « and » as (possibly geographically sepa-
rated) points between which there may be several calls in progress. For
example, the network under study might be a toll network, and » and »
might be loeal central offices acting as sources of traffic for the toll sys-
tem. Or, for a second example, © and v might be distinet switches in a
large network inside a central office.

In such situations, it is natural to expect that if in a state there are
many paths available for a call from » to », then there is a larger proba-
bility that a requested call from  to v arise in the next small interval of
time A than if there were very few paths between u and v available. In
other words, it is reasonable that the calling rate in @ for (w,») calls be
a monotone increasing function of the number of paths available in 2
for such ealls.

A particularly simple monotone function is the linear one, and we shall
assume that the calling rate for an idle pair (u,») in 2 is

A-number of paths available in x for (w,v) call,

and that of the available paths one is chosen at random. Again, no pro-
vision is made for the generation of blocked attempts, since these will not
affect the state probabilities when blocked calls are refused.

We observe that A, can be partitioned and written as

A, = U A (u,0),

(u,v)
where
Ay = {y:y covers ¢ and realizes (u,v)}
with
A (u,p) | = number of paths available in . for a (w,) call.

Since routes for new calls are chosen at random we find that the transi-
tion rate from x to y e A, is exactly A, so that this second interpretation
also leads to the rate matrix 4.

XI. A MARKOV MODEL BASED ON TERMINAL-PAIR BEHAVIOR

We now revert to interpreting inlets and outlets as the ultimate ter-
minals of the connecting network. In Section X it was suggested that
under this interpretation an e priori reasonable model (a stochastic
process r;) can be obtained by postulating an effective calling rate
A > 0 per idle inlet-outlet pair. This can be done by assuming that each
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idle inlet calls an arbitrary outlet at a rate A, and vice versa, with at-
tempted calls to busy terminals rejected with no change of state. The
total attempt rate in a state x (excluding calls to busy terminals) is

‘ number of idle
inlet-outlet pairs in |

If 7 is the set of inlets, and @ that of outlets, with I and @ disjoint, this
has the quadratic form

AT =T=De] =[],

As before, we assume a unit hangup rate per call in progress, with
blocked calls rejected. The description of z, can be completed, finally,
by specifying a method of routing. This we do by introducing a “routing
matrix” B = (r,,) with the following properties: Let @ be a state, and
let IT be the partition of A, induced by the equivalence relation ~ of
“having the same calls up, possibly on different routes”; then

rey = 0
rp = 0 unless yeA;

> 1 =1 for Y eIl

weY
We note that Qs 7z is exactly the number s(x) of attempts which
would be “successful’” if they arose in state x, and that II consists of
exactly the sets A.(u,) for {(u,v)} idle and unblocked in x.

The routing matrix & is to have this interpretation: each time the
call {(up)} is to be completed in state z, a state y is chosen inde-
pendently from A,(u,p) with probability r., and the call is routed so
as to take the system to state y.

The foregoing assumptions lead to a rate matrix @ for x, defined by

1 if e B
Ny if y e A,
To =9 e —ns(e) if y=u
0 if ye (A;UB,) and y # a.

This matrix is exactly like A except that for y e A, the rate from x to y
is not A but (the in general smaller quantity) Ar;, , and that the diagonal
terms are correspondingly increased so as to keep row sums equal to
zero. For each Y e II, r,, for y e Y represents a distribution of the calling
rate of some idle unblocked pair (u,) over A;{nw) = Y. Indeed A
results from @ if all the r,, are replaced by unity. The process x; can be
defined in terms of its rate matrix Q.
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The assumptions leading to the rate matrix @ and to the process x,
have much a priori appeal; . itself is discussed in detail in a forth-
coming paper'' already mentioned. Here we shall merely consider
whether z, may be regarded as a perturbation of 2, . Since each process
is determined by its respective rate matrix, and since we are interested
mostly in equilibrium behavior, we restrict attention to asking how
different are the respective equilibrium distributions over S for x, and
2. . Thus, if p and ¢ are probability row-vectors satisfying Qp = 0 and
Agq = 0 respectively, how different is p from ¢?

To give a precise estimate, we introduce the norms

1M = E;Imxy[
fell = 2210
for matrices and vectors, respectively. Since Ap = (4 — §)p and
Qg = (@ — A)g, we find
2@ — Al
[p—aql £ -—"—"1.
I —Q—Al

The norm of @ — A, in turn, ean be secen to be

Q@ — Al =202 2 (1 —ry)

TeS yed g

=22 (| A | — s(x))
= N@(1) — X s(x))

TeS

where
s(x) = number of pairs that are idle and not blocked in .

Letting

x = max number of ways a call can be realized

IIA

ps{2), and hence

Q@ — Al =2:Mp —1) 2 s(x)

TeS

M(p — D@ (1).

we find | A, |

1A

Let

w = max | z |

TeS
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so that ® (1) = w | S|, and
1Q—4] < 20— Dw|S].

The average contribution (per state) to || @ — A || is then

M < (g — Dw.

XII. THE APPROACH TO EQUILIBRIUM

It is known from the theory of Markov processes that the matrix
Q(t) = (g (2)) of the transition probabilities

0n(l) = Priz(t +s) =y | 2(s) =}, t=20

of the process z, satisfies the Kolmogorov equations
(d/d)Q(t) = AQ(t) = Q(1)4,  Q(0) = 1,

and that the study of the time-dependent (as opposed to the asymptotic,
or equilibrium) behavior of z, can be carried out in terms of the charac-
teristic values of 4. Knowledge of the transition probabilities is essential,
for example, in caleulating the sampling error incurred in such load
averages as

1 n 1 T
05 9 P I A A (7)
" j=1 0

where 7 is the interval between successive discrete observations of
| 2, |, and (0,T) is an interval of continuous observation of | z, |. In this
section we study the manner in which 2, approaches equilibrium in
terms of the two principal characteristic values of A4, i.e., that of largest,
and that of smallest nonzero, magnitude. Applications to estimating the
covariances of functions of z,, and to studying sampling error for the
traffic averages in (7), are described in Sections XIIT and X1V, re-
spectively.

Our study of the approach to equilibrium is based on the observation
that the matrix A of transition rates for the process z, is symmetrizable,
i.e., is a self-adjoint operator in a suitably chosen inner-product space
of finite dimension | S |. The probabhilities

are all strictly nonnegative, and we use their reciprocals g, as weights
in defining an inner product,
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(1) = 3 b, (8)
and a norm,
sl = (9"

We now remark that for all states x,y from S,
GyQyr = (alry
or alternatively

ey = Qrylhy .

Indeed, this remark is the basis for the solution ¢ given in Section VIII
for the statistical equilibrium equations (6) of the process z; it has
the important consequence that A is self-adjoint with respect to the
inner product defined by (8), viz.

Lemma 2: (Ar,s) = (r,As), for any | S | -veclors r,s.

Proof: A iz a real matrix, so

Z Z Ayl Srppr = Z Z 7ySaeylly
x v T y
= Z Tybly Z AnS: = Z Ty Z QrySxlty
v z w P

In a similar way we prove
Lemma 3:

(l r""l‘) = _% Z Z a‘w((y(s.r#r - 3‘1/#1,-)(#17': - ,LlyTy).
x oy

Proof: Since the matrix whose elements are a,.p. is symmetric, we
have

(Ars) = 33ty
x oy
Z Z yepra (1,50 + 3"4«:31;).
y

x

[

Now
2 2 Gy e = 0
Ty

because Ag = 0, and

Z Z a’yr{[yﬂvgguru = Z Z @yslhy Sy Ty
y v x

=0

because Y. a,. = 0. This proves the lemma.
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Theorem 8: The characteristic values of A are real and nonposttive.
Zero is a simple characteristic value corresponding to the characteristic
vector g, normalized lo unily.

Proof: The result follows from the known properties of self-adjoint
transformations. (See Ref. 12, pp. 153-155.)

The characteristic values of A will all be of the Rayleigh quotient
form

(Av,v)
(v,0)

for some vector »; by Lemma 3 this form is nonpositive. The probability
vector solution ¢ of Ag = 0 is unique so that zero is a simple charac-
teristic value. Furthermore, if 0 > Fpux = 1 2 -+ = 59— = Tmin 18
an arrangement of the characteristic values in decreasing order, the
variational description of the characteristic values (Ref. 12, p. 111)
implies that with || v [|* = (vp),

1A

0

roax = 1 = max {(doep) v L g [|v] =1}
Tmin = Fj8—1 = min [(Av,'t)} ‘ || ) H = 1}.

The alternative notations rmax and rmin identify the two “dominant”
characteristic values, and are introduced for later convenience to en-
hance the symmetry of the theory.

One can now estimate r; from below by substituting suitable trial
vectors in the Rayleigh quotient. Choosing a vector » with components

o= lZlmm
Tz
where
a
m =2, lz|lg=>n_—-logd(r)
TeS ('D\
=2 (ol —m)g. =\ ((j + —e'—) log ®()\)
Ted dA? aA ’
it is easily seen that (g,») = 0, that || v || = 1, and that
2
(A'U:U) = —lzzawqy (1:”1 g lxl m)
2 z Y a a

1
7y

In equilibrium, the average rate of new calls equals the average rate of
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hangups, as can be verified from the equilibrium equations A¢ = 0.
That is,
ZIHIQU:AZQUlAylz
yeS yesS
and we find

m
—_— é T1 < 0,

q

a generalization of a result known (Ref. 13, p. 147) for the simple
busy signal trunk group (eclassical Erlang model).

In general, letting f( - ) be any function defined on the set S of states,
but not identically a constant, we define

my = 2 f()gs

TES

of = Z; (f(x) — my)’gs .

Choosing now a vector v with components

_f(z) —my

Tikz

Uz
we obtain (by repetition of previous reasoning)

—2%2 a0 (E [F(x) — O + X 2 [f(e) — f(y)?)
g oy

Tel, Ted,

as a lower bound for r, .
We now define a set of vector-valued functions {e, (1), x ¢ S, ¢ = 0} by
the condition

ay(l) = gol) — gy, yesS.

The function ¢,(-) describes the approach to equilibrium from the
initial state x at time { = 0.
Theorem 3: Fort = 0

H cz(0) ” exp (rminl) = | e.(t) ” = ” c:(0) ” exp (Tmaxt).
Proof: Since ¢, and ¢.,(¢) are both distributions in y, we have

(eo(t),) = 22 qu(t) — g, =0
v

so that ¢.(¢) 1 ¢. Also
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2 Zy: lg=(t) — ql % qzy(t)#y

d
=2 X KT r
(C ’dtc)

= 2(c;, A¢,)

2 et) |

since (d/dt)e. = Ae, ; that is for each y € S,

d d
(7.& Coy = dt Qzy = ; ﬁ'zz(t)azy

= E [sz(t) - q:]a:y-

Hence, || ¢, || being nonzero, we find

Urmin = (d/d) log || - ||° = 2rmux

and Theorem 3 follows by integration. The argument just given is es-
sentially reproduced from Kramer.™

XIII. COVARIANCES OF FUNCTIONS OF 2,

For the purposes of this section it is convenient to introduce an inner
product ( -,-)’, closely related to but different from (-, ) of the previous
section, and defined by

(rs) = 2 1.8, .

xesS

The associated norm is denoted by || » |’ = ( ro)"t. The point of the
“prime’’ notation is explained by the fact that the transpose A’ of 4 is

self-adjoint with respeet to (-,-)".
Remark: Where A’ is the transpose of A

(A'rs) = (r,A's)".
Proof:
SN et = 2 2 @uSaruy
x v T v
= Zﬂ’u Z AyzS2y = Z Ty E AyS:qy -
¥ £ y z

Let f(-) be a function defined on S, and define a stochastic process
£ by the condition

fe = f(z).

Theorem 4: The covartance of f: s given by
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oo

t"‘ I'n I
where the vector [ is defined by
= f(a) = 2 fla)g,
TeS

= f(z) — my.

Proof: The covariance of f, is

2 5 DS, = (LD
= (f(exp 1))’

oo tﬂ , ,

=5 (4™

R;O - (A7)

with @(t)’ denoting the transpose, and not the derivative, of @(¢). The
covariance of f, is thus the exponential generating function of the series
of numbers

(LA™Y n=2012 -
These ean be caleulated with the help of the following results:
Lemma 4: Let the matriz elements of A" be az,'™. Then

(n) (n)
Yollzy = @y -

Proof:

(n)
qxa'.r;,' = f}: AryQuyuy "7 Oy
1 1%z n—1¥

Uy tsain_]

= z : Ay 2y " ah'"n_lfly

UY,-cealin_]

qy E Quug_y " ** Quguy Quyx

Up—1i7" M1

(n)

= Gy
Lemma 5: Lel @ be the diagonal matriz of elements ¢, , x € S. Then
(w,A""w)" = (A"Quw,Qw).
Proof:

Z Wr Z ﬂ-.ry Wy = E Qlﬂ)r Z .u‘ya'xy Q'H))y
= X (Qu). X " (Qu)u. .
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From the three preceding results we obtain
Theorem 5: The covariance of f, is

o0

R(1) = z% (4"Q1R0),

n=0

where the vector [ is as in Theorem 4, and @ is the diagonal matrix of

elements ¢, , T € S.

It is readily seen that A", n = 1, is again a self-adjoint operator with
respect to (-,-), and that its characteristic values are precisely the
nth powers of those of A. Also, for any vector » and n = 0

(A™) <0 if nisodd
1z 0 if niszero or even

so that by the variational description of characteristic values we have

Tmin , N odd n Tmx, 7 odd
}<<A ) <{ (10)

Tmax, T €VEN (o,0) Tmin , 7 €Ven

provided that » 1 ¢ (in the inequalities involving rmax). Returning now
to the vector Qf of Theorem 5, we find

| QfI* = ; e fe s
= > (f(z) — m)’qe = of

reS

and

E q.’l‘(Qf)z#-x = 2; q;f:; = 0,

T

so that Qf L ¢. Letting v = Qf in (10), we obtain
0/ rmin” £ (A"QF,Qf) £ o/'rmux”, n odd,
o s S (AQf,Qf) = oy Tmin”, 7T even.

Unfortunately, these inequalities do not give useful bounds for the
covariance E,(-). However, such bounds can be obtained from the
formula of Theorem 5 in an elegant way by applying the spectral

theorem to A.
Theorem 6: Let ay , -+ -, ax denote the distinet characteristic values of A,

and let E; i = 1, -+ -, k, denole the perpendicular projection on the sub-
space of all solutions Ar = aur. Then the covariance By ( -) of f. is given by

R = 3 (BQIQHE,
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withl =k = | 8|, Q the diagonal mairixz of elements q,, x € S, and f
giwen by f, = f(a) — my, .

Proof: By the spectral theorem for self-adjoint operators (Ref. 12
p. 56) we can write

and
N
= E (‘I,‘nEi .
=0
We can now calculate with formula (9) of Theorem 5:

L

R/(1) = 30 (A" QrQ0)

i

Ms

o, QrQf)

Mr\

S (1 QRS e

I
=

This proves Theorem 6. Since we know that zero is among the charac-
teristic values (indeed, it is a simple one), one of the a's, say a,, will
be zero. We may reasonably expect B;(-) to approach zero for large ¢;
hence the constant, i.e., ay, term of R;(-) should be zero. This can be
seen as follows: the subspace associated with zero consists of vectors
proportional to the equilibrium vector ¢, because zero is a simple charac-
teristic value; but we have already verified that ¢ 1 Qf; hence

(Lor,Qf) = 0, all r.

Using this we prove the
Corollary 1: Ry (t) = Ofw' all t, and in fact

0 o™ < Rit) €0/ e™ " allt.

Proof: Since the F; of Theorem 6 are perpendicular projections, they
are linear, self-adjoint, and positive in the sense of Ref. 12, p. 140; the
usual term for positive is nonnegative semidefinite. Hence

(Ear) =20

for any vector r. Since (For,Qf) = 0 if E, is associated with the zero
characteristic value, the result follows from Theorem 6, using
k

Zb‘i = I:
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*
> (EQLQD = 1 Q7 IF = o/

XIV. APPLICATIONS TO SAMPLING ERROR

Let us suppose that n samples of the process f.( = f(z,)) are observed
during an interval of equilibrium of z, at intervals = apart, and that the
normed sum

n
'S, = a7t X fir
i=1

is used as an estimate of K {f,}. We find that

Var [S,,] = E (‘?1. - |.? !)RI(JT),

J=—n

where R,(-) is the covariance of f,. By using the identity

—2nu

n
Z (n— |7 e = netnhu — — esch™u,

=, 2
= v,(u),
together with Corollary 1 of Section XITI, we find that
o0, (—d1rmin) = Var [S,} £ o/ 0 (—$mrux).

In a similar way, if f; is observed continuously over an interval
(0,7) of equilibrium of z, and the time average

1 T
M(T) = Tf f(za) di
0
is used as an estimate of E{f.}, then
T
Var {M(T)} = 2T‘2f (T — t) Ry(¢) dt,
0
and Corollary 1 gives
T T
a,’f (T — 1) ™' dt < Var {M(T)} = g,"f (T — t) ™" dt.
0 0

XV. A GENERALIZATION

As an extension of the maximum problem posed and solved in Section
V we shall seek functions

Gt),zelS, L=t=2t, bL<t
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such that for each ¢ in [f; i)

() =1, @t)=z0

TeS
ZS | @] q@(t) = m(t) >0
[P
H(g(t)) dt = maximum.
L3}

In other words, we look for a time-dependent distribution of proba-
bility over S with preseribed mean values for the function |- | on S, such
that the integral of the entropy functional over (f; ,f2) is a maximum.

The Euler equations for this problem assume the trivial form (with
Ly(-) and L.(-) as Lagrange’s multipliers) :

(0H/dq,) — Lyi(t) | x| — La(t) = 0, TeN
or, writing out the H-derivative,
l()g f]r{f) + 1+ IJ[(!) J X J + Lg(t) = 0, xr e S.

The argument of Lemma 1 following equation (4) shows that g.(-) is
given by

RO
{[z(.!) —W 1 =EULEh

where A( +) is the unique solution of the equation

> Lzl d
m(t) ®(N(1)) (l du 8 (u))
This solution has the form of the canonical distribution at each time
point in [4 6], and Theorem 1 in effect is just the special case of this
result that arises when m({) = m. It is apparent that the form of this
solution does not depend on what interval [{; ,f] was considered, so we
may assume that m(-), and hence also A(-) and ¢(-), are defined on
the real axis.

Let us define the matrix-valued funetion A(¢) hy A() = (a.(t))
where

u=Ah(t) -

1 it yeB,

AW i oyed,
Gl =V e = a0 | 4a] i x =y
0 otherwise.

In other words A(¢) is obtained from the transition rate matrix A or z,
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by replacing the constant A by the funetion (). Then for each i
A(t)g(t) =
i.e.,

e e lea(t) = 20 a(0) + M0 2 a(t).
Thus an analog of the statistical equilibrium equation holds at each
point in time, and in this sense, a system described by fg(t),lh =t £ ta}
may be said to be locally in equilibrium throughout the interval (4 Jta).
Let us now redefine the process z; to be the time-dependent Markov
process corresponding to the (time-dependent) transition rate matrix
A(-). We know that if A( - ) were a constant function with the particular
value A(u), then the process z, would have a stationary or equilibrium
distribution over S given by

:(U) ———-

(A (u)]™!
()

We may therefore expect that if A(-) is not constant, but changes only
slowly with time, and if zo has the absolute distribution (veetor) ¢(0),
then z, for ¢ > 0 has a distribution approximately given hy q(t). Let us
see in detail how this oceurs.

The transition probability matrix

Qt ) = (go(li 1)),
Gl ) = Pri{z, = y |z, =z},

is now indexed by two time parameters instead of one, because of the
time-dependence of z, . The forward Kolmogorov equation for Q(-,-) is

(8/a)Q(u,t) = Q(u,t)A(L), u < t,
or
(0/00)qzy(ut) = =l y | + ME)s(y))ga(u,t)
+ 20 gu(®) + MO 2 ga()

zedy

with Q(i,t) = 1. It is ecasily seen that
t
Q{ut) = expf Q(w) duw,

the exponential of a matrix being defined by the usual series in powers
of the matrix. Therefore if

Pr{z = x} = ¢.(0),
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then

Pr{z. =z} = 2 Pr {z = ylg.(t),

yesS

and the absolute distribution of z, is given by the vector
Q(0,t)¢(0).

We now write
j t
Q(04) = exp tA(t) + -Lexpj; A(u) du — exp tA(t)},
observe that
t t
[ 4@ au - ta = [ waacw
(1] 0

and make this heuristic argument: Since dA/dw is small, Q(0,t) is
approximately exp tA(t); however, for ¢ fixed and » varying

exp uAd (1)
is the transition probability matrix of a process z, obtained by setting
AMu) = A1),

This matrix approaches, as © — =, the matrix each of whose rows is
q(t). If ¢ is large compared to the time it takes this to happen, we may
expect, by Theorem 3, that

exp tA(t)
have rows all approximately equal to ¢(t), so that
distr {z;} =~ ¢(1).

The informal argument just given can be made precise. For the
purposes of this last section, we again introduce the vector norm

171 = Z 171

and the matrix norm

1M = 2 | mayl.

x,yeS
Also, we use the following result:

Lemma 6: Let M N be | S |-dimensional square malrices, with
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¢c=3%sup | myy |+ 3 sup |ng
T, yeS T,yeS

Then for inlegers k =z 1
|0 — N* [ = (2| SDH M~ N .
Proof: There obtains the identity
MY — N* = 3(M + N)(M*™ — N*") + (M — N)M"™ + N*').
If (b,,) are the elements of B and (b, ™) are those of B*, then

sup | bz, | = | S|-sup | by "7V |-sup | bay |-
r. 2. 2.y

Hence, with £ > 1

sup | m, "+ ny TV | =[S [TH20),

&
and

I (M = N)M T+ N = 2| SPTH M= N
Also,

| (M 4+ NYMT = N [ e S| M = N L
Thus

| M = N || ge| S| M =N +4|M—-N[(2]|SH

< || M —N|(2c| SN
e+ L e s s
< || M - N[[(2]SD

Using the lemma we find that the norm of
t
exp [ A(u) du — exp tA(t)
Y0

is at most

j: w dA(u)

n=1 n!

@ ’ (f‘ Alu) d.u)n — "A7(¢t) H P _1
2 = —

where

L
f a., () du
0

b =2|8|sup + tsup|a,(t)].
z.u v
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It can be verified that

f‘ wdA(u)

0

=-32

L0
yeAg

< 26%'(1)- sup | N(u)l.

uel0,t]

t
f wdh(u)
0

Thus if AM'(-) is small on [0,{] the distribution of z, is nearly
(exp tA(1))q(0)

(in the sense of the vector norm of this section). By Theorem 3, how-
ever, this will be nearly ¢(¢) (in the sense of the norm defined by ¢(t))
if ¢ is large compared to the time it takes exp uA(t) to approach its
limit as u — =,
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